JPH04301048A - Heat resisting alloy for support surface member for steel material to be heated in heating furnace - Google Patents
Heat resisting alloy for support surface member for steel material to be heated in heating furnaceInfo
- Publication number
- JPH04301048A JPH04301048A JP13376791A JP13376791A JPH04301048A JP H04301048 A JPH04301048 A JP H04301048A JP 13376791 A JP13376791 A JP 13376791A JP 13376791 A JP13376791 A JP 13376791A JP H04301048 A JPH04301048 A JP H04301048A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- steel material
- heated
- heat
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 40
- 239000000956 alloy Substances 0.000 title claims abstract description 40
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 28
- 239000010959 steel Substances 0.000 title claims abstract description 28
- 239000000463 material Substances 0.000 title claims abstract description 24
- 238000010438 heat treatment Methods 0.000 title claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 230000000694 effects Effects 0.000 abstract description 10
- 230000003647 oxidation Effects 0.000 abstract description 8
- 238000007254 oxidation reaction Methods 0.000 abstract description 8
- 238000001816 cooling Methods 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 229910019589 Cr—Fe Inorganic materials 0.000 abstract description 4
- 239000000498 cooling water Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 abstract description 2
- 238000005096 rolling process Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 17
- 230000008018 melting Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 229910000851 Alloy steel Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011823 monolithic refractory Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、加熱炉内の被加熱鋼材
支持面部材として使用される耐熱合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant alloy used as a supporting surface member for heated steel in a heating furnace.
【0002】0002
【従来の技術】鋼材加熱炉内における被加熱鋼材(スラ
ブ、ビレット等)の搬送装置、例えばウォーキングビー
ムコンベアの移動ビームおよび固定ビームは、図1に示
すように、スキッドパイプ(炭素鋼管等)(P)の周面
頂部に、被加熱鋼材支持面部材としてスキッドボタン(
10)が、パイプの軸方向に一定の間隔をおいて、溶接
(W)等により取付けられた構造を有している。スキッ
ドボタン(10)は、円錐台形状、角錐台形状等のブロ
ックであり、その頂面を載荷面として被加熱鋼材(S)
が担持される。2. Description of the Related Art As shown in FIG. 1, a conveyor for conveying steel materials (slabs, billets, etc.) to be heated in a steel heating furnace, such as a walking beam conveyor, has a moving beam and a fixed beam. A skid button (
10) have a structure in which they are attached by welding (W) or the like at regular intervals in the axial direction of the pipe. The skid button (10) is a block in the shape of a truncated cone or a truncated pyramid, and its top surface is used as a loading surface for the heated steel material (S).
is carried.
【0003】従来より、そのスキッドボタン材料として
、高Ni高Cr合金鋼(例えば、SCH12等)や、高
Co合金鋼(例えば、50Co−20Ni−Fe系鋼)
等の耐熱合金鋼が使用され、その側周面に不定形耐火物
層(20)を塗設して炉内雰囲気との接触を遮断すると
共に、スキッドパイプ(P)内に流送される冷却水の強
制冷却作用により、スキッドボタン(10)に対する炉
内高温雰囲気の熱影響を緩和するようにしている。Conventionally, high Ni, high Cr alloy steel (for example, SCH12, etc.) and high Co alloy steel (for example, 50Co-20Ni-Fe steel) have been used as skid button materials.
A heat-resistant alloy steel such as, etc. is used, and a monolithic refractory layer (20) is coated on the side circumferential surface to cut off contact with the atmosphere inside the furnace, and the cooling material is flowed into the skid pipe (P). The forced cooling effect of water alleviates the thermal influence of the high-temperature atmosphere inside the furnace on the skid button (10).
【0004】0004
【発明が解決しようとする課題】上記耐熱合金製スキッ
ドボタンは、重量物である被加熱鋼材の荷重に耐える強
度を保持するために、約1250℃を越えないように強
制冷却することが必要であり、そのため被加熱鋼材はス
キッドボタンとの接触面を介して熱を奪われ局所低温部
、所謂スキドマークを生じるという問題がある。また、
鋼材荷重の反復作用による圧縮変形や、炉内酸化雰囲気
に対する酸化抵抗性も十分なものとは言えない。近時は
加熱炉操業効率の向上等を目的として、1300℃ない
しはそれを越える高温操業が一般化しつつあり、上記支
持面部材の耐用寿命の低下や、強制冷却の強化に伴う加
熱ムラ、冷却水による炉内熱損失量の増加等の問題が一
層顕著となっている。[Problems to be Solved by the Invention] In order to maintain the strength to withstand the load of the heavy steel material to be heated, the heat-resistant alloy skid button must be forcedly cooled to a temperature not exceeding approximately 1250°C. Therefore, there is a problem in that the heated steel material loses heat through the contact surface with the skid button, resulting in localized low temperature areas, so-called skid marks. Also,
Compressive deformation due to repeated steel loads and oxidation resistance against the oxidizing atmosphere in the furnace are also not sufficient. Recently, high-temperature operation of 1300°C or higher has become commonplace for the purpose of improving heating furnace operating efficiency, etc., and this has resulted in a reduction in the service life of the supporting surface member, uneven heating due to enhanced forced cooling, and increased cooling water. Problems such as an increase in the amount of heat loss inside the furnace are becoming more prominent.
【0005】この対策として、セラミックをスキッドボ
タンとして使用する試みもなされてはいるが、セラミッ
クは脆性材料であり、機械的・熱的衝撃による割れ、欠
損等を生じ易いため、安定な使用を期し難く、未だ実用
化の例は見当たらない。[0005] As a countermeasure to this problem, attempts have been made to use ceramics as skid buttons, but since ceramics are brittle materials and are prone to cracking or chipping due to mechanical or thermal shock, stable use must be ensured. It is difficult, and there are no examples of practical implementation yet.
【0006】そこで本発明者等は、被加熱鋼材支持面材
料について詳細な研究と実験を重ねた結果、Cr−Fe
系合金が、従来材である前記耐熱合金をはるかに凌ぐ高
温圧縮変形抵抗性や耐酸化性等の諸特性を具備し、被加
熱鋼材支持面部材に関する前記諸間題を解決するための
極めて有効な材料であることを見出した(特願平1−3
00091号)。本発明は、上記Cr−Fe系合金の材
料特性を更に改良することを目的としてなされたもので
ある。[0006]The inventors of the present invention have conducted detailed research and experiments on the material for supporting surfaces of heated steel materials, and have found that Cr-Fe
The alloy has various properties such as high-temperature compression deformation resistance and oxidation resistance that far exceed the conventional heat-resistant alloys, and is extremely effective in solving the problems related to heated steel support surface members. (Patent application No. 1-3)
No. 00091). The present invention was made for the purpose of further improving the material properties of the above-mentioned Cr-Fe alloy.
【0007】[0007]
【課題を解決するための手段および作用】本発明の被加
熱鋼材支持面部材用耐熱合金は、Cr:65〜80%,
Co:10〜15%,残部Feおよび不純分からなり、
所望によりN:0.1〜1.5%が添加された化学組成
を有している。[Means and effects for solving the problems] The heat-resistant alloy for supporting surface members of heated steel materials of the present invention has Cr: 65 to 80%,
Co: 10-15%, balance Fe and impurities,
It has a chemical composition in which N: 0.1 to 1.5% is added as desired.
【0008】本発明の耐熱合金は、溶解・鋳造プロセス
による鋳造合金として、または粉末冶金の手法により、
例えば熱間静水圧加圧焼結による焼結合金として製造さ
れる。The heat-resistant alloy of the present invention can be produced as a cast alloy by a melting/casting process or by a powder metallurgy technique.
For example, it is manufactured as a sintered alloy by hot isostatic pressing and sintering.
【0009】本発明の耐熱合金の化学組成について、C
r量を65%以上としたのは、高融点(約1600℃以
上)をもたせ、1300℃を越えるような高温酸化性雰
囲気炉での使用において従来の耐熱合金を大きく凌ぐ高
温強度を確保するためであり、かつこの高Cr含有によ
り卓抜した酸化抵抗性が確保されるからである。他方、
Cr量の上限を80%としたのは、Crの増量に伴う融
点の上昇により、鋳造合金として製造する場合の溶解・
鋳造性、また焼結合金として製造する場合の焼結性が悪
くなり、合金品質の確保が困難となるからである。Regarding the chemical composition of the heat-resistant alloy of the present invention, C
The reason why the r content is set to 65% or more is to have a high melting point (approximately 1,600℃ or higher) and to ensure high-temperature strength that greatly exceeds conventional heat-resistant alloys when used in high-temperature oxidizing atmosphere furnaces exceeding 1,300℃. This is because the high Cr content ensures outstanding oxidation resistance. On the other hand,
The reason why the upper limit of the Cr content was set at 80% is because the melting point increases as the amount of Cr increases.
This is because castability and sinterability when manufactured as a sintered alloy deteriorate, making it difficult to ensure alloy quality.
【0010】Coは、高温圧縮変形抵抗性を高める。ま
た、Coの添加によるラプチャー強度の改善効果も大で
ある。これらの効果は10%以上の添加により現れるが
、約15%までの添加で効果はほぼ飽和し、15%をこ
えて増量すると、却ってラプチャー強度の急激な低下を
招き、また圧縮変形抵抗性も大きく低下する。このため
、Co量は10〜15%とした。[0010] Co improves high-temperature compression deformation resistance. Furthermore, the effect of improving rupture strength by adding Co is also significant. These effects appear when the addition amount is 10% or more, but the effects are almost saturated when the addition amount is up to about 15%, and increasing the amount beyond 15% results in a rapid decrease in rupture strength and also reduces compressive deformation resistance. Significant decline. For this reason, the amount of Co was set to 10 to 15%.
【0011】上記Coと共に複合添加されるNも、高温
域における圧縮変形抵抗性およびラプチャー強度を高め
る。この効果は0.1%以上の添加により得られる。し
かし、Nの過剰添加は、合金の融点低下を招き、却って
圧縮変形抵抗性やラプチャー強度が低下することとなる
。このため、1.5%を上限とする。[0011] N, which is added in combination with the above-mentioned Co, also increases compressive deformation resistance and rupture strength in a high temperature range. This effect can be obtained by adding 0.1% or more. However, excessive addition of N causes a decrease in the melting point of the alloy, which in turn leads to a decrease in compressive deformation resistance and rupture strength. Therefore, the upper limit is set at 1.5%.
【0012】なお、本発明の耐熱合金の原料に由来する
不純分(代表的にはC、Si等)については、合金の高
融点(約1600℃以上)が保持される範囲内で混在し
て差支えなく、例えば0.8%以下のCや、1%以下の
Siの混在によって本発明の趣旨が損なわなわれること
はない。[0012] Impurities derived from the raw materials of the heat-resistant alloy of the present invention (typically C, Si, etc.) may be mixed within a range that maintains the high melting point of the alloy (approximately 1600°C or higher). There is no problem, and the spirit of the present invention is not impaired by the presence of, for example, 0.8% or less of C or 1% or less of Si.
【0013】本発明の耐熱合金は、粗粒結晶組織(平均
結晶粒径:約50μm以上)に調整されることが好まし
い。組織の粗粒化によって、高温圧縮強度やラプチャー
強度がより高められるからである。The heat-resistant alloy of the present invention is preferably adjusted to have a coarse grain crystal structure (average grain size: about 50 μm or more). This is because high-temperature compressive strength and rupture strength are further enhanced by coarsening the structure.
【0014】本発明の耐熱合金を粗粒組織とすることに
困難はなく、鋳造合金として製造する場合においては、
その鋳造に砂型鋳型を使用し、比較的緩慢な冷却凝固を
行わせるか、または鋳造合金塊に加熱処理(例えば、1
300〜1600℃に5〜20Hr保持)を施して結晶
粒を成長粗大化させることにより粗粒組織を与えること
ができる。There is no difficulty in forming the heat-resistant alloy of the present invention into a coarse-grained structure, and when producing it as a cast alloy,
Either a sand mold is used for the casting and relatively slow cooling solidification is performed, or the cast alloy ingot is heat treated (e.g.
A coarse grained structure can be provided by growing and coarsening crystal grains by holding at 300 to 1600° C. for 5 to 20 hours.
【0015】また焼結合金として製造する場合は、合金
粉末として粗粒粉末(平均粒径:約200μm以上)を
使用するか、または焼結後、焼結合金塊に上記と同様の
加熱処理を施すことにより粗粒組織をもたせることがで
きる。When producing a sintered alloy, use a coarse powder (average particle size: approximately 200 μm or more) as the alloy powder, or heat the sintered alloy ingot after sintering in the same manner as above. By this, a coarse grain structure can be obtained.
【0016】なお、本発明の耐熱合金を使用して被加熱
鋼材支持面部材を製造する場合、必ずしもその全体を本
発明の耐熱合金とする必要はなく、図1に示すスキッド
ボタンにおいては、被加熱鋼材(S)と接触する載荷面
側の上部(11)のみを本発明の耐熱合金とし、その下
側部分(12)は従来の耐熱合金鋼からなるブロックを
用い、両者の重ね合せ面を接合(例えば拡散接合)して
複合体とすることも可能である。[0016] When manufacturing a heated steel supporting surface member using the heat-resistant alloy of the present invention, it is not necessarily necessary to use the heat-resistant alloy of the present invention in its entirety; in the skid button shown in FIG. Only the upper part (11) on the loading surface side that contacts the heated steel material (S) is made of the heat-resistant alloy of the present invention, and the lower part (12) is a block made of conventional heat-resistant alloy steel, and the overlapping surfaces of both are made of the heat-resistant alloy of the present invention. It is also possible to form a composite by bonding (for example, diffusion bonding).
【0017】[0017]
【実施例】高周波溶解炉(Ar雰囲気)で溶製した合金
溶湯を砂型(CO2珪砂鋳型)による鋳造に付し、供試
合金ブロック(φ70×901,mm)を得た。各供試
合金ブロックから試験片を切出し、下記の試験を行った
。[Example] A molten alloy produced in a high frequency melting furnace (Ar atmosphere) was cast in a sand mold (CO2 silica sand mold) to obtain a test metal block (φ70×901 mm). A test piece was cut out from each test gold block, and the following tests were conducted.
【0018】(1)高温圧縮試験
円柱状試験片(φ30×501,mm)を固定台上に立
直載置し、1350℃に加熱保持した状態で、試験片天
面に垂直荷重0.5Kgf/mm2を加える。
試験時間:50Hr。
試験片の試験前の高さ寸法(Lo)と試験後の高さ寸法
(L)を測定し、圧縮変形速度D%/Hr〔圧縮変形量
D%=(Lo−L)/Lo×100(%)〕を求める。(1) High-temperature compression test A cylindrical test piece (φ30×501, mm) was placed upright on a fixed table, heated and maintained at 1350°C, and a vertical load of 0.5 kgf/ was applied to the top surface of the test piece. Add mm2. Test time: 50 hours. Measure the height dimension (Lo) before the test and the height dimension (L) after the test of the test piece, and calculate the compression deformation rate D%/Hr [compression deformation amount D%=(Lo-L)/Lo×100( %)].
【0019】(2)高温ラプチャー試験試験片(φ6×
801,mm)を1200℃に加熱保持して1.0Kg
f/mm2の引張応力を加え、破断に到るまでの時間を
測定。(2) High temperature rupture test specimen (φ6×
801, mm) heated and held at 1200℃ to produce 1.0Kg.
A tensile stress of f/mm2 was applied and the time until breakage was measured.
【0020】(3)高温酸化試験
試験片(φ8×501,mm)を加熱炉(大気雰囲気)
で、1350℃に100時間加熱保持する。試験後、試
験片表面の酸化スケールを除去し、試験片の重量変化か
ら酸化減量(g/m2hr)を求める。(3) High-temperature oxidation test specimen (φ8×501, mm) in a heating furnace (atmospheric atmosphere)
Then, heat and hold at 1350°C for 100 hours. After the test, the oxidized scale on the surface of the test piece is removed, and the oxidation weight loss (g/m2hr) is determined from the change in weight of the test piece.
【0021】表1に供試合金ブロックの化学組成(wt
%)を、表2に上記試験結果を示す。表中、No.1〜
5は発明例、No.11〜13は比較例である。比較例
のうち、No.11は従来の代表的なスキッドボタン材
料である高Co耐熱合金鋼であり、No.12とNo.
13は、発明例と類似する成分系の合金であるが、Co
量が本発明の規定からはずれている例である。Table 1 shows the chemical composition (wt
%), Table 2 shows the above test results. In the table, No. 1~
5 is an invention example, No. Nos. 11 to 13 are comparative examples. Among the comparative examples, No. No. 11 is high Co heat-resistant alloy steel, which is a typical conventional skid button material. 12 and no.
No. 13 is an alloy with a composition similar to that of the invention example, but with Co
This is an example in which the amount deviates from the provisions of the present invention.
【0022】[0022]
【表1】[Table 1]
【0023】[0023]
【表2】[Table 2]
【0024】上記試験結果から、発明例No.1〜5は
、従来のスキッドボタン材料である高CoのCr−Ni
系合金鋼(No.11)に比し、格段にすぐれた高温圧
縮変形抵抗性、ラプチャー強度、および耐酸化性等を有
していることがわかる。また、発明例No.1〜3と、
No.4,No.5との比較から、Nの添加による圧縮
強度およびラプチャー強度の改善効果をみることができ
る。From the above test results, invention example No. 1 to 5 are high Co Cr-Ni, which is a conventional skid button material.
It can be seen that it has significantly superior high temperature compression deformation resistance, rupture strength, oxidation resistance, etc., compared to the alloy steel (No. 11). In addition, invention example No. 1 to 3 and
No. 4, No. From the comparison with No. 5, it can be seen that the addition of N improves the compressive strength and rupture strength.
【0025】他方、比較例No.12およびNo.13
は、Coを含有したCr−Fe系合金である点で発明例
と共通しているが、No.12ではCo量が不足し、N
o.13では過剰のCoを含有しているため、圧縮強度
およびラプチャー強度のいずれも発明例のそれに及ばな
い。On the other hand, Comparative Example No. 12 and no. 13
No. 2 is similar to the invention example in that it is a Cr-Fe alloy containing Co, but No. 12, the amount of Co is insufficient, and N
o. Since Sample No. 13 contains excessive Co, both the compressive strength and the rupture strength are inferior to those of the invention example.
【0026】[0026]
【発明の効果】本発明の耐熱合金は、従来の被加熱鋼材
支持面部材として使用されてきた耐熱合金鋼では得られ
ない卓抜した高温圧縮強度、耐酸化性、ラプチャー強度
等を具備しており、近時の高温操炉条件における被加熱
鋼材支持面部材の耐久性の向上・メンテナンスの軽減お
よびそれに伴う操炉効率の向上に大きく寄与するもので
ある。また、そのすぐれた高温特性により、従来の耐熱
合金に比し冷却水による強制冷却を緩和することができ
、それに伴う被加熱鋼材のスキッドマークの軽減・均一
加熱による鋼材圧延品質の向上等の効果、および冷却水
による炉内の熱損失量の減少・省エネルギ効果等が得ら
れる。[Effects of the Invention] The heat-resistant alloy of the present invention has excellent high-temperature compressive strength, oxidation resistance, rupture strength, etc. that cannot be obtained with heat-resistant alloy steels conventionally used as supporting surface members for heated steel materials. This greatly contributes to improving the durability of the heated steel support surface member under recent high-temperature operating conditions, reducing maintenance, and improving operating efficiency accordingly. In addition, due to its excellent high-temperature properties, compared to conventional heat-resistant alloys, forced cooling by cooling water can be alleviated, resulting in effects such as reducing skid marks on heated steel materials and improving rolling quality of steel materials through uniform heating. , a reduction in the amount of heat loss in the furnace due to cooling water, and an energy saving effect.
【図1】鋼材加熱炉内のスキッドビームを模式的に示す
断面図[Figure 1] Cross-sectional view schematically showing a skid beam in a steel heating furnace
10:スキッドボタン,P:スキッドパイプ,S:被加
熱鋼材。10: Skid button, P: Skid pipe, S: Steel material to be heated.
Claims (2)
5%,残部Feおよび不純分からなる加熱炉内被加熱鋼
材支持面部材用耐熱合金。[Claim 1] Cr: 65-80%, Co: 10-1
Heat-resistant alloy for supporting surface members of steel materials to be heated in heating furnaces, consisting of 5% Fe and impurities.
5%,N:0.1〜1.5%,残部Feおよび不純分か
らなる加熱炉内被加熱鋼材支持面部材用耐熱合金。[Claim 2] Cr: 65-80%, Co: 10-1
5%, N: 0.1 to 1.5%, and the balance is Fe and impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13376791A JPH04301048A (en) | 1991-03-27 | 1991-03-27 | Heat resisting alloy for support surface member for steel material to be heated in heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13376791A JPH04301048A (en) | 1991-03-27 | 1991-03-27 | Heat resisting alloy for support surface member for steel material to be heated in heating furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04301048A true JPH04301048A (en) | 1992-10-23 |
Family
ID=15112490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13376791A Pending JPH04301048A (en) | 1991-03-27 | 1991-03-27 | Heat resisting alloy for support surface member for steel material to be heated in heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04301048A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10718038B2 (en) | 2014-09-29 | 2020-07-21 | Hitachi, Ltd. | Two-phase alloy, product using said two-phase alloy, and method for producing said product |
US11180833B2 (en) | 2016-03-30 | 2021-11-23 | Hitachi, Ltd. | Chromium-based two-phase alloy and product using said two-phase alloy |
-
1991
- 1991-03-27 JP JP13376791A patent/JPH04301048A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10718038B2 (en) | 2014-09-29 | 2020-07-21 | Hitachi, Ltd. | Two-phase alloy, product using said two-phase alloy, and method for producing said product |
US11180833B2 (en) | 2016-03-30 | 2021-11-23 | Hitachi, Ltd. | Chromium-based two-phase alloy and product using said two-phase alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2607157B2 (en) | Heat-resistant alloy for supporting steel material to be heated in heating furnace | |
JPS60200948A (en) | Composite material for supporting member of heating furnace | |
JPH04301049A (en) | Heat resisting alloy for support surface member for steel material to be heating in heating furnace | |
JPH04301048A (en) | Heat resisting alloy for support surface member for steel material to be heated in heating furnace | |
JPH04301047A (en) | Heat resisting alloy for support surface member for steel material to be heated in heating furnace | |
US5288228A (en) | Heat-resistant materials | |
CN113957313A (en) | Heat-resistant cushion block with ultra-long service life for steel rolling heating furnace and preparation method thereof | |
CN117026015B (en) | High-temperature-resistant alloy and preparation method and application thereof | |
JPH062065A (en) | Heat resistant alloy for supporting face member in heating furnace | |
CA2215447C (en) | Heat-resistant alloy steel for hearth metal members of steel material heating furnaces | |
JPH062066A (en) | Heat resistant alloy for supporting face member in heating furnace | |
JPH07278718A (en) | Super-heat resistant high cr alloy and hearth member of steel heating furnace | |
JPH07197179A (en) | Heat resistant alloy for hearth member in steel material heating furnace | |
JP2599729B2 (en) | Ingot making method for alloy articles | |
JPH07197178A (en) | Heat resistant alloy for hearth member in steel material heating furnace | |
JP2571639Y2 (en) | Skid button for heating furnace | |
JPH09235642A (en) | Super heat resistant high chromium alloy and furnace bottom member of steel material heating furnace | |
JPS63255329A (en) | Manufacture of oxidation-resistant tungsten-base sintered alloy | |
JP2571640Y2 (en) | Skid button for heating furnace | |
JPH0297614A (en) | Steel material transferring member in heating furnace | |
JPH0514148U (en) | Skid button for heating furnace | |
JPH0514151U (en) | Skid button for heating furnace | |
JP2571641Y2 (en) | Skid button for heating furnace | |
JPH04293748A (en) | Heat resistant alloy for radiant tube | |
JPH04131344A (en) | Oxide dispersion strengthened type ni-base alloy and its production |