JPH0953141A - Production of oxide dispersion reinforced type alloy material - Google Patents

Production of oxide dispersion reinforced type alloy material

Info

Publication number
JPH0953141A
JPH0953141A JP20953895A JP20953895A JPH0953141A JP H0953141 A JPH0953141 A JP H0953141A JP 20953895 A JP20953895 A JP 20953895A JP 20953895 A JP20953895 A JP 20953895A JP H0953141 A JPH0953141 A JP H0953141A
Authority
JP
Japan
Prior art keywords
processing
billet
alloy
ratio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20953895A
Other languages
Japanese (ja)
Inventor
Kenji Fuda
賢治 附田
Michio Okabe
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP20953895A priority Critical patent/JPH0953141A/en
Publication of JPH0953141A publication Critical patent/JPH0953141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an oxide dispersion reinforced type alloy material free from working crack by preparing a powder mixture of an alloy of specific composition consisting of Cr, Al, Ti, and Fe and a metal oxide, forming this powder mixture into a billet, and then applying specific forging and annealing to this billet. SOLUTION: Powder of an alloy, having a composition consisting of, by weight, 10-40% Cr, <=10% Al, <=2% Ti, and the balance essentially Fe, and the powder of metal oxide such as Y2 O3 are mixed by means of a ball mill, etc. The resultant powder mixture is integrated by means of hot hydrostatic pressing or vacuum pressing. The resulting billet is forged or rolled at 450-850 deg.C and worked at 1.5-2.0 working ratio. Subsequently, this work is forged or rolled at 650-900 deg.C at 2.0-2.5 working ratio. Further, this work is forged or rolled into the desired shape at 900-1,200 deg.C at arbitrary working ratio. Then, the work is annealed at >=1,200 deg.C. By this method, the material, dispersedly containing fine oxide of high melting point metal by 0.1-2% in the ferritic matrix of the alloy, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物分散強化型
合金材料の製造方法、詳しくは、段階的加工法の採用に
より加工中の割れを防止しつつ所望の形状の材料を得る
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide dispersion strengthened alloy material, and more particularly to a method for obtaining a material having a desired shape while preventing cracking during processing by adopting a stepwise processing method.

【0002】[0002]

【従来の技術】たとえばジェットエンジンや改良型コン
バインドサイクルエンジンの燃焼筒のような、高温にさ
らされるリング状製品には、酸化物分散強化型合金が好
んで使用されている。 従来、酸化物分散強化型合金の
製造には、マトリクス合金の粉末に高融点酸化物微粉末
を配合した粉末混合物を缶に充填し、その熱間押出によ
り直接一体化および成形を行なう方法がとられてきた。
この方法は簡易であるが、大型の部品の製造には対応
しきれない。
BACKGROUND OF THE INVENTION Oxide dispersion strengthened alloys are preferred for use in ring-shaped products exposed to high temperatures, such as, for example, combustion cylinders of jet engines and improved combined cycle engines. Conventionally, for the production of oxide dispersion strengthened alloys, a method has been employed in which a powder mixture of a matrix alloy and a fine powder of high melting point oxide is mixed into a can and the mixture is directly integrated and molded by hot extrusion. Has been.
Although this method is simple, it cannot be applied to manufacture large parts.

【0003】そこで、粉末混合物を熱間静水圧プレスま
たは真空ホットプレスにより一体化して大型のビレット
を用意し、このビレットから出発して所望の形状の部品
を製作することが試みられている。 ところが、このビ
レットの熱間加工可能な温度の範囲は約800℃以下で
あって、この温度領域で加工を加えると、加工硬化によ
り材料の延性が低下して加工中に割れが発生する。
Therefore, it has been attempted to integrate a powder mixture by hot isostatic pressing or vacuum hot pressing to prepare a large billet, and start from this billet to manufacture parts having a desired shape. However, the range of temperature at which this billet can be hot worked is about 800 ° C. or less, and if working is performed in this temperature range, the ductility of the material is lowered due to work hardening and cracks occur during working.

【0004】一方、酸化物分散強化型合金の材料は10
00℃またはそれ以上の高温で使用され、高温強度が要
求されるので、粒界すべりによる強度低下を抑止するた
めに結晶粒を粗大化させる必要がある。 この結晶粒粗
大化は、加工歪みを駆動エネルギーとした二次再結晶に
より行なって来た。 結晶粒粗大化を進めるためにはあ
る程度の加工歪みを与える必要があるが、製品によって
は、たとえばリング形状のものでは加えられる加工の度
合(一般に、被加工材の加工前の断面積/加工後の断面
積の比であらわされる「加工比」を尺度とする)に限界
がある。
On the other hand, the material of the oxide dispersion strengthened alloy is 10
Since it is used at a high temperature of 00 ° C. or higher and high-temperature strength is required, it is necessary to coarsen the crystal grains in order to suppress the strength reduction due to grain boundary sliding. This crystal grain coarsening has been performed by secondary recrystallization using working strain as driving energy. Although it is necessary to give a certain amount of processing strain to promote crystal grain coarsening, depending on the product, for example, the degree of processing that is applied in the case of a ring shape (generally, the cross-sectional area of the material before processing / after processing) There is a limit to the "processing ratio", which is expressed by the ratio of the cross-sectional area of.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、酸化
物分散強化型合金を材料として種々の機械部品、とくに
ジェットエンジンの燃焼筒のような大型のリング状製品
を製造するに当り、加工中の割れの発生を抑止しつつ加
工を行ない、その加工歪みをエネルギーとして結晶粒粗
大化を行なうことにより、本来の高温強度を発揮させる
製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to fabricate various mechanical parts, particularly large ring-shaped products such as combustion cylinders of jet engines, using an oxide dispersion strengthening alloy as a material. It is an object of the present invention to provide a manufacturing method in which original high temperature strength is exhibited by performing processing while suppressing the generation of internal cracks and using the processing strain as energy to coarsen the crystal grains.

【0006】[0006]

【課題を解決するための手段】本発明の酸化物分散強化
型合金材料の製造方法は、重量で、Cr:10〜40
%、Al:10%以下およびTi:2%以下を含有し、
残部が実質上Feからなる合金のフェライトマトリクス
中に微細な高融点金属酸化物:0.1〜2%を分散して
含有する酸化物分散強化型合金材料を製造する方法であ
って、下記の諸工程からなる: (ビレット形成工程) 上記合金の粉末と金属酸化物の
粉末とを混合して、熱間静水圧プレスまたは真空ホット
プレスの手段により一体化したビレットを形成する工
程、 (第一加工工程) 上記ビレットを450〜850℃の
温度で鍛造または圧延し、加工比(被加工材の加工前断
面積/加工後断面積の比)1.5〜2.0の加工を加え
る工程、 (第二加工工程) 第一加工工程の被加工材を650〜
950℃の温度で鍛造または圧延し、加工比2.0〜
2.5の加工を加える工程、 (第三加工工程) 第二加工工程の被加工材を900〜
1200℃の温度で鍛造または圧延し、任意の加工比の
加工を加えて所望の形状とする工程、および (焼鈍工程) 第三加工工程を終えた被加工材を120
0℃以上の温度で焼鈍する工程。
The method for producing an oxide dispersion strengthened alloy material according to the present invention is, by weight, Cr: 10 to 40.
%, Al: 10% or less and Ti: 2% or less,
A method for producing an oxide dispersion-strengthened alloy material containing a fine refractory metal oxide: 0.1 to 2% dispersedly contained in a ferrite matrix of an alloy, the balance of which is substantially Fe. Comprising various steps: (Billet forming step) A step of mixing the alloy powder and the metal oxide powder to form an integrated billet by means of hot isostatic pressing or vacuum hot pressing, Machining step) A step of forging or rolling the billet at a temperature of 450 to 850 ° C. and adding a machining ratio (ratio of cross-sectional area before processing / cross-sectional area after processing) of the workpiece of 1.5 to 2.0, (Second processing step) The work material of the first processing step is set to 650
Forging or rolling at a temperature of 950 ° C, processing ratio 2.0-
Step of adding processing of 2.5, (third processing step) 900 to the work material of the second processing step
A step of forging or rolling at a temperature of 1200 ° C., adding a processing of an arbitrary processing ratio to obtain a desired shape, and (annealing step)
A step of annealing at a temperature of 0 ° C. or higher.

【0007】[0007]

【作用】酸化物分散強化型合金は、前記のように熱間静
水圧プレスなどにより用意したビレットを加工すると
き、加工可能な比較的低い温度領域で直ちに大きな加工
比の加工を加えると割れやすいが、ある程度の加工を加
えると熱間加工可能温度範囲が高温側に拡大するという
現象がみられるので、本発明はこれを利用して、加工温
度および加工比を上記のように段階的に高めて行く多段
加工法を採用することによって、所望の形状への加工を
実現した。
When the billet prepared by the hot isostatic pressing as described above is processed, the oxide dispersion strengthened alloy is liable to be cracked if a large processing ratio is immediately applied in a relatively low temperature region where it can be processed. However, since a phenomenon in which the hot working temperature range expands to the high temperature side is observed when a certain amount of working is added, the present invention utilizes this phenomenon to increase the working temperature and the working ratio stepwise as described above. By adopting a progressive multi-step processing method, processing into a desired shape was realized.

【0008】本発明の三段階の加工工程のうち第一の工
程は、ビレットがもつ低い加工性の範囲内で、相対的に
低い温度領域(450〜850℃)において低い加工比
(1.5〜2.0)の加工を行なう。 この工程は、熱
間静水圧プレスなり真空ホットプレスなりで形成したビ
レット中の旧粉末粒子粒界(Prior Powder ParticleBou
ndary,以下「PPB」)を加工により崩して、結晶粒
界面に存在していた酸化物被膜を分断し、組織内に均一
に分散させるのが目的である。
The first step of the three-step processing steps of the present invention is a low processing ratio (1.5 to 1.5) in a relatively low temperature range (450 to 850 ° C.) within the range of low workability of the billet. ~ 2.0) is processed. This process is based on the prior powder particle boundaries in the billet formed by hot isostatic pressing or vacuum hot pressing.
The purpose is to break the ndary, hereinafter "PPB") by processing to divide the oxide film existing at the crystal grain interface and to disperse it uniformly in the structure.

【0009】第二の加工工程は、第一の加工工程により
材料の加工性が若干向上したことを利用して、より高い
温度領域(650〜950℃)においてより高い加工比
(2.0〜2.5)の加工を行ない、PPBを実質上消
滅させるはたらきをする。
The second processing step utilizes the fact that the workability of the material is slightly improved by the first processing step, so that a higher processing ratio (2.0-2.0) is obtained in a higher temperature region (650-950 ° C.). The processing of 2.5) is carried out to serve to substantially eliminate PPB.

【0010】第三の加工工程は、さらに向上した加工性
を享受して、最も高い温度領域(900〜1200℃)
において加工を行なう。 この段階では、加工割れの起
点となるPPBが消滅しているから、加工比は高低任意
にえらぶことができる。
The third processing step enjoys the further improved workability and is the highest temperature region (900 to 1200 ° C.).
Is processed in. At this stage, since PPB, which is the starting point of the work crack, has disappeared, the work ratio can be selected arbitrarily as high or low.

【0011】こうした加工を経た材料は、最終の焼鈍工
程において1200℃以上の温度に加熱されることによ
り、上記加工により与えられた歪みが駆動力となって結
晶粒の粗大化が進み、高温における粒界すべりの可能性
を小さくする。 焼鈍の温度は、1200℃以上融点未
満であるが、実用上適切なのは1300℃台の温度であ
り、加熱時間は加工製品の大きさにもよるが、1〜2時
間で十分である。
The material that has undergone such processing is heated to a temperature of 1200 ° C. or higher in the final annealing step, and the strain imparted by the above processing serves as a driving force to increase the coarsening of crystal grains, and at high temperature. Reduces the possibility of grain boundary slip. The annealing temperature is 1200 ° C. or higher and lower than the melting point, but a temperature of about 1300 ° C. is practically appropriate, and a heating time of 1 to 2 hours is sufficient, depending on the size of the processed product.

【0012】上記の工程を経ることにより、総加工比に
して3〜5程度の低い加工比の場合にも効率よく加工歪
みを材料内に蓄積し、焼鈍時の結晶粒粗大化効果を十分
に得ることができる。
Through the above steps, even when the total processing ratio is a low processing ratio of about 3 to 5, the processing strain is efficiently accumulated in the material, and the effect of crystal grain coarsening during annealing is sufficiently exerted. Obtainable.

【0013】[0013]

【実施例】Fe,Cr,Al,Tiおよび高融点金属酸
化物の粉末を表1に示した割合になるように配合してボ
ールミルに入れ、メカニカル・アロイイング処理を行な
った。 処理後の粉末を缶に充填し、脱気したのち密封
した。 これを熱間静水圧プレスによりビレットに成形
した。
EXAMPLE Fe, Cr, Al, Ti and refractory metal oxide powders were blended in the proportions shown in Table 1 and placed in a ball mill for mechanical alloying treatment. The treated powder was filled in a can, deaerated, and then sealed. This was formed into a billet by hot isostatic pressing.

【0014】 表 1 材料 C Cr Al Ti 高融点金属酸化物 A 0.05 20 4.5 0.4 Y23 0.6 B 0.05 15 6.0 1.0 Y23 0.8 C 0.05 30 8.0 0.4 Y230.6+ZrO20.2 D 0.05 35 3.0 0.4 Y230.6+Al230.2 E 0.05 25 5.0 0.4 Ce23 0.6 F 0.05 20 5.0 0.4 Gd23 0.6 G 0.05 20 5.0 0.4 Sc23 0.6 H 0.05 20 5.0 0.4 Eu23 0.6 重量%、合金の残部はFeであり、酸化物量は合金に対
して外数。
Table 1 Material C Cr Al Ti Refractory metal oxide A 0.05 20 4.5 4.5 0.4 Y 2 O 3 0.6 B 0.05 15 6.0 6.0 Y 2 O 3 0. 8 C 0.05 30 8.0 0.4 Y 2 O 3 0.6 + ZrO 2 0.2 D 0.05 0.05 35 3.0 0.4 Y 2 O 3 0.6 + Al 2 O 3 0.2 E 0. 05 25 5.0 0.4 Ce 2 O 3 0.6 F 0.05 20 5.0 5.0 0.4 Gd 2 O 3 0.6 G 0.05 20 5.0 0.4 Sc 2 O 3 0. 6 H 0.05 20 5.0 0.4 Eu 2 O 3 0.6% by weight, the balance of the alloy is Fe, and the amount of oxides is outside the alloy.

【0015】各ビレットを表2に掲げる条件の第一〜第
三加工工程に従って一方向に鍛造し、径40mmの丸棒に
した。
Each billet was unidirectionally forged according to the first to third working steps under the conditions shown in Table 2 to form a round bar having a diameter of 40 mm.

【0016】 表 2 No. 材料 第一工程 第二工程 第三工程 開始 終了 加工比 開始 終了 加工比 開始 終了 加工比 (℃) (℃) (℃) (℃) (℃) (℃) 実施例 1 B 700 500 1.7 900 700 2.4 1050 900 3.0 2 C 800 460 1.8 900 700 2.1 1100 1000 2.5 3 D 700 500 1.7 900 700 2.4 1050 900 3.0 4 E 700 500 1.7 900 700 2.4 1050 900 3.0 5 F 700 500 1.7 900 700 2.4 1050 900 3.0 6 G 700 500 1.7 900 700 2.4 1050 900 3.0 7 H 800 460 1.8 900 700 2.1 1100 1000 2.5 8 A 750 600 1.8 950 750 2.3 1050 900 4.0 9 B 700 500 1.7 900 700 2.4 1050 900 3.0 10 C 650 460 1.7 800 650 2.4 1150 900 3.0 11 D 830 500 1.8 920 650 2.5 1180 960 2.0 比較例 1 A 1000* 900* 割れ − − − − − − 2 A 300* 200* 割れ − − − − − − 3 A 700 500 1.0* 900 800 割れ − − − 4 A 800 600 1.3 1100* 900 1.5 1100 700 割れ 5 A 700 500 1.7 900 700 2.4 1250* 1150 3.3 6 B 800 600 1.8 950 700 2.4 1250* 1100 4.3 7 C 820 640 1.8 900 700 2.4 1300* 1200 3.2 * 本発明の範囲外。Table 2 No. Material First step Second step Third step Start End Processing ratio Start End Processing ratio Start End Processing ratio (℃) (℃) (℃) (℃) (℃) (℃) Example 1 B 700 500 1.7 900 700 2.4 1050 900 3.0 2 C 800 460 1.8 900 700 2.1 1100 1000 2.5 3 D 700 500 1.7 900 700 2.4 1050 900 3.0 4 E 700 500 1.7 900 700 2.4 1050 900 3.0 5 F 700 500 1.7 900 700 2.4 1050 900 3.0 6 G 700 500 1.7 900 700 2.4 1050 900 3.0 7 H 800 460 1.8 900 700 2.1 1100 1000 2.5 8 A 750 600 1.8 950 750 2.3 1050 900 4.0 9 B 700 500 1.7 900 700 2.4 1050 900 3.0 10 C 650 460 1.7 800 650 2.4 1150 900 3.0 11 D 830 500 1.8 920 650 2.5 1180 960 2.0 Comparative example 1 A 1000 * 900 * Crack − − − − − − 2 A 300 * 200 * Crack − − − − − − 3 A 700 500 1.0 * 900 800 cracking - - - 4 A 800 600 1.3 1100 * 900 1.5 1100 700 cracking 5 A 700 500 1.7 900 700 2.4 1250 * 1150 3.3 6 B 800 600 1.8 950 700 2.4 1250 * 1100 4.3 7 820 640 1.8 900 700 2.4 1300 * 1200 3.2 * outside the scope of the present invention.

【0017】第一工程および第二工程において本発明の
条件に従わなかった場合は、加工中に割れが生じた。
When the conditions of the present invention were not followed in the first step and the second step, cracking occurred during processing.

【0018】鍛造中に割れの発生しなかった各試料を、
表3に示す温度で焼鈍処理し、結晶の平均の長さおよび
幅をしらべるとともに、1200℃における高温引張強
さと、1200℃×1000時間保持後のクリープラプ
チャー強度とを測定した。その結果を、表3に示す。
Each sample that did not crack during forging was
The sample was annealed at the temperatures shown in Table 3, the average length and width of the crystal were examined, and the high temperature tensile strength at 1200 ° C and the creep rupture strength after holding at 1200 ° C for 1000 hours were measured. The results are shown in Table 3.

【0019】 表 3 No.焼鈍温度 結 晶 1200℃ 1200℃−1000h 平均幅 平均長さ 引張強さ クリープラプチャー強度 (μm) (μm) (MPa) (MPa) 実施例 1 1320 500 4500 80 41 2 1340 450 5000 84 45 3 1320 460 5200 81 42 4 1320 450 5300 82 47 5 1340 500 4800 86 43 6 1320 500 4500 80 41 7 1340 450 5000 84 45 8 1320 460 5200 81 42 9 1320 450 5300 82 47 10 1340 500 4800 86 43 11 1340 500 4800 86 43 比較例 5 1340 1.3 1.5 40 早期破断 6 1350 1.2 1.4 23 早期破断 7 1360 1.4 2.1 41 早期破断 比較例5〜7は第三工程の鍛造開始温度が高すぎたため
十分な加工歪みエネルギーが与えられず、焼鈍によって
結晶粒が粗大化しなかったため、実施例にくらべて高温
強度が著しく劣っていた。
Table 3 No. Annealing temperature Crystal 1200 ℃ 1200 ℃ -1000h Average width Average length Tensile strength Creep rupture strength (μm) (μm) (MPa) (MPa) Example 1 1320 500 4500 80 41 2 1340 450 5000 84 45 3 1320 460 5200 81 42 4 1320 450 5300 82 47 5 1340 500 4800 86 43 6 1320 500 4500 80 41 7 1340 450 5000 84 45 8 1320 460 5200 81 42 9 1320 450 5300 82 47 10 1340 500 4800 86 43 11 1340 500 4800 86 43 Comparative Example 5 1340 1.3 1.5 40 Early Fracture 6 1350 1.2 1.4 23 Early Fracture 7 1360 1.4 2.1 41 Early Fracture Comparative Examples 5 to 7 did not give sufficient working strain energy because the forging start temperature in the third step was too high. Since the crystal grains were not coarsened by the annealing, the high temperature strength was remarkably inferior to the examples.

【0020】[0020]

【発明の効果】本発明の方法に従ってFe基の酸化物分
散強化型合金材料を製造すれば、加工中に割れが発生す
ることなく圧延または鍛造を実施することができ、任意
の加工度合で所望の形状をもった製品を得ることができ
る。 総括加工比が3〜5程度の低い場合でも、加工歪
みエネルギーを効果的に利用して焼鈍による結晶粒粗大
化−高温強度の向上が実現する。 従って、リング製品
のような、加工比におのずから制約がある製品の製造
も、不利なく行なえる。 より高い加工比を選択できる
製品に関して問題のないことは、いうまでもない。
When the Fe-based oxide dispersion strengthened alloy material is manufactured according to the method of the present invention, rolling or forging can be carried out without cracking during processing, and the desired degree of processing can be achieved. It is possible to obtain a product having the shape of. Even when the overall processing ratio is as low as about 3 to 5, it is possible to effectively utilize the processing strain energy to coarsen the crystal grains by annealing and improve the high temperature strength. Therefore, it is possible to manufacture a product such as a ring product which is naturally restricted in the processing ratio without any disadvantage. It goes without saying that there is no problem with products in which higher processing ratios can be selected.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量で、Cr:10〜40%、Al:1
0%以下およびTi:2%以下を含有し、残部が実質上
Feからなる合金のフェライトマトリクス中に微細な高
融点金属酸化物:0.1〜2%を分散して含有する酸化
物分散強化型合金材料を製造する方法であって、下記の
諸工程からなる製造方法: (ビレット形成工程) 上記合金の粉末と金属酸化物の
粉末とを混合して、熱間静水圧プレスまたは真空ホット
プレスの手段により一体化したビレットを形成する工
程、 (第一加工工程) 上記ビレットを450〜850℃の
温度で鍛造または圧延し、加工比(被加工材の加工前断
面積/加工後断面積の比)1.5〜2.0の加工を加え
る工程、 (第二加工工程) 第一加工工程の被加工材を650〜
950℃の温度で鍛造または圧延し、加工比2.0〜
2.5の加工を加える工程、 (第三加工工程) 第二加工工程の被加工材を900〜
1200℃の温度で鍛造または圧延し、任意の加工比の
加工を加えて所望の形状とする工程、および (焼鈍工程) 第三加工工程を終えた被加工材を120
0℃以上の温度で焼鈍する工程。
1. By weight, Cr: 10 to 40%, Al: 1
Oxide dispersion strengthening in which a fine refractory metal oxide: 0.1 to 2% is dispersed in a ferrite matrix of an alloy containing 0% or less and Ti: 2% or less and the balance being substantially Fe. A method for producing a type alloy material, which comprises the following steps: (Billet forming step) The alloy powder and the metal oxide powder are mixed, and hot isostatic pressing or vacuum hot pressing is performed. To form an integrated billet by means of (1st processing step) The above billet is forged or rolled at a temperature of 450 to 850 ° C., and the processing ratio (the cross-sectional area before processing / the cross-sectional area after processing of the workpiece is Ratio) a step of adding processing of 1.5 to 2.0, (second processing step) 650 to the work material of the first processing step
Forging or rolling at a temperature of 950 ° C, processing ratio 2.0-
Step of adding processing of 2.5, (third processing step) 900 to the work material of the second processing step
A step of forging or rolling at a temperature of 1200 ° C., adding a processing of an arbitrary processing ratio to obtain a desired shape, and (annealing step)
A step of annealing at a temperature of 0 ° C. or higher.
JP20953895A 1995-08-17 1995-08-17 Production of oxide dispersion reinforced type alloy material Pending JPH0953141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20953895A JPH0953141A (en) 1995-08-17 1995-08-17 Production of oxide dispersion reinforced type alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20953895A JPH0953141A (en) 1995-08-17 1995-08-17 Production of oxide dispersion reinforced type alloy material

Publications (1)

Publication Number Publication Date
JPH0953141A true JPH0953141A (en) 1997-02-25

Family

ID=16574472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20953895A Pending JPH0953141A (en) 1995-08-17 1995-08-17 Production of oxide dispersion reinforced type alloy material

Country Status (1)

Country Link
JP (1) JPH0953141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130129556A1 (en) * 2009-12-14 2013-05-23 General Electric Company Methods for processing nanostructured ferritic alloys, and articles produced thereby
CN104372190A (en) * 2014-11-24 2015-02-25 哈尔滨工业大学 Preparation method of titanium alloy particle-reinforced aluminium-based composite material
CN110885954B (en) * 2018-09-07 2021-03-30 天津大学 Application of ferrite-based ODS steel in supercritical water service condition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130129556A1 (en) * 2009-12-14 2013-05-23 General Electric Company Methods for processing nanostructured ferritic alloys, and articles produced thereby
US9039960B2 (en) * 2009-12-14 2015-05-26 General Electric Company Methods for processing nanostructured ferritic alloys, and articles produced thereby
CN104372190A (en) * 2014-11-24 2015-02-25 哈尔滨工业大学 Preparation method of titanium alloy particle-reinforced aluminium-based composite material
CN110885954B (en) * 2018-09-07 2021-03-30 天津大学 Application of ferrite-based ODS steel in supercritical water service condition

Similar Documents

Publication Publication Date Title
JP3839493B2 (en) Method for producing member made of Ti-Al intermetallic compound
US4110131A (en) Method for powder-metallurgic production of a workpiece from a high temperature alloy
US7767138B2 (en) Process for the production of a molybdenum alloy
CN107267838B (en) A method of there is high tough fine grain high-entropy alloy using pyromagnetic coupling preparation
AU742807B2 (en) Working and annealing liquid phase sintered tungsten heavy alloy
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH0480081B2 (en)
JPH032345A (en) Aluminum-base alloy of high young&#39;s modulus and mechanical strength and production of said alloy
JP2011099140A (en) Magnesium alloy and method for producing the same
JPH05117800A (en) Production of oxide-dispersed and reinforced iron base alloy
JP3672903B2 (en) Manufacturing method of oxide dispersion strengthened ferritic steel pipe
CN115125431B (en) Method for refining low-activation ferrite martensite steel structure
JPH0953141A (en) Production of oxide dispersion reinforced type alloy material
JPH05255827A (en) Production of alloy based on tial intermetallic compound
JP4281857B2 (en) Sintered tool steel and manufacturing method thereof
RU2371496C1 (en) HEATPROOF COMPOSITION POWDER ALLOY ON BASIS OF INTERMETALLIC SEMICONDUCTOR NiAl AND METHOD OF ITS RECEIVING
JP2001152208A (en) OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR
Bhowal et al. Full scale gatorizing of fine grain inconel 718
JPH06306508A (en) Production of low anisotropy and high fatigue strength titanium base composite material
JPH07173557A (en) Tial-based intermetallic compound alloy excellent in workability, toughness and high temperature strength
JP3903412B2 (en) Aluminum-lithium alloy
JP3005354B2 (en) Heat treatment method of Al powder alloy
JP2662486B2 (en) Steel sheet excellent in low-temperature toughness and method for producing the same
CN116078848A (en) Preparation method of room-temperature ultrahigh-plasticity high-strength magnesium alloy