JPH06264160A - Composite ceramic tube - Google Patents

Composite ceramic tube

Info

Publication number
JPH06264160A
JPH06264160A JP5078728A JP7872893A JPH06264160A JP H06264160 A JPH06264160 A JP H06264160A JP 5078728 A JP5078728 A JP 5078728A JP 7872893 A JP7872893 A JP 7872893A JP H06264160 A JPH06264160 A JP H06264160A
Authority
JP
Japan
Prior art keywords
tube
temp
furnace
matrix
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5078728A
Other languages
Japanese (ja)
Inventor
Toru Kawai
河合  徹
Takeshi Shinozaki
斌 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5078728A priority Critical patent/JPH06264160A/en
Publication of JPH06264160A publication Critical patent/JPH06264160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To enhance the creep strength, oxidation resistance and thermal impact property of radiant tubes, etc., by improving the high-temp. characteristics of these tubes so that a high-temp. furnace operation for enhancing the efficiency of the furnace operation is made possible and that the accuracy of furnace temp. control is improved. CONSTITUTION:This tube is formed of Si as a matrix and has a composite structure contg. SiC ceramic particles as a dispersion phase in the matrix. The quantity ratio of the Si matrix occupying in the composite structure is 30 to 80%. The high-creep strength is maintained and creep deformation resistance is high even in a high temp. region exceeding about 1200 deg.C. The tube has the excellent oxidation resistance, etc., and is less oxidized and damaged by burner flames. The tube is formed thinner and lighter for its high creep strength and low density. The control of the furnace temp. with good accuracy is also possible as the effect of drastically decreasing the heat capacity of the tube.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ラジアントチューブ等
として有用な、高クリープ強度を有し、耐酸化性、耐溶
損性、耐熱衝撃性等にすぐれ、かつ低熱容量である複合
セラミツクスチューブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite ceramic tube which is useful as a radiant tube or the like, has high creep strength, is excellent in oxidation resistance, melting resistance, thermal shock resistance and has a low heat capacity.

【0002】[0002]

【従来の技術】鋼材の焼鈍処理炉等に配設されるラジア
ントチューブ材料として、従来より20Ni−25Cr
−Fe(ASTM規格HK40,JIS G5122
SCH22)、35Ni−25Cr−Fe(HP45,
SCH24)、あるいは50Ni−30Cr−13W−
Fe等の高Ni−高Cr合金鋼が使用されてきた。近時
は、ファインセラミツクスの適用も試みられ、例えばS
iO2 、またはSiO2 −SiC複合セラミツクス焼成
品(日本鉄鋼協会,「鉄と鋼」69(13)p.11
0,1983)や、ムライト(3Al2 3 ・2SiO
2 )−Al2 3 −CaO系複合セラミツクス(特開平
2−9746号公報)等の提案もなされている。
2. Description of the Related Art Conventionally, 20Ni-25Cr has been used as a radiant tube material arranged in an annealing furnace for steel materials.
-Fe (ASTM standard HK40, JIS G5122
SCH22), 35Ni-25Cr-Fe (HP45,
SCH24), or 50Ni-30Cr-13W-
High Ni-high Cr alloy steels such as Fe have been used. Recently, the application of fine ceramics has been tried, for example, S
io 2 or SiO 2 —SiC composite ceramic fired product (Japan Iron and Steel Institute, “Iron and Steel” 69 (13) p. 11)
0,1983) and mullite (3Al 2 O 3 · 2SiO).
2) -Al 2 O 3 -CaO based composite ceramics (Japanese Patent Laid-Open 2-9746 JP) proposes such have also been made.

【0003】[0003]

【発明が解決しようとする課題】耐熱合金鋼製ラジアン
トチューブは、実使用過程で自重によるクリープや熱応
力等による変形、および変形に伴う割れを生じ易い。特
にバーナー側において顕著であり、バーナー火炎の接触
による管壁の酸化・溶損もチューブ寿命に大きな影響を
与えている。このため、実操業では、加熱温度を約10
00℃以下に制限して使用されているが、その耐用寿命
は約2〜3年に過ぎず、近時の操炉効率改善を目的とし
た高温操業の要請に対処し得るものではない。セラミツ
クスの適用の試みは、高温クリープ強度、耐熱性・耐溶
損性を高めてて上記要請に応えようとするものである。
ラジアントチューブにセラミツクスを適用するために
は、高クリープ強度、耐酸化性・耐溶損性等と共に、加
熱・冷却過程での割れやスポーリングに対する抵抗性等
をも充足するものでなければならない。本発明は、この
ような諸特性を併せ有し、温度約1200℃を越える高
温操業下にも安定な使用が可能であり、かつ炉温制御の
精度向上の要請にも応え得る複合セラミツクスチューブ
を提供するものである。
The radiant tube made of heat-resistant alloy steel is apt to be deformed by creep due to its own weight, thermal stress, and the like, and cracks due to the deformation during actual use. This is particularly noticeable on the burner side, and oxidation / melting damage of the tube wall due to contact with the burner flame also has a great effect on the tube life. Therefore, in actual operation, the heating temperature is about 10
Although it is used by limiting the temperature to 00 ° C or less, its useful life is only about 2 to 3 years, and it is not possible to cope with the recent demand for high temperature operation for the purpose of improving furnace operation efficiency. Attempts to apply ceramics are intended to meet the above requirements by enhancing high-temperature creep strength and heat resistance / melting resistance.
In order to apply ceramics to a radiant tube, it is necessary to satisfy not only high creep strength, oxidation resistance and melting resistance, but also resistance to cracking and spalling during heating and cooling processes. INDUSTRIAL APPLICABILITY The present invention provides a composite ceramic tube which has such various characteristics, can be stably used even at a high temperature operation exceeding about 1200 ° C., and can meet the demand for improvement in accuracy of furnace temperature control. It is provided.

【0004】[0004]

【課題を解決するための手段】本発明の複合セラミツク
スチューブは、マトリツクスSi中に、SiCセラミツ
クス粒子が分散した複合組織を有し、複合組織における
マトリツクスSi/SiC粒子の量比(容積率)は30
/70〜80/20であることを特徴としている。
The composite ceramic tube of the present invention has a composite structure in which SiC ceramic particles are dispersed in matrix Si, and the amount ratio (volume ratio) of the matrix Si / SiC particles in the composite structure is Thirty
It is characterized by being / 70-80 / 20.

【0005】[0005]

【作用】本発明のチューブは、Si−SiCの複合効果
として、温度約1200℃以上の高温域においても、高
いクリープ強度を有し、クリープ変形抵抗が高く、かつ
耐酸化性や耐溶損性を有している。また、熱衝撃特性に
すぐれ、急熱・急冷に対する耐割れ性・耐スポーリング
を備えている。更に、高クリープ強度であること等によ
り、管壁肉厚(耐熱合金鋼製チューブの肉厚は概ね10
mm程度である)を約3mm程度にまで薄肉・軽量化す
ることができる。しかも、その密度(見掛密度)は約
2.79と耐熱合金鋼の密度(約7.85)はむろん、
他のセラミツクスの見掛密度(例えば、ムライト:3.
1,サイアロン:3.3)に比べて小さい。この薄肉・
軽量化は、単にチューブの高温使用下での自重によるク
リープ変形の緩和に奏効するだけでなく、チューブの熱
容量の低減効果として、炉温制御の精度向上を可能とす
る。
The tube of the present invention has a high creep strength, a high creep deformation resistance, an oxidation resistance and a melt damage resistance even in a high temperature range of about 1200 ° C. or higher as a combined effect of Si-SiC. Have In addition, it has excellent thermal shock characteristics, and has crack resistance and spalling resistance against rapid heat and rapid cooling. Furthermore, due to its high creep strength, the wall thickness of the pipe wall (heat-resistant alloy steel tube has a wall thickness of approximately 10
(about mm) can be made thin and lightweight to about 3 mm. Moreover, its density (apparent density) is about 2.79, and that of heat-resistant alloy steel (about 7.85) is, of course,
Apparent density of other ceramics (eg, mullite: 3.
1, Sialon: smaller than 3.3). This thin wall
The reduction in weight is effective not only for mitigating the creep deformation due to its own weight when the tube is used at high temperatures, but also for improving the accuracy of furnace temperature control as the effect of reducing the heat capacity of the tube.

【0006】以下、本発明について詳しく説明する。マ
トリツクスSi中にSiCセラミツクス粒子が分散した
複合組織を有する本発明の複合セラミツクスチューブ
は、SiC粒子の分散強化作用としてクリープ強度に優
れ、高クリープ変形抵抗性を有している。また、マトリ
ツクスがSiであることにより、SiO2 やAl2 3
等の他のファインセラミツクスに比べ熱衝撃特性が高
く、急熱・急冷に対する優れた耐割れ性・耐スポーリン
グ性を有いている。複合組織におけるマトリツクスSi
と分散相粒子であるSiC粒との量比「マトリツクスS
i/SiC粒子」(容積比)を、30/70以上とした
のは、それに満たないと、熱衝撃や機械衝撃特性が十分
でなく、特に急熱・急冷に対する耐割れ性や耐スポーリ
ング性の改善効果が不足するからであり、他方その上限
を80/20としたのは、それを越えると、SiC粒子
の分散強化作用が不足し、高クリープ強度を確保し難く
なるからである。分散相粒子であるSiC粒子の粒径
は、約100〜400μm程度であつてよい。
The present invention will be described in detail below. The composite ceramic tube of the present invention having a composite structure in which SiC ceramic particles are dispersed in the matrix Si has excellent creep strength as a SiC particle dispersion strengthening effect and high creep deformation resistance. Further, since the matrix is Si, SiO 2 or Al 2 O 3
It has higher thermal shock characteristics than other fine ceramics, and has excellent cracking resistance and spalling resistance against rapid heating and quenching. Matrix Si in complex organization
Of SiC particles which are dispersed phase particles and "Matrix S
"i / SiC particles" (volume ratio) is set to 30/70 or more because if it is less than that, thermal shock and mechanical shock properties are not sufficient, especially crack resistance and spalling resistance against rapid heating and rapid cooling. On the other hand, the upper limit is set to 80/20 because if it exceeds that, the effect of strengthening the dispersion of the SiC particles becomes insufficient and it becomes difficult to secure high creep strength. The SiC particles as the dispersed phase particles may have a particle size of about 100 to 400 μm.

【0007】本発明の複合セラミツクスチューブは、S
i粉末と、SiC粉末とを原料とし、これを誘導加熱炉
内に装填し、所謂帯域加熱溶融(ゾーンメルティング)
の手法を適用して製造することができる。これを図1を
参照して説明すると、10は円筒形状を有する竪型誘導
加熱炉、20は誘導コイルである。誘導加熱炉10は、
同心円状の円筒立壁11と円筒立壁12とで画成された
空間を有し、Si粉末P1 とSiC粉末P2 は、円筒立
壁の沿つて同心円状の2層に充填されている。この粉末
充填操作は、各粉末を円筒形状のフィーダヘッドを介し
てホッパから空間S内に流下させることにより行われ
る。
The composite ceramic tube of the present invention is S
i powder and SiC powder are used as raw materials, which are loaded into an induction heating furnace, and so-called zone heating melting (zone melting)
The method can be applied to manufacture. This will be described with reference to FIG. 1. 10 is a vertical induction heating furnace having a cylindrical shape, and 20 is an induction coil. The induction heating furnace 10
There is a space defined by the concentric cylindrical standing wall 11 and the cylindrical standing wall 12, and the Si powder P 1 and the SiC powder P 2 are filled in two concentric layers along the cylindrical standing wall. This powder filling operation is performed by causing each powder to flow into the space S from the hopper via the cylindrical feeder head.

【0008】図のようにSi粉末P1 とSiC粉末P2
とを充填し、炉内を不活性雰囲気ないしは真空に保持し
て、誘導コイル20により炉内粉末を加熱し、Si粉末
1を溶融する。溶融したSiはSiC粉末P2 の粒子
間隙内に浸透する。この加熱溶融操作は誘導コイル20
を炉10の上部から徐々に降下させる(例えば、20m
m/分)ことにより行うとよい。誘導コイル20の移動
に伴つて、Si粉末の溶融と溶融したSiのSiC粒子
間隙への浸潤および凝固が、頂部から底部に向つて徐々
に進行し複合組織を有する凝固体(チューブ)が形成さ
れる。本発明の複合セラミツクスチューブは、公知の焼
結プロセスを用いて焼結品として製造することも不可能
ではないが、上記方法は複雑な装置や操作を必要とせず
極めて経済的である。しかも、この方法によればSi粉
末とSiC粉末との比重(Si:2.33,SiC:
3.17)の差による両成分のムラを付随することもな
く、均質かつ高緻密質の複合組織を形成することができ
る。
As shown in the figure, Si powder P 1 and SiC powder P 2
And the inside of the furnace is maintained in an inert atmosphere or vacuum, and the powder in the furnace is heated by the induction coil 20 to melt the Si powder P 1 . The melted Si penetrates into the particle gaps of the SiC powder P 2 . This heating and melting operation is performed by the induction coil 20.
Is gradually lowered from the upper part of the furnace 10 (for example, 20 m
m / min). With the movement of the induction coil 20, the melting of the Si powder and the infiltration and solidification of the melted Si into the SiC particle gaps gradually progress from the top to the bottom to form a solidified body (tube) having a composite structure. It The composite ceramic tube of the present invention can be manufactured as a sintered product using a known sintering process, but the above method is extremely economical without requiring complicated equipment and operation. Moreover, according to this method, the specific gravity of Si powder and SiC powder (Si: 2.33, SiC:
A homogeneous and highly dense composite structure can be formed without accompanying unevenness of both components due to the difference of 3.17).

【0009】[0009]

【実施例】【Example】

〔1〕供試材 前記図1のように、竪型誘導加熱炉内に、Si粉末P1
(平均粒径:10μm)とSiC粉末P2 (平均粒径:
300μm)とを、2層同心円状に充填し、高周波誘導
加熱を行つてSi粉末を溶解し、SiC粉末粒子内に浸
潤させることにより、SiマトリツクスにSiC粒子が
均一に分散混在した複合組織を有するチューブを得た。
このチューブを供試材Aとする。 チューブサイズ(mm):外径 80、肉厚 3、長さ
1200。
[1] Test Material As shown in FIG. 1, Si powder P 1 was placed in a vertical induction heating furnace.
(Average particle size: 10 μm) and SiC powder P 2 (Average particle size:
300 μm) in a two-layer concentric circle shape and subjected to high-frequency induction heating to dissolve the Si powder and infiltrate into the SiC powder particles, thereby having a composite structure in which the SiC particles are uniformly dispersed and mixed in the Si matrix. A tube was obtained.
This tube is referred to as a test material A. Tube size (mm): outer diameter 80, wall thickness 3, length 1200.

【0010】比較例として、下記供試チューブBおよび
Cを用意した。 供試材B:0.4C−20Ni−25Cr−Fe系耐熱
合金鋼(ASTM規格HK40材)製チューブ(遠心力
鋳造管:外径110mm,肉厚10mm)、 供試材C:0.5C−50Ni−30Cr−13W−F
e系耐熱合金鋼製チューブ(遠心力鋳造管:外径110
mm,肉厚10mm)。
As comparative examples, the following test tubes B and C were prepared. Specimen B: 0.4C-20Ni-25Cr-Fe heat resistant alloy steel (ASTM standard HK40 material) tube (centrifugal casting tube: outer diameter 110 mm, wall thickness 10 mm), specimen C: 0.5C- 50Ni-30Cr-13W-F
e heat-resistant alloy steel tube (centrifugal casting tube: outer diameter 110
mm, wall thickness 10 mm).

【0011】上記各供試材A,B,Cについて諸特性の
測定結果を測定し、表1に示す結果を得た。 (1)高温クリープ破断試験 JIS Z2272の規定による。但し、試験温度:1
250℃,荷重:0.5Kg/mm2 。 (2)高温酸化試験 試験片を、温度1250℃に設定した加熱炉(大気雰囲
気)内に100Hr保持し、酸化減量を測定。 (3)熱衝撃試験 試験a:水中に浸漬急冷し、割れを生じない最高加熱温
度を求める。 試験b:バーナーによりチューブを1250℃に加熱
(昇温速度1000℃/Hr)した後、600℃まで冷
却(冷却速度1000℃/Hr)する急熱・急冷操作を
を反復し、割れが発生するまでの反復回数を求める。
The measurement results of various characteristics of the respective test materials A, B and C were measured and the results shown in Table 1 were obtained. (1) High temperature creep rupture test According to JIS Z2272. However, test temperature: 1
250 ° C., load: 0.5 Kg / mm 2 . (2) High Temperature Oxidation Test A test piece is held in a heating furnace (atmosphere atmosphere) set at a temperature of 1250 ° C. for 100 hours to measure the oxidation weight loss. (3) Thermal shock test Test a: Immersion in water and rapid cooling to determine the maximum heating temperature at which cracking does not occur. Test b: A tube was heated to 1250 ° C by a burner (heating rate 1000 ° C / Hr), and then cooled to 600 ° C (cooling rate 1000 ° C / Hr). Repeated rapid heating / quenching operation, and cracking occurred. Find the number of iterations up to.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示したように、供試材A(発明例)
は、従来の耐熱合金鋼製ラジアントチューブ(供試材
B,C)に比べ、格段にすぐれたクリープ強度を有し、
クリープ変形抵抗が高い。しかも低熱膨張率であるの
で、熱応力による変形も少ない。その耐酸化性も高く、
バーナー火炎の接触による酸化損傷に対する抵抗性に優
れている。また、クリープ強度が高いこと、および低密
度であることによる軽量化の効果として、チューブ管壁
の肉厚の大幅な削減(約1/3ないしそれ以下)が可能
であり、このため比熱は耐熱合金鋼の約2倍の大きさで
ありながら、チューブの熱容量を低減することができ
る。
As shown in Table 1, test material A (invention example)
Has significantly better creep strength than the conventional radiant tubes made of heat-resistant alloy steel (test materials B and C),
High creep deformation resistance. Moreover, since it has a low coefficient of thermal expansion, deformation due to thermal stress is small. Its oxidation resistance is also high,
Excellent resistance to oxidative damage due to burner flame contact. Also, as a result of the high creep strength and the low density, the weight can be reduced significantly (about 1/3 or less), and therefore the specific heat is heat resistant. The heat capacity of the tube can be reduced while being about twice the size of alloy steel.

【0014】[0014]

【発明の効果】本発明の複合セラミツクスチューブは、
高温クリープ強度、耐酸化性、耐溶損性に優れているの
で、ラジアントチューブとして、そのバーナー側の管材
として使用する場合にも、クリープ変形を生じ難く、ま
たバーナー火炎の局部加熱に対しても熱応力による変形
が少なく、かつ溶損・酸化に対する抵抗性にも優れてい
る。この改良された材料特性により、温度約1200℃
以上の高温操業が可能となり、耐用寿命の向上、メンテ
ナンスの軽減、炉操業効率の向上等の効果が得られる。
また、本発明の複合セラミツクスチューブは、高クリー
プ強度であり、かつ低密度で軽量であることにり、壁壁
の薄肉化(耐熱合金鋼製チューブの約1/3以下)が可
能であり、その効果としてチューブの熱容量が小さくな
り、炉温制御の精度向上の効果が得られる。本発明の耐
熱合金鋼の用途は上記例示のものに限定されず、例えば
鋼材加熱処理炉の炉床構成部材であるスキッドパイプ、
ハースロール等の材料としても有用である。
The composite ceramic tube of the present invention is
Since it has excellent high-temperature creep strength, oxidation resistance, and melting resistance, even when it is used as a radiant tube as the burner-side tubing, creep deformation does not easily occur, and even when the burner flame is locally heated, it does not heat. It is less deformed by stress and has excellent resistance to melting loss and oxidation. Due to this improved material properties, temperatures around 1200 ° C
The above high temperature operation becomes possible, and effects such as improvement of service life, reduction of maintenance and improvement of furnace operation efficiency can be obtained.
Further, the composite ceramic tube of the present invention has a high creep strength, a low density and a light weight, so that the wall wall can be made thin (about 1/3 or less of the heat-resistant alloy steel tube), As a result, the heat capacity of the tube is reduced, and the effect of improving the accuracy of furnace temperature control can be obtained. Applications of the heat-resistant alloy steel of the present invention are not limited to those exemplified above, for example, a skid pipe that is a hearth constituent member of a steel material heat treatment furnace,
It is also useful as a material for hearth rolls and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合セラミツクスチューブの製造方法
の例を示す断面説明図である。
FIG. 1 is a sectional explanatory view showing an example of a method for manufacturing a composite ceramic tube of the present invention.

【符号の説明】[Explanation of symbols]

10:誘導加熱炉、20:誘導加熱コイル、P1 :Si
粉末、P2 :SiC粉末。
10: induction heating furnace, 20: induction heating coil, P 1 : Si
Powder, P 2 : SiC powder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マトリツクスSi中に、SiCセラミツ
クス粒子が分散した複合組織を有し、マトリツクスSi
/SiC粒子の量比(容積率)は30/70〜80/2
0であることを特徴とする複合セラミツクスチューブ。
1. A matrix Si having a composite structure in which SiC ceramic particles are dispersed in the matrix Si.
/ SiC particle amount ratio (volume ratio) is 30/70 to 80/2
A composite ceramic tube characterized by being 0.
JP5078728A 1993-03-11 1993-03-11 Composite ceramic tube Pending JPH06264160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5078728A JPH06264160A (en) 1993-03-11 1993-03-11 Composite ceramic tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5078728A JPH06264160A (en) 1993-03-11 1993-03-11 Composite ceramic tube

Publications (1)

Publication Number Publication Date
JPH06264160A true JPH06264160A (en) 1994-09-20

Family

ID=13669950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5078728A Pending JPH06264160A (en) 1993-03-11 1993-03-11 Composite ceramic tube

Country Status (1)

Country Link
JP (1) JPH06264160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124761A (en) * 2015-01-06 2016-07-11 東京窯業株式会社 Silicon carbide ceramic sinter body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124761A (en) * 2015-01-06 2016-07-11 東京窯業株式会社 Silicon carbide ceramic sinter body

Similar Documents

Publication Publication Date Title
JP5530093B2 (en) A heat-resistant crucible that can manage thermal stress and is suitable for melting highly reactive alloys
WO1990011981A1 (en) Carbonaceous ceramic composite for use in contact whth molten nonferrous metal
JP6841897B2 (en) Roller furnace roller having at least one coating on its surface
JPS61262625A (en) Protective pipe for thermocouple and its preparation
JPS60200948A (en) Composite material for supporting member of heating furnace
JPH06264160A (en) Composite ceramic tube
JP2022060911A (en) Method of producing lf-ladle magnesia-carbon brick
JP6583968B2 (en) Refractory brick
JP2000104110A (en) Heat-insulating structure of molten metal vessel
JP2021004160A (en) Brick for hot metal ladle, and hot metal ladle lined with the same
JP3943282B2 (en) Ceramic tube and induction heating furnace using the same
JPH0657873B2 (en) Roll for heat treatment furnace
JPS631266B2 (en)
JP6957544B2 (en) Method for manufacturing graphite-containing refractory
JPS63388B2 (en)
JPS61291813A (en) Radiant type heater device
KR910005026B1 (en) Graphitic refractories and preparation method thereof
JPH0699190B2 (en) Carbon-containing ceramic composite for non-ferrous molten metal
JPH0526844B2 (en)
JPH04301049A (en) Heat resisting alloy for support surface member for steel material to be heating in heating furnace
RU2246670C1 (en) Method of manufacture of refractory crucible
JP2000345274A (en) Radiant tube for high temperature furnace
JPS63389B2 (en)
JPS60251217A (en) Open type radiator for heating furnace
JPH04301048A (en) Heat resisting alloy for support surface member for steel material to be heated in heating furnace