JPS63388B2 - - Google Patents

Info

Publication number
JPS63388B2
JPS63388B2 JP57215939A JP21593982A JPS63388B2 JP S63388 B2 JPS63388 B2 JP S63388B2 JP 57215939 A JP57215939 A JP 57215939A JP 21593982 A JP21593982 A JP 21593982A JP S63388 B2 JPS63388 B2 JP S63388B2
Authority
JP
Japan
Prior art keywords
carbide
heat
skid
resistant
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57215939A
Other languages
Japanese (ja)
Other versions
JPS59107970A (en
Inventor
Hisashi Hiraishi
Hisakatsu Nishihara
Yoshiaki Yamagami
Mitsuhiko Furukawa
Hidemoto Takezaki
Takashi Kitahira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUBOTA TETSUKO KK
NIPPON TANGUSUTEN KK
Original Assignee
KUBOTA TETSUKO KK
NIPPON TANGUSUTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUBOTA TETSUKO KK, NIPPON TANGUSUTEN KK filed Critical KUBOTA TETSUKO KK
Priority to JP57215939A priority Critical patent/JPS59107970A/en
Publication of JPS59107970A publication Critical patent/JPS59107970A/en
Publication of JPS63388B2 publication Critical patent/JPS63388B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は加熱炉、均熱炉、焼鈍炉などの高温雰
囲気で使用される耐熱用セラミツク材料に関す
る。例えば加熱炉に於けるスキツドレール用材料
としては従来から各種耐熱合金が用いられていた
が、炉内雰囲気温度が1300〜1350℃に設定され、
スラブ等の金属片が1250〜1300℃に加熱されると
いう如く高温域にさらされるのでスキツドレール
に用いられている耐熱合金にとつても極めて苛酷
な使用条件である。従つて一般には第1図に示す
ように、炉F内の下部の架台1に水冷スキツドパ
イプ2を複数本配設するとともに、各スキツドパ
イプの上面にスキツドレール3を敷設して炉床
(スキツド)を構成し、パイプ2内を流通する冷
却水にてスキツドレールの昇温を防止するように
した水冷方式が採られている。しかし、この場
合、スキツドレール上に載置された金属片Sは、
レールとの接触面から熱を奪われ、局部的に冷却
されるため、温度むらが生じる。 この温度むらは金属片Sの在炉時間を長時間に
設定することにより緩和することはできるが、そ
の効果は十分でなく、また加熱炉の効率が著しく
悪くなる。 この対策として、スキツドレール3にセラミツ
ク材料からなる耐熱台を設け、金属片Sとレール
3との直接々触を防止することが提案され、その
セラミツク材料として、酸化ジルコニウム
(ZrO2)系、アルミナ(Al2O3)系、窒化ケイ素
(Si3N4)系などが試験的に使用されている。と
ころが、これらセラミツク材料は、急速加熱材た
る金属片のスケールとの反応が生じ易いため、長
時間の安定した操業を維持することは不可能であ
る。 ところでセラミツク材料の中で他の材料と比較
した場合に特異な性質を示し、とりわけ溶融金属
に対して極めて優れた耐食性を示すものとして炭
化クロム系セラミツク材料がある。この炭化クロ
ム系セラミツク材料として、従来、炭化クロムを
金属コバルトやニツケルで結合焼結したものが、
耐熱材料や耐食材料としては知られているが、こ
れらは加熱炉内での高温雰囲気では、強度の劣化
と、スケールとの反応が著しく、例えば、1200℃
では室温時に1/3以下の強度に激減するので、加
熱炉の炉床のように高温下で動的応力が作用する
苛酷な使用環境にはとうてい耐え得ず、結局スキ
ツドレール耐熱台用材料としては適用することが
できない。 本発明は上述の諸問題を解決する為に炭化クロ
ム主成分とし特にその耐熱衝撃性を高めた材料を
提供せんとするものであり、その要旨は炭化タン
タル、炭化ニオブ、炭化タングステン、炭化バナ
ジウム、炭化ジルコニウム、炭化ホウ素、炭化ケ
イ素から選ばれる1種以上が0.2〜10重量%、残
部が炭化クロムなる組成の耐熱用セラミツク材料
であり、この場合に炭化ホウ素と炭化ケイ素につ
いてはそれらのいずれか又は双方ともを繊維状形
態で用いると後で詳記する如く材料の機械的強度
を大きく向上せしめるのでより好ましいものであ
る。なお本発明材料は上述の如き組成範囲に各種
材料粉末を配合しその後公知の焼結方法、即ちコ
ールドプレス法、ホツトプレス法あるいは熱間等
方圧加圧焼結法等による方法により焼結して得ら
れるが、この焼結条件としてはコールドプレス法
の場合真空度10-1〜10-3torr、温度1300〜1500
℃、ホツトプレス法の場合加圧力50〜350Kg/cm2
温度1350〜1550℃、又熱間等方圧加圧焼結法の場
合には圧力500Kg/cm2以上、温度1500℃以下に設
定するのがそれぞれ好ましい。そして用いる各種
原料粉末は出来る限り高純度のもの、好ましくは
99%以上の純度を有するものを使用する様にす
る、これは不純物があると高温焼成時にそれが蒸
発して気孔の原因となつたり低融点相を形成する
などして得られる製品の高温特性の低下を招くか
らである。またこの原料粉末は焼結性を向上せし
め得られる製品が高密度となる為に粒度10μm以
下の微細粉末を使用するのが望ましい。 次に本発明材料を開発するに至つた試験並びに
その結果を示す。即ち、 純度99.9%で粒度が5μmの炭化クロム粉末と他
の各種添加物をそれぞれ下記第1表に示す割合に
混合したもの100重量部に対しパラフインを3重
量部添加混合したものを原料粉末とした。なお下
記第1表中でNo.32、33、34、40、41、42、48、
51、54、57、59の場合にはそこで用いた炭化ホウ
素は70μm径の繊維状、又炭化ケイ素は10μm径
の繊維状物を原料として用い(これら繊維状物を
用いたものについては該当No.の下にアンダーライ
ン「−」を付している)、その他のものについて
はすべて粉末状物を用いた。 この様して得た原料を成形圧力1.5トン/cm2
10mm×30mm×6mmに成形し、780℃、10分間真空
中にて予備焼結をし、次いで真空中1450℃、60分
間本焼結を行つて得た焼結体から各種試験用供試
体を得た。 これらの各種焼成体についての相対理論密度、
抗折力、密度、耐熱衝撃性についての各値をそれ
ぞれ下記第2表に示す。この中で耐熱衝撃性は大
気中500℃に加熱保持した供試体を水中に落下投
入しその前後の抗折力の比、即ち投入後抗折力÷
投入前抗折力×100(%)の値で示す。
The present invention relates to a heat-resistant ceramic material used in high-temperature atmospheres such as heating furnaces, soaking furnaces, and annealing furnaces. For example, various heat-resistant alloys have traditionally been used as skid rail materials in heating furnaces, but the atmosphere temperature in the furnace is set at 1,300 to 1,350 degrees Celsius.
Since metal pieces such as slabs are exposed to high temperatures of 1,250 to 1,300°C, the use conditions are extremely harsh even for the heat-resistant alloys used in skid rails. Therefore, generally, as shown in FIG. 1, a plurality of water-cooled skid pipes 2 are arranged on a lower frame 1 inside the furnace F, and a skid rail 3 is laid on the top surface of each skid pipe to form a hearth (skid). However, a water cooling system is adopted in which cooling water flowing through the pipe 2 prevents the temperature of the skid rail from rising. However, in this case, the metal piece S placed on the skid rail is
Heat is removed from the contact surface with the rail and locally cooled, resulting in temperature unevenness. Although this temperature unevenness can be alleviated by setting the time in the furnace of the metal pieces S to be long, the effect is not sufficient and the efficiency of the heating furnace is significantly deteriorated. As a countermeasure against this, it has been proposed to provide the skid rail 3 with a heat-resistant stand made of a ceramic material to prevent direct contact between the metal piece S and the rail 3 . Al 2 O 3 )-based and silicon nitride (Si 3 N 4 )-based materials are being used experimentally. However, these ceramic materials tend to react with the scale of metal pieces, which are rapidly heated materials, and therefore it is impossible to maintain stable operation for a long period of time. By the way, among ceramic materials, there is a chromium carbide ceramic material that exhibits unique properties when compared with other materials, and in particular exhibits extremely excellent corrosion resistance against molten metal. Conventionally, this chromium carbide-based ceramic material is made by bonding and sintering chromium carbide with metallic cobalt or nickel.
Although these materials are known as heat-resistant and corrosion-resistant materials, their strength deteriorates significantly and they react with scale in the high-temperature atmosphere of a heating furnace.
However, the strength decreases to less than 1/3 at room temperature, so it cannot withstand harsh environments such as the hearth of a heating furnace where dynamic stress is applied at high temperatures. cannot be applied. In order to solve the above-mentioned problems, the present invention aims to provide a material containing chromium carbide as a main component and having particularly improved thermal shock resistance. It is a heat-resistant ceramic material having a composition of 0.2 to 10% by weight of one or more selected from zirconium carbide, boron carbide, and silicon carbide, and the balance being chromium carbide. It is more preferable to use both in fibrous form, as this greatly improves the mechanical strength of the material, as will be described in detail later. The material of the present invention is obtained by blending various material powders within the composition range described above and then sintering them by a known sintering method, such as a cold press method, a hot press method, or a hot isostatic pressure sintering method. However, in the case of the cold press method, the sintering conditions are a degree of vacuum of 10 -1 to 10 -3 torr and a temperature of 1300 to 1500.
℃, pressurizing force of 50 to 350 Kg/cm 2 in the case of hot press method,
The temperature is preferably set at 1350 to 1550°C, and in the case of hot isostatic pressure sintering, the pressure is preferably set at 500 kg/cm 2 or more and the temperature is preferably set at 1500°C or less. The various raw material powders used are of the highest possible purity, preferably
Make sure to use products with a purity of 99% or higher. This is because impurities can evaporate during high-temperature firing, causing pores or forming a low-melting point phase, which can reduce the high-temperature properties of the product. This is because it leads to a decrease in In addition, it is desirable to use fine powder with a particle size of 10 μm or less for this raw material powder in order to improve the sinterability and to obtain a high-density product. Next, the tests that led to the development of the material of the present invention and their results will be shown. That is, 3 parts by weight of paraffin was added to 100 parts by weight of a mixture of chromium carbide powder with a purity of 99.9% and a particle size of 5 μm and various other additives in the proportions shown in Table 1 below. did. In addition, No. 32, 33, 34, 40, 41, 42, 48,
In the cases of 51, 54, 57, and 59, the boron carbide used therein was a fibrous material with a diameter of 70 μm, and the silicon carbide used was a fibrous material with a diameter of 10 μm as the raw material (for products using these fibrous materials, the corresponding No. An underline "-" is added below the .), and all other powders were used. The raw material obtained in this way was molded at a pressure of 1.5 tons/ cm2 .
Various test specimens were made from the sintered bodies obtained by molding them into 10 mm x 30 mm x 6 mm, pre-sintering them in a vacuum at 780°C for 10 minutes, and then main sintering them in a vacuum at 1450°C for 60 minutes. Obtained. Relative theoretical density of these various fired bodies,
The values for transverse rupture strength, density, and thermal shock resistance are shown in Table 2 below. Thermal shock resistance is determined by the ratio of the transverse rupture strength before and after dropping a specimen heated to 500°C in the atmosphere into water, i.e., the transverse rupture force after injection ÷
It is expressed as the transverse rupture strength before loading x 100 (%).

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 上記した第2表の各値を炭化クロムに対する添
加炭化物の添加量をある範囲に分けてまとめると
下記第3表の如くなる。
[Table] Table 3 below summarizes the values in Table 2 above by dividing the amount of added carbide into chromium carbide into certain ranges.

【表】 以上の試験結果から判る如く、炭化クロムに対
し添加する各種炭化物の添加量については、それ
らを少なくとも0.2重量%用いなければ効果が不
足し相対理論密度、抗折力が小さく特に500℃に
加熱後水中へ投入した後の投入後抗折力が著しく
小であるし、一方これら炭化物をあまり多く加え
その量が10重量%を越える如くになると再び相対
理論密度、抗折力が低下するのでこれらの添加炭
化物量は0.2〜10重量%とする。 上記した如く本発明のセラミツク材料は相対理
論密度が98.0%以上で抗折力が50Kg/mm2と大であ
り、特に高温にさらされ急冷されてもあまりその
強度が低下しないという優れた性質を有し、しか
も被加熱材たる金属片やそのスケールとの反応性
も小なので従来用いられていた様な特別な冷却設
備の必要もなくスキツドレールをはじめとする急
熱、急冷を受ける様な高温用部材として最適であ
る。そして特に繊維状炭化物を用いた試料にあつ
てはその抗折力、耐熱衝撃性の点で著しく大きな
値を示し一層効果的である。 第2図〜第4図は、それぞれ本発明のセラミツ
ク材料にてスキツドレール耐熱台を製し、スキツ
ドを構成した例を示す。第2図は、水冷スキツド
パイプ2に敷設された耐熱合金製スキツドレール
3の上面に本発明のセラミツク材料からなる板状
の耐熱台4−1を設けてスキツドを構成し、これ
に金属片Sを載置するようにしたものである。ス
キツドレール3に対する耐熱台4−1の固定は、
図示のように適当な係止具5を介添させればよ
い。第3図は、本発明のセラミツク材料にてレー
ル状の耐熱台4−2を形成し、これを直接スキツ
ドパイプ2の上面に敷設し係止具6で支持してス
キツドを構成した例である。この場合、耐熱台4
−2とスキツドバイプ2との直接々触をさけるた
めに、第4図に示すように、例えばセラミツクフ
アイバーなどからなる断熱材層7を介在させ、そ
の上に耐熱台4−2を敷設することも好ましいこ
とである。 以上述べて来た如く、本発明の耐熱セラミツク
材料は、抗折力が大で、しかも耐熱衝撃性に優れ
ており、かつ耐熱性に富む為にそれを例えばスキ
ツドレールそのもの、あるいはスキツドレール用
耐熱台の如き用途に使用した場合に十分に耐え
得、しかも被加熱材と当接しても該当接部から熱
を奪うという事が無い為に、該被加熱材の局部的
な冷却に伴う温度むらを生ぜしめる事なく均一加
熱を達成する事が出来る。従つて温度むらを緩和
する為に従来行つていた様に在炉時間を長くする
必要がなく、かつスキツドレールを介して冷却水
系が外部へ運び去る熱量も減少するので作業能率
の向上及び熱使用量の減少が図れるものである。
[Table] As can be seen from the above test results, the amount of various carbides added to chromium carbide must be at least 0.2% by weight, otherwise the effect will be insufficient and the relative theoretical density and transverse rupture strength will be small, especially at 500°C. The transverse rupture strength after heating and pouring into water is extremely small.On the other hand, if too many of these carbides are added and the amount exceeds 10% by weight, the relative theoretical density and transverse rupture strength decrease again. Therefore, the amount of these added carbides is set to 0.2 to 10% by weight. As mentioned above, the ceramic material of the present invention has a relative theoretical density of 98.0% or more and a transverse rupture strength of 50 kg/ mm2 , and has excellent properties such as not significantly decreasing its strength even when exposed to high temperatures and rapidly cooled. In addition, it has low reactivity with metal pieces and their scales, which are the materials to be heated, so there is no need for special cooling equipment as was conventionally used, and it is suitable for high-temperature applications that are subject to rapid heating and cooling, such as skid rails. Ideal as a component. In particular, samples using fibrous carbide exhibit significantly large values in terms of transverse rupture strength and thermal shock resistance, and are even more effective. FIGS. 2 to 4 each show an example in which a skid rail heat-resistant stand is made of the ceramic material of the present invention and a skid is constructed. FIG. 2 shows a skid constructed by providing a plate-shaped heat-resistant stand 4-1 made of the ceramic material of the present invention on the upper surface of a skid rail 3 made of a heat-resistant alloy installed on a water-cooled skid pipe 2, and a metal piece S is placed on this. It was designed to be placed in To fix the heat-resistant stand 4-1 to the skid rail 3,
As shown in the figure, a suitable locking tool 5 may be used. FIG. 3 shows an example in which a rail-shaped heat-resistant stand 4-2 is formed from the ceramic material of the present invention, and this is laid directly on the upper surface of the skid pipe 2 and supported by a locking member 6 to form a skid. In this case, heat resistant stand 4
In order to avoid direct contact between the skid pipe 2 and the skid pipe 2, as shown in FIG. This is desirable. As described above, the heat-resistant ceramic material of the present invention has a large transverse rupture strength, excellent thermal shock resistance, and is highly heat resistant, so it can be used, for example, in skid rails themselves or heat-resistant stands for skid rails. It has sufficient resistance when used for various purposes, and even when it comes into contact with a heated material, it does not take away heat from the contact area, so it does not cause temperature unevenness due to local cooling of the heated material. Uniform heating can be achieved without tightening. Therefore, there is no need to lengthen the furnace time as was conventionally done to alleviate temperature unevenness, and the amount of heat carried away by the cooling water system to the outside via the skid rails is also reduced, improving work efficiency and heat usage. The amount can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の加熱炉炉床の断面図、第2図〜
第4図はそれぞれ本発明の耐熱セラミツク材料に
よる耐熱台の使用形態を示す要部の断面図。 図中、S:被加熱材たる金属片、2:スキツド
パイプ、3:スキツドレール、4−1,4−2,
4−3:耐熱台。
Figure 1 is a sectional view of a conventional heating furnace hearth, Figure 2~
FIG. 4 is a cross-sectional view of a main part showing how a heat-resistant stand made of the heat-resistant ceramic material of the present invention is used. In the figure, S: metal piece as heated material, 2: skid pipe, 3: skid rail, 4-1, 4-2,
4-3: Heat resistant stand.

Claims (1)

【特許請求の範囲】 1 炭化タンタル、炭化ニオブ、炭化タングステ
ン、炭化バナジウム、炭化ジルコニウム、炭化ホ
ウ素、炭化ケイ素から選ばれる1種以上が0.2〜
10重量%、残部が炭化クロムなる組成の耐熱用セ
ラミツク材料。 2 炭化ホウ素、炭化ケイ素の少なくとも1種が
繊維状である特許請求の範囲第1項記載の耐熱用
セラミツク材料。
[Scope of Claims] 1. One or more selected from tantalum carbide, niobium carbide, tungsten carbide, vanadium carbide, zirconium carbide, boron carbide, and silicon carbide is 0.2 to
A heat-resistant ceramic material with a composition of 10% by weight and the balance being chromium carbide. 2. The heat-resistant ceramic material according to claim 1, wherein at least one of boron carbide and silicon carbide is fibrous.
JP57215939A 1982-12-09 1982-12-09 Heat resistant ceramic material Granted JPS59107970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57215939A JPS59107970A (en) 1982-12-09 1982-12-09 Heat resistant ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57215939A JPS59107970A (en) 1982-12-09 1982-12-09 Heat resistant ceramic material

Publications (2)

Publication Number Publication Date
JPS59107970A JPS59107970A (en) 1984-06-22
JPS63388B2 true JPS63388B2 (en) 1988-01-06

Family

ID=16680758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57215939A Granted JPS59107970A (en) 1982-12-09 1982-12-09 Heat resistant ceramic material

Country Status (1)

Country Link
JP (1) JPS59107970A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136173A (en) * 1984-07-27 1986-02-20 工業技術院長 High temperature solid lubricating ceramics
JPH01108166A (en) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd Chromium carbide ceramics
JPH02164770A (en) * 1988-12-19 1990-06-25 Agency Of Ind Science & Technol Production of composite ceramic material
JP6049978B1 (en) * 2016-05-17 2016-12-21 冨士ダイス株式会社 Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020910A (en) * 1973-06-27 1975-03-05
JPS5162105A (en) * 1974-11-18 1976-05-29 Suwa Seikosha Kk TAINETSUTAISANKASEICHOKOGOKIN
JPS5278908A (en) * 1975-12-26 1977-07-02 Tokyo Shibaura Electric Co Antiicorrosive materials against uranium fluoride gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020910A (en) * 1973-06-27 1975-03-05
JPS5162105A (en) * 1974-11-18 1976-05-29 Suwa Seikosha Kk TAINETSUTAISANKASEICHOKOGOKIN
JPS5278908A (en) * 1975-12-26 1977-07-02 Tokyo Shibaura Electric Co Antiicorrosive materials against uranium fluoride gas

Also Published As

Publication number Publication date
JPS59107970A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
Bai et al. Microstructures, Electrical, Thermal, and Mechanical Properties of Bulk Ti 2 AlC Synthesized by Self‐Propagating High‐Temperature Combustion Synthesis with Pseudo Hot Isostatic Pressing
KR101561989B1 (en) A sintered refractory material based on silicon carbide with a silicon nitride binder
JPS5924751B2 (en) Sintered shaped body
WO1990011981A1 (en) Carbonaceous ceramic composite for use in contact whth molten nonferrous metal
CN103938006A (en) Manufacturing method of cermet material resistant to molten aluminum corrosion
JPH031369B2 (en)
JPS63388B2 (en)
JPS631266B2 (en)
JPS63391B2 (en)
JPS631384B2 (en)
US3287478A (en) Method of sintering aluminum nitride refractories
JP6420748B2 (en) Unburned silicon carbide-containing high alumina brick used for lining of containers holding molten metal
JPS63389B2 (en)
CN103938050B (en) The corrosion of resistance to aluminium high desnity metal stupalith
Mitra Molybdenum silicide-based composites
JPS6335593B2 (en)
JPS63390B2 (en)
JPS6236087A (en) Granular sic-dispersed metal silicon heat-resistant material
JPS6310115B2 (en)
CN103938046A (en) Cermet material resistant to molten aluminum corrosion
JP4430782B2 (en) CHROMIA-ZIRCONIA SINTERED BODY AND PROCESS FOR PRODUCING THE SAME
JPS6310114B2 (en)
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPS59174572A (en) Manufacture of minute cordierite-silicon nitride sintered body
SU1139719A1 (en) High-temperature ceramic material