JPH06263665A - Catalytic hydrogenation of carbon dioxide gas - Google Patents

Catalytic hydrogenation of carbon dioxide gas

Info

Publication number
JPH06263665A
JPH06263665A JP5052272A JP5227293A JPH06263665A JP H06263665 A JPH06263665 A JP H06263665A JP 5052272 A JP5052272 A JP 5052272A JP 5227293 A JP5227293 A JP 5227293A JP H06263665 A JPH06263665 A JP H06263665A
Authority
JP
Japan
Prior art keywords
carbon dioxide
methane
reaction
methanol
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5052272A
Other languages
Japanese (ja)
Other versions
JP3146216B2 (en
Inventor
Yoshiyuki Sasaki
義之 佐々木
Masahiro Saito
昌弘 斎藤
Kenichi Tominaga
健一 富永
Daiki Watanabe
大器 渡辺
Motomasu Kawai
基益 河井
Masami Takeuchi
正己 武内
Yuuki Kanai
勇樹 金井
Keiko Moriya
圭子 守屋
Terumitsu Kakumoto
輝充 角本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU, CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Agency of Industrial Science and Technology filed Critical CHIKYU KANKYO SANGYO GIJUTSU
Priority to JP05227293A priority Critical patent/JP3146216B2/en
Publication of JPH06263665A publication Critical patent/JPH06263665A/en
Application granted granted Critical
Publication of JP3146216B2 publication Critical patent/JP3146216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce methanol, methane, carbon monoxide, etc., by hydrogenating carbon dioxide gas in the presence of a homogeneous liquid-phase reaction catalyst. CONSTITUTION:Methanol, methane, carbon monoxide, etc., are produced by hydrogenating carbon dioxide gas in the presence of a homogeneous liquid-phase reaction catalyst consisting of a combination of a ruthenium carbonyl complex with an iodine compound. Methanol, methane or carbon monoxide useful as a fuel or a chemical synthesis raw material can be produced from carbon dioxide gas exhausted in large quantity from a thermoelectric power plant, cement factory, etc. Since the catalyst is soluble in solvent in contrast with conventional heterogeneous catalyst, it can be used in a liquid-phase reaction system at an easily controllable temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は均一系液相反応触媒を用
いる炭酸ガス接触水素化法に関し、より詳細には特定組
成の均一系液相反応触媒の存在下に炭酸ガスを水素化し
てメタノール、メタンおよび一酸化炭素等を製造する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide catalytic hydrogenation method using a homogeneous liquid phase reaction catalyst, and more particularly to methanol by hydrogenating carbon dioxide in the presence of a homogeneous liquid phase reaction catalyst having a specific composition. , Methane, carbon monoxide and the like.

【0002】[0002]

【従来の技術】炭酸ガスの水素化によるメタノール、メ
タン、一酸化炭素等の製造方法に関しては、各種の金属
や金属酸化物等が触媒として有効であることが知られて
おり、多数の特許出願や報告が知られている〔例えば、
荒川裕則、触媒、31, 558(1989) など〕。
2. Description of the Related Art Regarding the method for producing methanol, methane, carbon monoxide and the like by hydrogenation of carbon dioxide, various metals and metal oxides are known to be effective as catalysts, and many patent applications have been filed. And reports are known [eg
Hironori Arakawa, Catalyst, 31 , 558 (1989), etc.].

【0003】これらの金属あるいは金属酸化物触媒は一
般には担体上に担持して使用されるが、炭酸ガスの水素
化反応のように、かなりの発熱を伴う気固不均一系反応
の場合には、反応器の温度制御が難しく、特に炭酸ガス
の大量処理に必要な大型の反応器に対しては、この方式
の適用は困難である欠点がある。かかる欠点を解消する
ために、遷位金属錯体を均一系の触媒として用いる液相
での炭酸ガスの水素化方法が考えられる。
These metal or metal oxide catalysts are generally used by supporting them on a carrier, but in the case of gas-solid heterogeneous reaction involving considerable heat generation such as hydrogenation reaction of carbon dioxide gas. However, there is a drawback that it is difficult to control the temperature of the reactor, and it is difficult to apply this method especially to a large reactor required for large-scale treatment of carbon dioxide gas. In order to solve such a drawback, a method of hydrogenating carbon dioxide gas in a liquid phase using a transition metal complex as a homogeneous catalyst can be considered.

【0004】しかしながら、現在に至るまで、遷位金属
錯体を均一系液相反応触媒として用いる炭酸ガスの水素
化では、ギ酸、ギ酸アミドまたはギ酸エステル等は得ら
れているが〔例えば、Darensbourg,Chemtech, 636,(198
5)〕、メタノール、メタン、一酸化炭素は得られていな
い。これに対して一酸化炭素の水素化方法に関しては、
各種の遷位金属錯体を均一系の触媒として用いてメタノ
ール、メタン等を製造する方法が知られている。
However, until now, formic acid, formic acid amide, formic acid ester and the like have been obtained by hydrogenation of carbon dioxide using a transition metal complex as a homogeneous liquid phase reaction catalyst [eg Darensbourg, Chemtech]. , 636, (198
5)], methanol, methane, and carbon monoxide have not been obtained. On the other hand, regarding the method of hydrogenating carbon monoxide,
There is known a method of producing methanol, methane or the like by using various transition metal complexes as a homogeneous catalyst.

【0005】たとえばMuettertisらは、オスミウムカル
ボニルあるいはイリジウムカルボニル錯体が一酸化炭素
の水素化によるメタン (J. Am. Chem. Soc. 98, 1296,
1976.)あるいはエタン(J. Am. Chem. Soc. 99, 2796,
1977.)の合成用触媒として有効であることを報告してい
る。一方、ルテニウムカルボニル錯体は、一酸化炭素の
水素化によるメタノールの合成用触媒として有効である
が、この場合には1000気圧以上の高圧が必要であるとさ
れている〔J. S. Bradley, J. Am. Chem. Soc. 101, 74
19(1979)〕。
For example, Muettertis et al. Reported that an osmium carbonyl or iridium carbonyl complex is hydrogenated by carbon monoxide (J. Am. Chem. Soc. 98 , 1296,
1976.) or ethane (J. Am. Chem. Soc. 99 , 2796,
1977.) has been reported to be effective as a catalyst for synthesis. On the other hand, a ruthenium carbonyl complex is effective as a catalyst for the synthesis of methanol by hydrogenation of carbon monoxide, but in this case, it is said that a high pressure of 1000 atm or higher is required (JS Bradley, J. Am. Chem. Soc. 101 , 74
19 (1979)].

【0006】また、Dombekは、ルテニウムカルボニル錯
体にヨウ素化合物を添加することにより、一酸化炭素か
らメタノール、エチレングリコール及びエタノールが得
られ、反応圧力も 400気圧程度まで低下させることがで
きることを報告している〔B.D. Dombek, J. Am. Chem.
Soc. 102, 6508(1981)〕。ところが、このような高圧下
で炭酸ガスに適用すると、ルテニウムカルボニル錯体が
分解してしまう問題点があった。
[0006] Dombek also reported that by adding an iodine compound to a ruthenium carbonyl complex, methanol, ethylene glycol and ethanol can be obtained from carbon monoxide, and the reaction pressure can be lowered to about 400 atm. (BD Dombek, J. Am. Chem.
Soc. 102 , 6508 (1981)]. However, when applied to carbon dioxide gas under such a high pressure, there was a problem that the ruthenium carbonyl complex decomposed.

【0007】さらに、ニッケル錯体(反応系中ではニッ
ケルカルボニル錯体になっていると考えられている。)
は 100気圧程度の比較的低圧でも一酸化炭素と水素から
の液相メタノール合成用触媒として有用であるが、炭酸
ガスの水素化によるメタノール合成に対してはあまり有
効ではなかった〔大山聖一、電力中央研究所報告T9002
7(1990年)〕。
Further, nickel complex (it is considered to be a nickel carbonyl complex in the reaction system).
Is useful as a catalyst for liquid-phase methanol synthesis from carbon monoxide and hydrogen even at a relatively low pressure of about 100 atm, but it was not very effective for methanol synthesis by hydrogenation of carbon dioxide [Seiichi Oyama, Central Research Institute of Electric Power Industry Report T9002
7 (1990)].

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、均一系液相反応触媒の存在下、炭酸ガスの
水素化によるメタノール、メタン、一酸化炭素等の製造
が従来全く知られていない点である。
The problem to be solved by the present invention is that the production of methanol, methane, carbon monoxide and the like by hydrogenation of carbon dioxide in the presence of a homogeneous liquid phase reaction catalyst has hitherto been known. That's not the point.

【0009】[0009]

【課題を解決するための手段】本発明はルテニウムカル
ボニル錯体とヨウ素化合物との組合せからなる均一系液
相反応触媒の存在下に炭酸ガスを水素化することを特徴
とする。本発明における均一系液相反応触媒を構成する
ルテニウムカルボニル錯体としては、一酸化炭素のみを
配位子として有するRu(CO)5 、Ru3(CO)12等の錯体の
他、一酸化炭素の他に水素、ヨウ素等を配位子として有
する錯体、例えばRu2I4(CO)6等が使用可能である。
The present invention is characterized in that carbon dioxide gas is hydrogenated in the presence of a homogeneous liquid phase reaction catalyst comprising a combination of a ruthenium carbonyl complex and an iodine compound. Examples of the ruthenium carbonyl complex constituting the homogeneous liquid phase reaction catalyst in the present invention include Ru (CO) 5 , Ru 3 (CO) 12 and other complexes having only carbon monoxide as a ligand, as well as carbon monoxide. Besides, a complex having hydrogen, iodine or the like as a ligand, for example, Ru 2 I 4 (CO) 6 or the like can be used.

【0010】またヨウ素化合物としては、ヨウ素、KI、
NaI 、LiI 等のアルカリ金属ヨウ化物、ZnI2、CaI2
どの遷移金属ヨウ化物およびアルカリ土類金属ヨウ化物
からなる群から選ばれた少なくとも1種が用いられる。
Further, as the iodine compound, iodine, KI,
NaI, alkali metal iodides such as LiI, ZnI 2, CaI 2 of at least one element selected from transition metal iodide and the group consisting of alkaline earth metal iodides, such as are used.

【0011】上記ヨウ素化合物とルテニウムカルボニル
錯体との混合比率は、ヨウ素対ルテニウム原子比(I2/R
u)が1〜50、好ましくは5〜20の範囲である。この比率
が1未満ではルテニウムが金属として析出して反応率が
低下し、また50を越えると、メタノールが生成せずにメ
タン生成量が増加する。本発明における均一系液相反応
触媒は、上記のルテニウムカルボニル錯体とヨウ素化合
物を反応系外で上記範囲の比率で溶媒に溶解して別途に
製造し、これを反応系に加えても良いが、通常では反応
容器にルテニウムカルボニル錯体とヨウ素化合物および
溶媒を供給し、反応系内で均一系液相反応触媒を形成さ
せた方が操作上便利である。
The mixing ratio of the iodine compound and the ruthenium carbonyl complex is such that the iodine to ruthenium atomic ratio (I 2 / R
u) is in the range of 1 to 50, preferably 5 to 20. When this ratio is less than 1, ruthenium is precipitated as a metal to lower the reaction rate, and when it exceeds 50, methanol is not generated and the amount of methane is increased. The homogeneous liquid phase reaction catalyst in the present invention may be separately prepared by dissolving the ruthenium carbonyl complex and the iodine compound in a solvent in a ratio in the above range outside the reaction system, and adding this to the reaction system, Usually, it is more convenient for operation to supply a ruthenium carbonyl complex, an iodine compound and a solvent to a reaction vessel to form a homogeneous liquid phase reaction catalyst in the reaction system.

【0012】溶媒としては、N−メチルピロリドン、N
−エチルピロリドン、1, 3−ジメチルイミダゾリジノ
ン等の極性非プロン溶媒が用いられる。反応は、これら
溶媒にルテニウムカルボニル錯体およびヨウ素化合物を
溶解し、炭素ガスおよび水素の加圧下に加熱ことによっ
て行なわれる。炭酸ガスと水素との容積比(CO2/H2)は
0.1〜1であり、炭酸ガス量が0.1に満たないと触媒が
分解されてルテニウム金属が析出し、また1を越えると
反応率が低下する。反応時における炭酸ガス+水素の全
圧は1〜400気圧、好ましくは20〜200気圧であり、反応
温度は 150〜300℃、好ましくは 180〜250℃である。15
0℃未満では反応が進行しにくく、 300℃を越えると触
媒が分解してルテニウムが析出する。
As the solvent, N-methylpyrrolidone, N
A polar non-prone solvent such as -ethylpyrrolidone, 1,3-dimethylimidazolidinone is used. The reaction is carried out by dissolving the ruthenium carbonyl complex and the iodine compound in these solvents and heating under the pressure of carbon gas and hydrogen. The volume ratio (CO 2 / H 2 ) of carbon dioxide and hydrogen is
When the carbon dioxide gas amount is less than 0.1, the catalyst is decomposed to deposit ruthenium metal, and when it exceeds 1, the reaction rate is lowered. The total pressure of carbon dioxide gas and hydrogen during the reaction is 1 to 400 atm, preferably 20 to 200 atm, and the reaction temperature is 150 to 300 ° C, preferably 180 to 250 ° C. 15
If the temperature is lower than 0 ° C, the reaction is difficult to proceed, and if the temperature exceeds 300 ° C, the catalyst decomposes to deposit ruthenium.

【0013】溶媒中におけるルテニウムカルボニル錯体
の濃度は、1〜100mmol/l 、好ましくは5〜25mmolであ
り、1mmol/l未満では反応が進行しにくく、また100mmo
l を越えると溶媒への溶解が困難になる。本発明におい
ては、炭酸ガスの水素化反応により得られる生成物は主
としてメタノール、メタンあるいは一酸化炭素であり、
エタン等が副生成物として得られる。反応温度、反応時
間、あるいはヨウ素化合物の種類等の反応条件を変化さ
せることにより、生成物のメタノール、メタンあるいは
一酸化炭素の生成量を高めることができる。以下、本発
明の実施例を述べる。
The concentration of the ruthenium carbonyl complex in the solvent is 1 to 100 mmol / l, preferably 5 to 25 mmol. If it is less than 1 mmol / l, the reaction is difficult to proceed, and 100 mmo
If it exceeds l, it becomes difficult to dissolve it in the solvent. In the present invention, the products obtained by the hydrogenation reaction of carbon dioxide are mainly methanol, methane or carbon monoxide,
Ethane and the like are obtained as by-products. By changing the reaction conditions such as the reaction temperature, the reaction time, and the type of iodine compound, the production amount of methanol, methane, or carbon monoxide can be increased. Examples of the present invention will be described below.

【0014】[0014]

【実施例】【Example】

実施例1 100ml-オートクレーブ中に、Ru3(CO)12(0.2mmol) 、溶
媒(20ml)及びヨウ素化合物(10mmol)を仕込み、炭酸
ガス/水素(1:3)混合ガスを室温で80atm圧入した
後、所定温度で3時間反応を行った。溶媒としては、N
−メチルピロリドン(NMP)、N−エチルピロリドン
(NEP)あるいは1,3−ジメチルイミダゾリジノン
(DMI)を用い、ヨウ素化合物としてはヨウ素、KI、
NaI 、LiI、 ZnI2 を用いた。I/Ruの比は17である。生
成物の分析は、反応ガスおよび反応液をガスクロマトグ
ラフィーを用いて定量することにより行った。結果を表
1に示す。
Example 1 A 100 ml autoclave was charged with Ru 3 (CO) 12 (0.2 mmol), a solvent (20 ml) and an iodine compound (10 mmol), and a carbon dioxide / hydrogen (1: 3) mixed gas was introduced at 80 atm at room temperature. Then, the reaction was performed at a predetermined temperature for 3 hours. As the solvent, N
-Methylpyrrolidone (NMP), N-ethylpyrrolidone (NEP) or 1,3-dimethylimidazolidinone (DMI) is used, and iodine compounds are iodine, KI,
NaI, LiI and ZnI 2 were used. The I / Ru ratio is 17. The analysis of the product was performed by quantifying the reaction gas and the reaction solution using gas chromatography. The results are shown in Table 1.

【0015】 [0015]

【0016】表1から明らかなとおり、ヨウ素化合物の
種類及び反応温度を変化させることにより、メタノー
ル、メタンあるいは一酸化炭素の生成物中における生成
量を増加させることができる。例えば、ヨウ素化合物と
してヨウ化カリウムあるいはヨウ化ナトリウム等のアル
カリ金属塩を用い、 240℃で反応させたときにはメタノ
ールが主生成物として得られるが、同様の反応を 200℃
で行った場合には、一酸化炭素が主生成物となる。ま
た、ヨウ化亜鉛を用いた場合には、 240℃でも一酸化炭
素が主生成物となる一方、ヨウ素を添加した場合には、
メタンが主として生成した。この場合にもルテニウム触
媒は金属に分解しておらず、均一系で反応が進行してい
ると考えられる。従って、ルテニウム金属による不均一
系でのメタンの生成とは異なる反応である。
As is clear from Table 1, the amount of methanol, methane or carbon monoxide produced in the product can be increased by changing the type of iodine compound and the reaction temperature. For example, when an alkali metal salt such as potassium iodide or sodium iodide is used as the iodine compound and reacted at 240 ° C, methanol is obtained as the main product.
In the case of (1), carbon monoxide becomes the main product. When zinc iodide is used, carbon monoxide becomes the main product even at 240 ° C, while when iodine is added,
Methane was mainly produced. Also in this case, the ruthenium catalyst is not decomposed into metal, and it is considered that the reaction proceeds in a homogeneous system. Therefore, it is a reaction different from the production of methane in a heterogeneous system by ruthenium metal.

【0017】実施例2 実施例1と同様の反応を行った。ただし、溶媒としてN
MPを、ヨウ素化合物としてヨウ化カリウムを用い、反
応時間を変化させて行った。結果を図1に示す。反応開
始後30分の時点では、一酸化炭素が主生成物として10.2
mmolの収率で得られ、メタノール(7.4mmol)と少量のメ
タンの生成が認められた。反応時間が1.5時間より長い
場合には、メタノールが主生成物として得られるが、反
応時間が長くなるに従ってメタンの生成量が増大した。
このように各生成物は逐次反応により生成していると考
えられるので、反応時間を適当に設定することにより、
生成物の比率を変化させることができる。
Example 2 The same reaction as in Example 1 was carried out. However, N as a solvent
MP was performed using potassium iodide as an iodine compound and changing the reaction time. The results are shown in Fig. 1. At 30 minutes after the start of the reaction, carbon monoxide was 10.2 as the main product.
It was obtained in a yield of mmol, and formation of methanol (7.4 mmol) and a small amount of methane was observed. When the reaction time was longer than 1.5 hours, methanol was obtained as the main product, but the production amount of methane increased as the reaction time became longer.
In this way, each product is considered to be produced by a sequential reaction, so by setting the reaction time appropriately,
The ratio of products can be varied.

【0018】[0018]

【発明の効果】以上述べたとおり本発明によれば、火力
発電所やセメント工場から大量に排出される炭酸ガスか
ら燃料や化学合成原料として有用なメタノール、メタン
あるいは一酸化炭素を製造することができる。本発明に
おける触媒は、従来の不均一系の触媒と異なり溶媒に可
溶なので、温度制御が容易な液相反応で使用できると云
う大きな利点がある。
As described above, according to the present invention, methanol, methane or carbon monoxide useful as a fuel or a raw material for chemical synthesis can be produced from carbon dioxide gas discharged in large amounts from a thermal power plant or a cement plant. it can. Since the catalyst of the present invention is soluble in a solvent unlike conventional heterogeneous catalysts, it has a great advantage that it can be used in a liquid phase reaction in which temperature control is easy.

【0019】また、反応条件を変化させることにより、
必要に応じて主生成物をメタノール、メタンあるいは一
酸化炭素とすることができるため、プロセスとしてのフ
レキシビリティーが高いという特長を有する。
Further, by changing the reaction conditions,
If necessary, the main product can be methanol, methane or carbon monoxide, which has the advantage of high process flexibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ru3(CO)12−ヨウ化カリウム触媒、NMP溶媒
を用いたときの反応時間とメタン生成量との関係を示す
図である。
FIG. 1 is a diagram showing a relationship between a reaction time and a methane production amount when using a Ru 3 (CO) 12 -potassium iodide catalyst and an NMP solvent.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 29/157 8930−4H // C07B 61/00 300 C10G 2/00 2115−4H (72)発明者 斎藤 昌弘 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 (72)発明者 富永 健一 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 (72)発明者 渡辺 大器 東京都港区西新橋2−8−11 第7東洋海 事ビル8F財団法人 地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 河井 基益 東京都港区西新橋2−8−11 第7東洋海 事ビル8F財団法人 地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 武内 正己 東京都港区西新橋2−8−11 第7東洋海 事ビル8F財団法人 地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 金井 勇樹 東京都港区西新橋2−8−11 第7東洋海 事ビル8F財団法人 地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 守屋 圭子 東京都港区西新橋2−8−11 第7東洋海 事ビル8F財団法人 地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 角本 輝充 東京都港区西新橋2−8−11 第7東洋海 事ビル8F財団法人 地球環境産業技術研 究機構 CO2固定化等プロジェクト室内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C07C 29/157 8930-4H // C07B 61/00 300 C10G 2/00 2115-4H (72) Invention Masahiro Saito 16-3, Onogawa, Tsukuba-shi, Ibaraki Institute of Industrial Science and Technology (72) Inventor Kenichi Tominaga 16-3, Onogawa, Tsukuba-shi, Ibaraki Institute of Industrial Science and Technology (72) Inventor Watanabe Daiki 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Kaijuku Building 8F Research Institute for Global Environmental Technology CO2 fixation etc. Project room (72) Inventor Motoi Kawai 2 Nishi-Shimbashi, Minato-ku, Tokyo -8-11 7th Toyo Kaiji Building 8F Foundation for Global Environmental Technology Research Institute CO2 Immobilization Project Room (72) Inventor Masami Takeuchi 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Tokai Maritime Building 8F Foundation for Global Environmental Technology Research Institute CO2 fixation etc. (72) Inventor Yuki Kanai 2- Nishi-shinbashi, Minato-ku, Tokyo 8-11 7th Toyo Kaijuku Building 8F Foundation for Research on Innovative Technology for the Earth Environment CO2 fixation etc. Project room (72) Inventor Keiko Moriya 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7th Toyo Kaijuku Building 8F Research Institute for Global Environment and Industrial Technology CO2 Immobilization Project Room (72) Inventor Terumitsu Kakumoto 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building 8F Foundation for Global Environmental and Industrial Technology Research Institute Project room for CO2 fixation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ルテニウムカルボニル錯体とヨウ素化合
物との組合せからなる均一系液相反応触媒の存在下に炭
酸ガスを水素化して、メタノール、メタンおよび一酸化
炭素等を製造することを特徴とする炭酸ガス接触水素化
法。
1. A carbonic acid characterized by producing methanol, methane, carbon monoxide, etc. by hydrogenating carbon dioxide in the presence of a homogeneous liquid phase reaction catalyst comprising a combination of a ruthenium carbonyl complex and an iodine compound. Gas contact hydrogenation method.
【請求項2】 前記ヨウ素化合物がヨウ素、アルカリ金
属ヨウ化物、アルカリ土類金属ヨウ化物および遷移金属
ヨウ化物からなる群から選ばれた少なくとも1種である
請求項1記載の方法。
2. The method according to claim 1, wherein the iodine compound is at least one selected from the group consisting of iodine, alkali metal iodides, alkaline earth metal iodides and transition metal iodides.
JP05227293A 1993-03-12 1993-03-12 CO2 catalytic hydrogenation Expired - Lifetime JP3146216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05227293A JP3146216B2 (en) 1993-03-12 1993-03-12 CO2 catalytic hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05227293A JP3146216B2 (en) 1993-03-12 1993-03-12 CO2 catalytic hydrogenation

Publications (2)

Publication Number Publication Date
JPH06263665A true JPH06263665A (en) 1994-09-20
JP3146216B2 JP3146216B2 (en) 2001-03-12

Family

ID=12910151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05227293A Expired - Lifetime JP3146216B2 (en) 1993-03-12 1993-03-12 CO2 catalytic hydrogenation

Country Status (1)

Country Link
JP (1) JP3146216B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908507B2 (en) 2001-04-13 2005-06-21 Co2 Solution Inc. Process and a plant for the production of Portland cement clinker
JP2012140382A (en) * 2011-01-05 2012-07-26 Tokyo Gas Co Ltd Method of synthesizing methane from carbon dioxane and hydrogen
JP2013163675A (en) * 2007-10-30 2013-08-22 Toyama Univ Hydrogen reduction method of carbon dioxide
JP2018537461A (en) * 2015-12-01 2018-12-20 国立研究開発法人産業技術総合研究所 Process for producing methanol from carbon dioxide and hydrogen gas in aqueous media in homogeneous catalytic reactions
CN112645797A (en) * 2019-10-12 2021-04-13 中石化南京化工研究院有限公司 Process for synthesizing methanol from carbon dioxide-carbon-water
WO2021246316A1 (en) * 2020-06-04 2021-12-09 三菱マテリアル株式会社 Method for producing valuable substances from cement production exhaust gas
JP2021191732A (en) * 2020-06-05 2021-12-16 三菱マテリアル株式会社 Method of producing valuables from exhaust from cement production

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912240B2 (en) 2013-02-22 2014-12-16 Eastman Chemical Company Production of methanol and ethanol from CO or CO2
KR102292182B1 (en) 2019-07-05 2021-08-20 이범진 Aerial lifting device for spoon set

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908507B2 (en) 2001-04-13 2005-06-21 Co2 Solution Inc. Process and a plant for the production of Portland cement clinker
JP2013163675A (en) * 2007-10-30 2013-08-22 Toyama Univ Hydrogen reduction method of carbon dioxide
JP2012140382A (en) * 2011-01-05 2012-07-26 Tokyo Gas Co Ltd Method of synthesizing methane from carbon dioxane and hydrogen
JP2018537461A (en) * 2015-12-01 2018-12-20 国立研究開発法人産業技術総合研究所 Process for producing methanol from carbon dioxide and hydrogen gas in aqueous media in homogeneous catalytic reactions
CN112645797A (en) * 2019-10-12 2021-04-13 中石化南京化工研究院有限公司 Process for synthesizing methanol from carbon dioxide-carbon-water
CN112645797B (en) * 2019-10-12 2023-05-26 中国石油化工股份有限公司 Process for synthesizing methanol by carbon dioxide-carbon-water
WO2021246316A1 (en) * 2020-06-04 2021-12-09 三菱マテリアル株式会社 Method for producing valuable substances from cement production exhaust gas
JP2021191732A (en) * 2020-06-05 2021-12-16 三菱マテリアル株式会社 Method of producing valuables from exhaust from cement production

Also Published As

Publication number Publication date
JP3146216B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
Sánchez-Sánchez et al. Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation
CN109603819B (en) Graphene-loaded PdRu bimetallic catalyst and preparation method and application thereof
NZ210651A (en) Palladium/rhenium catalyst and preparation of tetrahydrofuran and 1,4-butanediol
CN112023934B (en) Preparation method of copper-indium bimetallic monatomic catalyst
JPH06263665A (en) Catalytic hydrogenation of carbon dioxide gas
US4659686A (en) Method for treating carbon supports for hydrogenation catalysts
JP2016155123A (en) Ammonia synthesis catalyst and production method thereof
CN113416316A (en) MOFs-zinc material and preparation method and application thereof
CN109705069B (en) Preparation method of 2, 5-furandicarboxylic acid
KR100344962B1 (en) Preparation method of gamma butyrolactone using maleic anhydride
CN111138392A (en) Method for preparing furan dicarboxylic acid by using furfural
CN111423398A (en) Method for preparing gamma-valerolactone from levulinic acid
CN112774670A (en) Application of rhodium monatomic catalyst in reaction for preparing m-chloroaniline through selective hydrogenation of m-chloronitrobenzene
JPS615036A (en) Production of alcohol
CN115584527A (en) Preparation method and application of mesoporous palladium-copper nano catalyst for producing ammonia by nitrate reduction
JP3108714B2 (en) Method for producing carbon monoxide
JPH0780309A (en) Catalyst for production of hydrocarbon and production of hydrocarbon
CN114751813A (en) Method for preparing glycolaldehyde through hydroformylation of formaldehyde
US4394298A (en) Hydrogenation catalyst
CN109053785A (en) One kind is for being catalyzed CO2Hydrogenation reaction prepares homogeneous catalyst and its preparation method and the application of formates
JP3081878B2 (en) Method for producing carbon monoxide and glycols
JP2664046B2 (en) Method for producing alcohols from carbon dioxide
JPH0748299A (en) Production of ethanol
CN113842911B (en) Tungsten bronze catalyst and catalyst composition for producing biomass-based ethylene glycol
JPH08151346A (en) Production of ketomalonic acid

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term