JPH04131344A - Oxide dispersion strengthened type ni-base alloy and its production - Google Patents

Oxide dispersion strengthened type ni-base alloy and its production

Info

Publication number
JPH04131344A
JPH04131344A JP2252931A JP25293190A JPH04131344A JP H04131344 A JPH04131344 A JP H04131344A JP 2252931 A JP2252931 A JP 2252931A JP 25293190 A JP25293190 A JP 25293190A JP H04131344 A JPH04131344 A JP H04131344A
Authority
JP
Japan
Prior art keywords
oxide dispersion
dispersion strengthened
base alloy
less
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2252931A
Other languages
Japanese (ja)
Other versions
JP2932653B2 (en
Inventor
Kenji Fuda
賢治 附田
Tomohito Iikubo
知人 飯久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2252931A priority Critical patent/JP2932653B2/en
Publication of JPH04131344A publication Critical patent/JPH04131344A/en
Application granted granted Critical
Publication of JP2932653B2 publication Critical patent/JP2932653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Ni-base alloy excellent in heat resistance, thermal shock resistance, creep strength, and fracture life by hat-working a powder of an oxide dispersion strengthened type Ni-base alloy prepared by a mechanical alloying method and then growing crystalline grains by means of heating at the specific temp. CONSTITUTION:The crystalline grains of refractory metal oxide, such as Y2O3, and pure metal, such as Ni and Cr, are put into a high kinetic energy type ball mill, pulverized, and mixed by means of mechanical alloying, by which a uniform metal mixture of pulverized powder having a composition consisting of, by weight, 18-40% Cr, <5% Fe, <5% Al, <5% Ti, and the balance Ni is prepared. This powder mixture is subjected to hot working, such as hot extrusion, and to heating up to >=1300 deg.C to undergo crystalline grain growth, thereby a secondary recrystallization structure in which the mean value of the aspect ratios of crystals is regulated to >=10 can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸化物分散強化型Ni基合金とその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oxide dispersion strengthened Ni-based alloy and a method for producing the same.

(従来の技術) 従来より、Ni基合金にイツトリアY−Osのような高
融点酸化物の微細粒子を分散させて強化した酸化物分散
強化型Ni基合金が知られている(特公昭56−386
65号公報)。
(Prior Art) Oxide dispersion strengthened Ni-based alloys, which are strengthened by dispersing fine particles of high-melting-point oxides such as yttria Y-Os, in Ni-based alloys have been known (Japanese Patent Publication No. 1983-1999). 386
Publication No. 65).

これは、Ni基基材材高融点酸化物の微粒子を分散させ
て耐熱性および強度の向上を図るものである。
This is intended to improve heat resistance and strength by dispersing fine particles of a high melting point oxide in a Ni-based base material.

(発明が解決しようとする課題) 本発明は、このようなNi基醋酸化物分散型合金改良す
るもので、結晶粒の特性に着目し、所定の製造方法によ
りクリープ強度、破断寿命を向上させるようにした酸化
物分散強化型合金を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention aims to improve such a Ni-based oxide dispersion type alloy by focusing on the characteristics of crystal grains and improving the creep strength and rupture life by a predetermined manufacturing method. The purpose of the present invention is to provide an oxide dispersion-strengthened alloy.

(課題を解決するための手段) 本発明の酸化物分数強化型Ni基合金は、組成が重量%
で、Cr:18〜40%、Fe:5%以下、Al:5%
以下、Ti:5%以下、残部実質的にNiからなる合金
であって、結晶粒を成長させ、結晶粒のアスペクト比の
平均値を10以上にすることを特徴とする。
(Means for Solving the Problems) The oxide fractionally strengthened Ni-based alloy of the present invention has a composition of % by weight.
So, Cr: 18-40%, Fe: 5% or less, Al: 5%
Hereinafter, it is an alloy consisting of Ti: 5% or less and the remainder substantially Ni, and is characterized by growing crystal grains so that the average value of the aspect ratio of the crystal grains is 10 or more.

本発明の酸化物分散強化型Ni基合金の製造方法は、組
成が重量%で、Cr:18〜40%、Fe:5%以下、
Aj2:5%以下、Ti:5%以下、残部実質的にNi
からなる合金であって、メカニカルアロイイング法で製
造した酸化物分散強化型Ni基合金を熱間加工し、13
00’C以上で加熱し、結晶粒を成長させ、結晶粒のア
スペクト比の平均値を10以上にすることを特徴とする
The method for producing an oxide dispersion strengthened Ni-based alloy of the present invention has a composition in weight% of Cr: 18 to 40%, Fe: 5% or less,
Aj2: 5% or less, Ti: 5% or less, remainder substantially Ni
An alloy consisting of 13
It is characterized in that it is heated at 00'C or more to grow crystal grains, and the average value of the aspect ratio of the crystal grains is 10 or more.

ここに、酸化物分散強化型Ni基合金を用いたのは、耐
熱性および高温クリープ強度等に優れているからである
。熱間加工は、熱間押出し、熱間圧延、鋳造、熱間静水
圧プレス(HIP)、等を用いることができるが、これ
らの加工法に限られない。熱間加工後1300℃以上の
温度で加熱したのは、熱間加工された合金の結晶粒を加
工方向に優先的に異常成長(二次再結晶)させ、高アス
ペクト比の二次再結晶組織を得るためである。
The reason why the oxide dispersion strengthened Ni-based alloy was used here is that it has excellent heat resistance, high temperature creep strength, and the like. Hot processing can be performed using hot extrusion, hot rolling, casting, hot isostatic pressing (HIP), etc., but is not limited to these processing methods. Heating at a temperature of 1300°C or higher after hot working causes the crystal grains of the hot worked alloy to preferentially grow abnormally (secondary recrystallization) in the working direction, resulting in a secondary recrystallized structure with a high aspect ratio. This is to obtain.

本発明の超合金の組成を前記のように選択した理由は、
次のとおりである。
The reason for selecting the composition of the superalloy of the present invention as described above is as follows.
It is as follows.

Cr:18〜40% Cr含有量がこの下限に満たないと所望の耐熱性が得ら
れない。一方、上限を超えるとオーステナイト組織を維
持しに(くなる。好ましいCr含有量は、前記のように
18〜40%、特に25〜35%である。
Cr: 18-40% If the Cr content is less than this lower limit, desired heat resistance cannot be obtained. On the other hand, if the upper limit is exceeded, it becomes difficult to maintain the austenitic structure.The preferable Cr content is 18 to 40%, particularly 25 to 35%, as described above.

Fe:5%以下 鉄の含有量は、好ましくは1%以下であるが、5%まで
なら、より高いFe含有の合金を耐熱衝撃性材料、高温
耐酸化性材料、高温構造用材料、例えばスキッドレール
材として使用可能である。
Fe: 5% or less The iron content is preferably 1% or less, but up to 5% allows alloys with higher Fe content to be used in thermal shock resistant materials, high temperature oxidation resistant materials, high temperature structural materials, e.g. skids. Can be used as rail material.

Aβ:5%以下、Ti:5%以下 通常の高温耐酸化性構造用材料、例えばスキッドレール
では、これらの成分の含有量は1%以下でよいが、さら
に耐酸化性を高めたい場合、例えば比較的02量の多い
(数%まで)雰囲気をもつ加熱炉に使用するスキッドレ
ールでは、これらの元素19およびTiを5%までの範
囲で添加すると、好ましい結果が得られる。これ以上の
添加は、有害な大型介在物の増加をもたらす。
Aβ: 5% or less, Ti: 5% or less In ordinary high-temperature oxidation-resistant structural materials, such as skid rails, the content of these components may be 1% or less, but if you want to further increase the oxidation resistance, e.g. In a skid rail used in a heating furnace having an atmosphere with a relatively large amount of 02 (up to several %), favorable results can be obtained by adding these elements 19 and Ti in an amount up to 5%. Adding more than this will result in an increase in harmful large inclusions.

(作用) 本発明による製造方法によれば、メカニヵルアロイイン
グ法で製造した酸化物分散強化型Ni基合金粉末を熱間
加工により加工し、その加工方向に結晶粒を異常成長さ
せることによってアスペクト比の平均値が10以上の二
次再結晶組織が得られるため、破断寿命およびクリープ
強度を大幅に増大させられる。
(Function) According to the manufacturing method of the present invention, an oxide dispersion strengthened Ni-based alloy powder manufactured by a mechanical alloying method is processed by hot working, and crystal grains are abnormally grown in the working direction. Since a secondary recrystallized structure with an average aspect ratio of 10 or more is obtained, the fracture life and creep strength can be significantly increased.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

Ni基酸化物分散強化型合金の組成は、第1表に示すと
おりである。この合金の粉末の製造方法は次のとおりで
ある。メカニカルアロイイング法により、合金成分とな
る純金属とイツトリアの如き高融点金属酸化物の結晶粒
子とを高運動エネルギ型ボールミルに入れ、微粉砕する
とともに混合することによって各成分の微細粉末の緊密
かつ均一な混合物を造る。
The composition of the Ni-based oxide dispersion strengthened alloy is as shown in Table 1. The method for producing powder of this alloy is as follows. Using the mechanical alloying method, pure metals as alloying components and crystal particles of a high-melting point metal oxide such as ittria are placed in a high kinetic energy ball mill, finely pulverized, and mixed to form fine powders of each component. Build a homogeneous mixture.

この合金粉末混合物を熱間押出しにより成形した。その
際、押出し比を変化させた。
This alloy powder mixture was molded by hot extrusion. At that time, the extrusion ratio was varied.

得られた押出し成形体を1315℃以上に約1時間保持
した。この熱処理は押出し成形により加工し長粒状にな
った結晶粒を異常成長(二次再結晶)させ、アスペクト
比の高い二次再結晶組織を得るためである。
The obtained extruded body was maintained at 1315° C. or higher for about 1 hour. The purpose of this heat treatment is to abnormally grow (secondary recrystallization) the long crystal grains processed by extrusion molding and obtain a second recrystallized structure with a high aspect ratio.

前記熱処理した押出し成形体について■引張クリープ試
験、■圧縮クリープ試験を行った。その結果を第2表お
よび第3表ならびに第1図および第2図に示す。
The heat-treated extruded body was subjected to (1) a tensile creep test and (2) a compression creep test. The results are shown in Tables 2 and 3 and FIGS. 1 and 2.

■引張クリープ試験 試験条件は、温度1623K、圧力49MPaの条件で
クリ−プラクチャー試験を実施した。その結果、第2表
および第1図から明らかなように、アスペクト比が4以
上になるとクリープ強度が増し、アスペクト比が60位
で最長破断寿命に到達し飽和することが解かる。
(2) Tensile Creep Test A creep fracture test was conducted under the conditions of a temperature of 1623 K and a pressure of 49 MPa. As a result, as is clear from Table 2 and FIG. 1, it can be seen that the creep strength increases when the aspect ratio is 4 or more, and reaches the maximum rupture life when the aspect ratio is about 60, reaching saturation.

■圧縮クリープ試験 前記第2表中の実施例1のアスペクト比10の結晶粒の
溶結体について押出し方向に垂直な方向に圧縮応力が生
じるように圧縮クリープ試験を実施した。試験条件は温
度1623K、圧力49MPaとした。その結果を第3
表ならびに第2図に示す。
(2) Compression Creep Test A compression creep test was conducted on the fused body of crystal grains with an aspect ratio of 10 in Example 1 shown in Table 2 so that compressive stress was generated in a direction perpendicular to the extrusion direction. The test conditions were a temperature of 1623 K and a pressure of 49 MPa. The result is the third
It is shown in the table and in FIG.

試験の結果、結晶粒の長軸方向と平行方向に圧縮力を加
えた場合、結晶粒の短軸方向に垂直な方向に圧縮力を加
えた場合の破断寿命の約23倍の破断寿命が得られ、ま
たクリープ速度については約1/18倍であった。これ
より第3図に示す模式図のように、結晶粒1の長軸方向
(成長方向)に圧縮力を作用させたとき破断寿命が長く
またクリープ速度が遅いことが解かった。
As a result of the test, when compressive force was applied in the direction parallel to the long axis direction of the crystal grains, the rupture life was approximately 23 times longer than when the compressive force was applied in the direction perpendicular to the short axis direction of the crystal grains. The creep rate was approximately 1/18 times as high. From this, it was found that when a compressive force was applied in the long axis direction (growth direction) of the crystal grains 1, as shown in the schematic diagram in FIG. 3, the rupture life was long and the creep rate was slow.

前記製造方法により鋼片用加熱炉に用いるスキッドレー
ルを製造した。スキッドレールの構造については例えば
第4図に示すとおりである。スキッドレール5は、水冷
スキッドバイブ2に金属製のサドル3を溶接固定し、こ
のサドル3にスキッドレール本体4を取付け、スキッド
パイプ2およびサドル3の周囲に耐火断熱材6を被覆し
ている。
A skid rail for use in a heating furnace for steel billets was manufactured using the manufacturing method described above. The structure of the skid rail is as shown in FIG. 4, for example. In the skid rail 5, a metal saddle 3 is welded and fixed to a water-cooled skid vibe 2, a skid rail main body 4 is attached to the saddle 3, and a fireproof heat insulating material 6 is coated around the skid pipe 2 and the saddle 3.

前記実施例では熱間押出しにより成形した成形体を高温
で保持したが、本発明は、所定の合金粉末を熱間静水圧
ブレス(HIP)した後圧延、鋳造、鍛造等を行った後
、1300℃以上に加熱保持するようにしてもよい。ま
た真空ホットプレス(VHP)を行った後、圧延、鍛造
等により塑性変形し、その後1300℃以上で加熱し二
次再結晶組織にするようにしてもよい。
In the above examples, the compact formed by hot extrusion was held at high temperature, but in the present invention, after hot isostatic pressing (HIP) a predetermined alloy powder, rolling, casting, forging, etc. It may be heated and maintained at a temperature higher than ℃. Further, after performing vacuum hot pressing (VHP), it may be plastically deformed by rolling, forging, etc., and then heated at 1300° C. or higher to form a secondary recrystallized structure.

(発明の効果) 以上説明したように、本発明の酸化物分数強化型Ni基
合金の製造方法によれば、所定の組成をもつNi基合金
をメカニカルアロイイング法により製造し、この合金を
熱間加工した後加熱し、結晶粒のアスペクト平均値比が
10以上の大きな二次再結晶組織をもっNi基合金を製
造するため、得られる酸化物分散強化型Ni基合金は耐
熱性、耐熱衝撃性、クリープ強度および破断寿命に優れ
た耐熱合金になるという効果がある。
(Effects of the Invention) As explained above, according to the method for producing an oxide fractionally strengthened Ni-based alloy of the present invention, a Ni-based alloy having a predetermined composition is produced by a mechanical alloying method, and this alloy is heated. In order to produce a Ni-based alloy with a large secondary recrystallized structure with an average grain aspect ratio of 10 or more by heating after processing, the resulting oxide dispersion-strengthened Ni-based alloy has high heat resistance and thermal shock resistance. It has the effect of becoming a heat-resistant alloy with excellent properties, creep strength, and fracture life.

(以下、余白。)(Hereafter, margin.)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例および比較例による酸化物分散
強化型Ni基合金のアスペクト比と破断寿命の関係を示
す特性図、第2図はクリープ速度を表す特性図、第3図
は本発明の製造方法により得られた酸化物分散強化型N
i基合金の二次再結晶組織を表す模式図、第4図は本発
明の実施例によるスキッドレールを表す断面図である。 1・・・結晶粒、 5・・・スキッドレール。
Fig. 1 is a characteristic diagram showing the relationship between aspect ratio and fracture life of oxide dispersion strengthened Ni-based alloys according to examples and comparative examples of the present invention, Fig. 2 is a characteristic diagram showing the creep rate, and Fig. 3 is a characteristic diagram of the present invention. Oxide dispersion strengthened N obtained by the production method of the invention
FIG. 4 is a schematic diagram showing a secondary recrystallized structure of an i-based alloy, and a cross-sectional view showing a skid rail according to an embodiment of the present invention. 1... Crystal grain, 5... Skid rail.

Claims (2)

【特許請求の範囲】[Claims] (1)組成が重量%で、 Cr:18〜40%、 Fe:5%以下、 Al:5%以下、 Ti:5%以下、 残部実質的にNi からなる合金であって、結晶粒を成長させ、結晶粒のア
スペクト比の平均値を10以上にすることを特徴とする
酸化物分散強化型Ni基合金。
(1) An alloy whose composition is Cr: 18 to 40%, Fe: 5% or less, Al: 5% or less, Ti: 5% or less, and the balance is substantially Ni, and which grows crystal grains. An oxide dispersion strengthened Ni-based alloy characterized in that the average value of the aspect ratio of crystal grains is 10 or more.
(2)組成が重量%で、 Cr:18〜40%、 Fe:5%以下、 Al:5%以下、 Ti:5%以下、 残部実質的にNi からなる合金であって、メカニカルアロイイング法で製
造した酸化物分散強化型Ni基合金を熱間加工し、13
00℃以上で加熱し、結晶粒を成長させ、結晶粒のアス
ペクト比の平均値を10以上にすることを特徴とする酸
化物分散強化型Ni基合金の製造方法。
(2) An alloy having a composition in weight% of Cr: 18 to 40%, Fe: 5% or less, Al: 5% or less, Ti: 5% or less, and the balance is substantially Ni, and is processed by mechanical alloying method. The oxide dispersion strengthened Ni-based alloy produced in 13
1. A method for producing an oxide dispersion strengthened Ni-based alloy, which comprises heating at 00° C. or higher to grow crystal grains so that the average aspect ratio of the crystal grains is 10 or higher.
JP2252931A 1990-09-21 1990-09-21 Skid rail for heating furnace and method of manufacturing the same Expired - Lifetime JP2932653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252931A JP2932653B2 (en) 1990-09-21 1990-09-21 Skid rail for heating furnace and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252931A JP2932653B2 (en) 1990-09-21 1990-09-21 Skid rail for heating furnace and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04131344A true JPH04131344A (en) 1992-05-06
JP2932653B2 JP2932653B2 (en) 1999-08-09

Family

ID=17244160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252931A Expired - Lifetime JP2932653B2 (en) 1990-09-21 1990-09-21 Skid rail for heating furnace and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2932653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044950A1 (en) * 1999-01-28 2000-08-03 Sumitomo Electric Industries, Ltd. Heat-resistant alloy wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044950A1 (en) * 1999-01-28 2000-08-03 Sumitomo Electric Industries, Ltd. Heat-resistant alloy wire
US6478897B1 (en) 1999-01-28 2002-11-12 Sumitomo Electric Engineering, Ltd. Heat-resistant alloy wire

Also Published As

Publication number Publication date
JP2932653B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JPS6339662B2 (en)
JP2009506219A (en) Production of fine particle microalloyniobium sheet by ingot metallurgy.
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
CN104233103A (en) Silicon-carbide-reinforced iron-chromium-aluminum electric heating composite material and preparation method thereof
US4370299A (en) Molybdenum-based alloy
JPH04131344A (en) Oxide dispersion strengthened type ni-base alloy and its production
JPS5935642A (en) Production of mo alloy ingot
JPH04147947A (en) Oxide dispersion strengthened fe-base alloy and its manufacture
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
JP2001152208A (en) OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR
JP7233658B2 (en) Titanium aluminide alloy material for hot forging and method for forging titanium aluminide alloy material
JP2013155431A (en) Iron alloy
RU2694098C1 (en) Method of producing semi-finished products from high-strength nickel alloys
JP3049567B2 (en) Manufacturing method of Ni-base heat-resistant alloy material
JPH02225639A (en) New chromium-nickel sintered body and its manufacture
JPH07278726A (en) Production of oxide dispersion strengthened ferrite steel
JPH04301049A (en) Heat resisting alloy for support surface member for steel material to be heating in heating furnace
JPH0953141A (en) Production of oxide dispersion reinforced type alloy material
JPH0693328A (en) Hearth roll using oxide dispersion strengthend alloy
JPH01198437A (en) Manufacture of dispersion strengthened copper
JPS59116356A (en) Molybdenum alloy
JPS6137944A (en) Manufacture of molybdenum plate
JPH09137246A (en) Production of oxide dispersion strengthened type alloy product
JPH06240391A (en) Nickel-tungsten alloy excellent in high temperature strength, its production and jig for hot working using it