JP3146216B2 - CO2 catalytic hydrogenation - Google Patents

CO2 catalytic hydrogenation

Info

Publication number
JP3146216B2
JP3146216B2 JP05227293A JP5227293A JP3146216B2 JP 3146216 B2 JP3146216 B2 JP 3146216B2 JP 05227293 A JP05227293 A JP 05227293A JP 5227293 A JP5227293 A JP 5227293A JP 3146216 B2 JP3146216 B2 JP 3146216B2
Authority
JP
Japan
Prior art keywords
reaction
methane
carbon monoxide
carbon dioxide
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05227293A
Other languages
Japanese (ja)
Other versions
JPH06263665A (en
Inventor
義之 佐々木
昌弘 斎藤
健一 富永
大器 渡辺
基益 河井
正己 武内
勇樹 金井
圭子 守屋
輝充 角本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Mitsui Chemicals Inc
Research Institute of Innovative Technology for Earth
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Osaka Gas Co Ltd
Kawasaki Motors Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Mitsui Chemicals Inc
Research Institute of Innovative Technology for Earth
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Osaka Gas Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Mitsui Chemicals Inc, Research Institute of Innovative Technology for Earth, Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd, Osaka Gas Co Ltd, Kawasaki Jukogyo KK filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP05227293A priority Critical patent/JP3146216B2/en
Publication of JPH06263665A publication Critical patent/JPH06263665A/en
Application granted granted Critical
Publication of JP3146216B2 publication Critical patent/JP3146216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は均一系液相反応触媒を用
いる炭酸ガス接触水素化法に関し、より詳細には特定組
成の均一系液相反応触媒の存在下に炭酸ガスを水素化し
てメタノール、メタンおよび一酸化炭素等を製造する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for catalytic hydrogenation of carbon dioxide using a homogeneous liquid phase reaction catalyst, and more particularly to a method for hydrogenating carbon dioxide gas in the presence of a homogeneous liquid phase reaction catalyst having a specific composition. , Methane, carbon monoxide and the like.

【0002】[0002]

【従来の技術】炭酸ガスの水素化によるメタノール、メ
タン、一酸化炭素等の製造方法に関しては、各種の金属
や金属酸化物等が触媒として有効であることが知られて
おり、多数の特許出願や報告が知られている〔例えば、
荒川裕則、触媒、31, 558(1989) など〕。
2. Description of the Related Art With respect to a method for producing methanol, methane, carbon monoxide and the like by hydrogenating carbon dioxide gas, various metals and metal oxides are known to be effective as catalysts, and many patent applications have been filed. And reports are known [for example,
Arakawa Hironori, Catalyst, 31 , 558 (1989)].

【0003】これらの金属あるいは金属酸化物触媒は一
般には担体上に担持して使用されるが、炭酸ガスの水素
化反応のように、かなりの発熱を伴う気固不均一系反応
の場合には、反応器の温度制御が難しく、特に炭酸ガス
の大量処理に必要な大型の反応器に対しては、この方式
の適用は困難である欠点がある。かかる欠点を解消する
ために、遷移金属錯体を均一系の触媒として用いる液相
での炭酸ガスの水素化方法が考えられる。
[0003] These metal or metal oxide catalysts are generally used by being supported on a carrier. However, in the case of a gas-solid heterogeneous reaction involving considerable heat generation, such as a hydrogenation reaction of carbon dioxide gas, the reaction is carried out. However, it is difficult to control the temperature of the reactor, and it is difficult to apply this method particularly to a large-sized reactor required for large-scale treatment of carbon dioxide gas. In order to solve such a drawback, a method of hydrogenating carbon dioxide gas in a liquid phase using a transition metal complex as a homogeneous catalyst can be considered.

【0004】しかしながら、現在に至るまで、遷移金属
錯体を均一系液相反応触媒として用いる炭酸ガスの水素
化では、ギ酸、ギ酸アミドまたはギ酸エステル等は得ら
れているが〔例えば、Darensbourg,Chemtech, 636,(198
5)〕、メタノール、メタン、一酸化炭素は得られていな
い。これに対して一酸化炭素の水素化方法に関しては、
各種の遷移金属錯体を均一系の触媒として用いてメタノ
ール、メタン等を製造する方法が知られている。
[0004] However, to date, formic acid, formic acid amide or formic acid ester has been obtained by hydrogenation of carbon dioxide using a transition metal complex as a homogeneous liquid phase reaction catalyst [for example, see Darensbourg, Chemtech, 636, (198
5)], methanol, methane and carbon monoxide were not obtained. On the other hand, regarding the method of hydrogenating carbon monoxide,
Methods for producing methanol, methane, and the like using various transition metal complexes as homogeneous catalysts are known.

【0005】たとえばMuettertisらは、オスミウムカル
ボニルあるいはイリジウムカルボニル錯体が一酸化炭素
の水素化によるメタン (J. Am. Chem. Soc. 98, 1296,
1976.)あるいはエタン(J. Am. Chem. Soc. 99, 2796,
1977.)の合成用触媒として有効であることを報告してい
る。一方、ルテニウムカルボニル錯体は、一酸化炭素の
水素化によるメタノールの合成用触媒として有効である
が、この場合には1000気圧以上の高圧が必要であるとさ
れている〔J. S. Bradley, J. Am. Chem. Soc. 101, 74
19(1979)〕。
[0005] For example, Muettertis et al. Have reported that osmium carbonyl or iridium carbonyl complex is obtained by hydrogenation of carbon monoxide to methane (J. Am. Chem. Soc. 98 , 1296,
1976.) or ethane (J. Am. Chem. Soc. 99 , 2796,
1977.) was reported to be effective as a catalyst for the synthesis. On the other hand, a ruthenium carbonyl complex is effective as a catalyst for synthesizing methanol by hydrogenating carbon monoxide, but in this case, a high pressure of 1000 atm or more is required (JS Bradley, J. Am. Chem. Soc. 101 , 74
19 (1979)].

【0006】また、Dombekは、ルテニウムカルボニル錯
体にヨウ素化合物を添加することにより、一酸化炭素か
らメタノール、エチレングリコール及びエタノールが得
られ、反応圧力も 400気圧程度まで低下させることがで
きることを報告している〔B.D. Dombek, J. Am. Chem.
Soc. 102, 6508(1981)〕。ところが、このような高圧下
で炭酸ガスに適用すると、ルテニウムカルボニル錯体が
分解してしまう問題点があった。
[0006] Dombek also reported that by adding an iodine compound to a ruthenium carbonyl complex, methanol, ethylene glycol and ethanol could be obtained from carbon monoxide, and the reaction pressure could be reduced to about 400 atm. (BD Dombek, J. Am. Chem.
Soc. 102 , 6508 (1981)]. However, when applied to carbon dioxide under such a high pressure, there is a problem that the ruthenium carbonyl complex is decomposed.

【0007】さらに、ニッケル錯体(反応系中ではニッ
ケルカルボニル錯体になっていると考えられている。)
は 100気圧程度の比較的低圧でも一酸化炭素と水素から
の液相メタノール合成用触媒として有用であるが、炭酸
ガスの水素化によるメタノール合成に対してはあまり有
効ではなかった〔大山聖一、電力中央研究所報告T9002
7(1990年)〕。
Further, a nickel complex (it is considered to be a nickel carbonyl complex in the reaction system)
Is useful as a catalyst for liquid-phase methanol synthesis from carbon monoxide and hydrogen even at relatively low pressures of about 100 atmospheres, but was not very effective for methanol synthesis by hydrogenation of carbon dioxide gas (Seiichi Oyama, Central Research Institute of Electric Power Industry T9002
7 (1990)].

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、均一系液相反応触媒の存在下、炭酸ガスの
水素化によるメタノール、メタン、一酸化炭素等の製造
が従来全く知られていない点である。
The problem to be solved by the present invention is that production of methanol, methane, carbon monoxide and the like by hydrogenation of carbon dioxide gas in the presence of a homogeneous liquid phase reaction catalyst has been known. It is not a point.

【0009】[0009]

【課題を解決するための手段】本発明はルテニウムカル
ボニル錯体とヨウ素化合物との組合せからなる均一系液
相反応触媒の存在下に炭酸ガスを水素化することを特徴
とする。本発明における均一系液相反応触媒を構成する
ルテニウムカルボニル錯体としては、一酸化炭素のみを
配位子として有するRu(CO)5 、Ru3(CO)12等の錯体の
他、一酸化炭素の他に水素、ヨウ素等を配位子として有
する錯体、例えばRu2I4(CO)6等が使用可能である。
The present invention is characterized in that carbon dioxide is hydrogenated in the presence of a homogeneous liquid phase reaction catalyst comprising a combination of a ruthenium carbonyl complex and an iodine compound. As the ruthenium carbonyl complex constituting the homogeneous liquid phase reaction catalyst in the present invention, Ru (CO) 5 having only carbon monoxide as a ligand, and other complexes such as Ru 3 (CO) 12 as well as carbon monoxide. In addition, a complex having hydrogen, iodine, or the like as a ligand, for example, Ru 2 I 4 (CO) 6 can be used.

【0010】またヨウ素化合物としては、ヨウ素、KI、
NaI 、LiI 等のアルカリ金属ヨウ化物、ZnI2、CaI2
どの遷移金属ヨウ化物およびアルカリ土類金属ヨウ化物
からなる群から選ばれた少なくとも1種が用いられる。
The iodine compounds include iodine, KI,
NaI, alkali metal iodides such as LiI, ZnI 2, CaI 2 of at least one element selected from transition metal iodide and the group consisting of alkaline earth metal iodides, such as are used.

【0011】上記ヨウ素化合物とルテニウムカルボニル
錯体との混合比率は、ヨウ素対ルテニウム原子比(I2/R
u)が1〜50、好ましくは5〜20の範囲である。この比率
が1未満ではルテニウムが金属として析出して反応率が
低下し、また50を越えると、メタノールが生成せずにメ
タン生成量が増加する。本発明における均一系液相反応
触媒は、上記のルテニウムカルボニル錯体とヨウ素化合
物を反応系外で上記範囲の比率で溶媒に溶解して別途に
製造し、これを反応系に加えても良いが、通常では反応
容器にルテニウムカルボニル錯体とヨウ素化合物および
溶媒を供給し、反応系内で均一系液相反応触媒を形成さ
せた方が操作上便利である。
The mixing ratio of the above iodine compound and ruthenium carbonyl complex is determined by the atomic ratio of iodine to ruthenium (I 2 / R
u) is in the range of 1 to 50, preferably 5 to 20. If this ratio is less than 1, ruthenium precipitates as a metal and the reaction rate decreases, and if it exceeds 50, methanol is not produced and the amount of methane produced increases. The homogeneous liquid phase reaction catalyst in the present invention may be separately produced by dissolving the ruthenium carbonyl complex and the iodine compound in a solvent at a ratio in the above range outside the reaction system, and may be added to the reaction system. Usually, it is more convenient to supply the ruthenium carbonyl complex, the iodine compound and the solvent to the reaction vessel to form a homogeneous liquid phase reaction catalyst in the reaction system.

【0012】溶媒としては、N−メチルピロリドン、N
−エチルピロリドン、1, 3−ジメチルイミダゾリジノ
ン等の極性非プロン溶媒が用いられる。反応は、これら
溶媒にルテニウムカルボニル錯体およびヨウ素化合物を
溶解し、炭素ガスおよび水素の加圧下に加熱ことによっ
て行なわれる。炭酸ガスと水素との容積比(CO2/H2)は
0.1〜1であり、炭酸ガス量が0.1に満たないと触媒が
分解されてルテニウム金属が析出し、また1を越えると
反応率が低下する。反応時における炭酸ガス+水素の全
圧は1〜400気圧、好ましくは20〜200気圧であり、反応
温度は 150〜300℃、好ましくは 180〜250℃である。15
0℃未満では反応が進行しにくく、 300℃を越えると触
媒が分解してルテニウムが析出する。
As the solvent, N-methylpyrrolidone, N
Polar non-prone solvents such as -ethylpyrrolidone, 1,3-dimethylimidazolidinone are used. The reaction is carried out by dissolving the ruthenium carbonyl complex and the iodine compound in these solvents, and heating under pressure of carbon gas and hydrogen. The volume ratio of carbon dioxide to hydrogen (CO 2 / H 2 )
When the amount of carbon dioxide is less than 0.1, the catalyst is decomposed to deposit ruthenium metal, and when the amount exceeds 1, the reaction rate decreases. The total pressure of carbon dioxide + hydrogen during the reaction is 1 to 400 atm, preferably 20 to 200 atm, and the reaction temperature is 150 to 300 ° C, preferably 180 to 250 ° C. Fifteen
If the temperature is lower than 0 ° C, the reaction hardly proceeds. If the temperature exceeds 300 ° C, the catalyst is decomposed and ruthenium is precipitated.

【0013】溶媒中におけるルテニウムカルボニル錯体
の濃度は、1〜100mmol/l 、好ましくは5〜25mmolであ
り、1mmol/l未満では反応が進行しにくく、また100mmo
l を越えると溶媒への溶解が困難になる。本発明におい
ては、炭酸ガスの水素化反応により得られる生成物は主
としてメタノール、メタンあるいは一酸化炭素であり、
エタン等が副生成物として得られる。反応温度、反応時
間、あるいはヨウ素化合物の種類等の反応条件を変化さ
せることにより、生成物のメタノール、メタンあるいは
一酸化炭素の生成量を高めることができる。以下、本発
明の実施例を述べる。
The concentration of the ruthenium carbonyl complex in the solvent is from 1 to 100 mmol / l, preferably from 5 to 25 mmol.
If it exceeds l, dissolution in a solvent becomes difficult. In the present invention, the product obtained by the hydrogenation reaction of carbon dioxide is mainly methanol, methane or carbon monoxide,
Ethane and the like are obtained as by-products. By changing the reaction conditions such as the reaction temperature, the reaction time, or the type of the iodine compound, the amount of methanol, methane, or carbon monoxide produced as the product can be increased. Hereinafter, examples of the present invention will be described.

【0014】[0014]

【実施例】【Example】

実施例1 100ml-オートクレーブ中に、Ru3(CO)12(0.2mmol) 、溶
媒(20ml)及びヨウ素化合物(10mmol)を仕込み、炭酸
ガス/水素(1:3)混合ガスを室温で80atm圧入した
後、所定温度で3時間反応を行った。溶媒としては、N
−メチルピロリドン(NMP)、N−エチルピロリドン
(NEP)あるいは1,3−ジメチルイミダゾリジノン
(DMI)を用い、ヨウ素化合物としてはヨウ素、KI、
NaI 、LiI、 ZnI2 を用いた。I/Ruの比は17である。生
成物の分析は、反応ガスおよび反応液をガスクロマトグ
ラフィーを用いて定量することにより行った。結果を表
1に示す。
Example 1 A 100 ml autoclave was charged with Ru 3 (CO) 12 (0.2 mmol), a solvent (20 ml) and an iodine compound (10 mmol), and a mixed gas of carbon dioxide / hydrogen (1: 3) was injected at 80 atm at room temperature. Thereafter, the reaction was performed at a predetermined temperature for 3 hours. As the solvent, N
-Methylpyrrolidone (NMP), N-ethylpyrrolidone (NEP) or 1,3-dimethylimidazolidinone (DMI), and the iodine compound is iodine, KI,
NaI, LiI, the ZnI 2 was used. The I / Ru ratio is 17. The product was analyzed by quantifying the reaction gas and the reaction solution using gas chromatography. Table 1 shows the results.

【0015】 [0015]

【0016】表1から明らかなとおり、ヨウ素化合物の
種類及び反応温度を変化させることにより、メタノー
ル、メタンあるいは一酸化炭素の生成物中における生成
量を増加させることができる。例えば、ヨウ素化合物と
してヨウ化カリウムあるいはヨウ化ナトリウム等のアル
カリ金属塩を用い、 240℃で反応させたときにはメタノ
ールが主生成物として得られるが、同様の反応を 200℃
で行った場合には、一酸化炭素が主生成物となる。ま
た、ヨウ化亜鉛を用いた場合には、 240℃でも一酸化炭
素が主生成物となる一方、ヨウ素を添加した場合には、
メタンが主として生成した。この場合にもルテニウム触
媒は金属に分解しておらず、均一系で反応が進行してい
ると考えられる。従って、ルテニウム金属による不均一
系でのメタンの生成とは異なる反応である。
As is clear from Table 1, the amount of methanol, methane or carbon monoxide in the product can be increased by changing the type of iodine compound and the reaction temperature. For example, when an alkali metal salt such as potassium iodide or sodium iodide is used as an iodine compound and reacted at 240 ° C., methanol is obtained as a main product.
When carried out in the above, carbon monoxide is the main product. In addition, when zinc iodide is used, carbon monoxide is a main product even at 240 ° C., while when iodine is added,
Methane was mainly produced. Also in this case, the ruthenium catalyst is not decomposed into metal, and it is considered that the reaction proceeds in a homogeneous system. Therefore, it is a different reaction from the formation of methane in a heterogeneous system by ruthenium metal.

【0017】実施例2 実施例1と同様の反応を行った。ただし、溶媒としてN
MPを、ヨウ素化合物としてヨウ化カリウムを用い、反
応時間を変化させて行った。結果を図1に示す。反応開
始後30分の時点では、一酸化炭素が主生成物として10.2
mmolの収率で得られ、メタノール(7.4mmol)と少量のメ
タンの生成が認められた。反応時間が1.5時間より長い
場合には、メタノールが主生成物として得られるが、反
応時間が長くなるに従ってメタンの生成量が増大した。
このように各生成物は逐次反応により生成していると考
えられるので、反応時間を適当に設定することにより、
生成物の比率を変化させることができる。
Example 2 The same reaction as in Example 1 was carried out. However, as a solvent, N
MP was performed using potassium iodide as an iodine compound and changing the reaction time. The results are shown in FIG. At 30 minutes after the start of the reaction, carbon monoxide was 10.2 as the main product.
It was obtained in a yield of mmol, and formation of methanol (7.4 mmol) and a small amount of methane was observed. When the reaction time was longer than 1.5 hours, methanol was obtained as the main product, but the amount of methane produced increased as the reaction time increased.
Thus, since each product is considered to have been generated by successive reactions, by appropriately setting the reaction time,
The ratio of the products can be varied.

【0018】[0018]

【発明の効果】以上述べたとおり本発明によれば、火力
発電所やセメント工場から大量に排出される炭酸ガスか
ら燃料や化学合成原料として有用なメタノール、メタン
あるいは一酸化炭素を製造することができる。本発明に
おける触媒は、従来の不均一系の触媒と異なり溶媒に可
溶なので、温度制御が容易な液相反応で使用できると云
う大きな利点がある。
As described above, according to the present invention, it is possible to produce methanol, methane or carbon monoxide, which is useful as a fuel or a raw material for chemical synthesis, from a large amount of carbon dioxide gas discharged from a thermal power plant or a cement plant. it can. The catalyst according to the present invention is soluble in a solvent unlike conventional heterogeneous catalysts, and thus has a great advantage that it can be used in a liquid phase reaction in which temperature control is easy.

【0019】また、反応条件を変化させることにより、
必要に応じて主生成物をメタノール、メタンあるいは一
酸化炭素とすることができるため、プロセスとしてのフ
レキシビリティーが高いという特長を有する。
Also, by changing the reaction conditions,
Since the main product can be methanol, methane or carbon monoxide as required, it has the advantage of high process flexibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ru3(CO)12−ヨウ化カリウム触媒、NMP溶媒
を用いたときの反応時間とメタン生成量との関係を示す
図である。
FIG. 1 is a diagram showing the relationship between the reaction time and the amount of methane generated when a Ru 3 (CO) 12 -potassium iodide catalyst and an NMP solvent are used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C07C 31/04 C07C 31/04 // C07B 61/00 300 C07B 61/00 300 C10G 2/00 C10G 2/00 (73)特許権者 000000974 川崎重工業株式会社 兵庫県神戸市中央区東川崎町3丁目1番 1号 (73)特許権者 000156961 関西熱化学株式会社 兵庫県尼崎市大浜町2丁目23番地 (73)特許権者 000001199 株式会社神戸製鋼所 兵庫県神戸市中央区脇浜町1丁目3番18 号 (73)特許権者 000005887 三井化学株式会社 東京都千代田区霞が関三丁目2番5号 (74)上記7名の代理人 100066865 弁理士 小川 信一 (外2名) (72)発明者 佐々木 義之 茨城県つくば市小野川16番3 工業技術 院資源環境技術総合研究所内 (72)発明者 斎藤 昌弘 茨城県つくば市小野川16番3 工業技術 院資源環境技術総合研究所内 (72)発明者 富永 健一 茨城県つくば市小野川16番3 工業技術 院資源環境技術総合研究所内 (72)発明者 渡辺 大器 東京都港区西新橋2−8−11 第7東洋 海事ビル8F財団法人 地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 (72)発明者 河井 基益 東京都港区西新橋2−8−11 第7東洋 海事ビル8F財団法人 地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 (72)発明者 武内 正己 東京都港区西新橋2−8−11 第7東洋 海事ビル8F財団法人 地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 (72)発明者 金井 勇樹 東京都港区西新橋2−8−11 第7東洋 海事ビル8F財団法人 地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 (72)発明者 守屋 圭子 東京都港区西新橋2−8−11 第7東洋 海事ビル8F財団法人 地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 (72)発明者 角本 輝充 東京都港区西新橋2−8−11 第7東洋 海事ビル8F財団法人 地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 審査官 西川 和子 (56)参考文献 特開 昭62−63535(JP,A) 特開 昭56−154422(JP,A) 特開 平4−124152(JP,A) 特開 平6−234677(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 29/156 C07C 29/157 C01B 31/18 C07C 1/12 C07C 31/04 C07B 61/00 300 ────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C07C 31/04 C07C 31/04 // C07B 61/00 300 C07B 61/00 300 C10G 2/00 C10G 2/00 (73) Patent Authority 000000974 Kawasaki Heavy Industries, Ltd. 3-1-1, Higashi-Kawasaki-cho, Chuo-ku, Kobe-shi, Hyogo (73) Patent holder 000156961 Kansai Thermochemical Co., Ltd. 2--23, Ohama-cho, Amagasaki-shi, Hyogo (73) Patent holder 000001199 Kobe Steel, Ltd. 1-3-18, Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo (73) Patent holder 000005887 Mitsui Chemicals, Inc. 3-5-2, Kasumigaseki, Chiyoda-ku, Tokyo (74) The above seven agents 100066865 Patent Attorney Shinichi Ogawa (2 outside) (72) Inventor Yoshiyuki Sasaki 16-3 Onogawa Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Akiya Masahiro Saito 16-3 Onogawa, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Kenichi Tominaga 16-3 Onogawa, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Daiki Watanabe 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F Foundation for Research Institute of Global Environmental Institutions CO2 Fixation Project Room (72) Inventor Motoi Kawai Nishi-Shimbashi, Minato-ku, Tokyo 2-8-11 7th Oriental Maritime Building 8F Foundation for Research Institute of Innovative Technology for the Earth, CO2 Fixation Project Room (72) Inventor Masaki Takeuchi 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7th Toyo Maritime Building 8F Foundation for Research on Global Environmental Industry and Technology Project Room for CO2 fixation etc. (72) Inventor Yuki Kanai 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F Foundation for Global Environmental Industry and Technology Research Organization Professionals such as CO2 fixation Project Room (72) Inventor Keiko Moriya 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F Global Environmental Industry Research Institute, Inc. Project Room for CO2 Fixation etc. (72) Inventor's Corner Terumitsu Hon 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 8th Oriental Maritime Building 8F Kazuko Nishikawa, Inspector, Project Room for CO2 Fixation, etc. Project for Global Environmental Industrial Technology Research Organization (56) References JP-A-62-63535 (JP, a) JP Akira 56-154422 (JP, a) JP flat 4-124152 (JP, a) JP flat 6-234677 (JP, a) (58 ) investigated the field (Int.Cl. 7 , DB name) C07C 29/156 C07C 29/157 C01B 31/18 C07C 1/12 C07C 31/04 C07B 61/00 300

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ルテニウムカルボニル錯体とヨウ素化合
物との組合せからなる均一系液相反応触媒の存在下に炭
酸ガスを水素化して、メタノール、メタンおよび一酸化
炭素等を製造することを特徴とする炭酸ガス接触水素化
法。
1. A method for producing methanol, methane and carbon monoxide by hydrogenating carbon dioxide in the presence of a homogeneous liquid phase reaction catalyst comprising a combination of a ruthenium carbonyl complex and an iodine compound. Gas catalytic hydrogenation.
【請求項2】 前記ヨウ素化合物がヨウ素、アルカリ金
属ヨウ化物、アルカリ土類金属ヨウ化物および遷移金属
ヨウ化物からなる群から選ばれた少なくとも1種である
請求項1記載の方法。
2. The method according to claim 1, wherein the iodine compound is at least one selected from the group consisting of iodine, alkali metal iodide, alkaline earth metal iodide and transition metal iodide.
JP05227293A 1993-03-12 1993-03-12 CO2 catalytic hydrogenation Expired - Lifetime JP3146216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05227293A JP3146216B2 (en) 1993-03-12 1993-03-12 CO2 catalytic hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05227293A JP3146216B2 (en) 1993-03-12 1993-03-12 CO2 catalytic hydrogenation

Publications (2)

Publication Number Publication Date
JPH06263665A JPH06263665A (en) 1994-09-20
JP3146216B2 true JP3146216B2 (en) 2001-03-12

Family

ID=12910151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05227293A Expired - Lifetime JP3146216B2 (en) 1993-03-12 1993-03-12 CO2 catalytic hydrogenation

Country Status (1)

Country Link
JP (1) JP3146216B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912240B2 (en) 2013-02-22 2014-12-16 Eastman Chemical Company Production of methanol and ethanol from CO or CO2
KR102292182B1 (en) 2019-07-05 2021-08-20 이범진 Aerial lifting device for spoon set

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2443222C (en) 2001-04-13 2009-09-15 Co2 Solution Inc. A process and a plant for the production of portland cement clinker
JP5392812B2 (en) * 2007-10-30 2014-01-22 国立大学法人富山大学 Catalyst for hydrogen reduction of carbon dioxide and method for hydrogen reduction of carbon dioxide
JP5562873B2 (en) * 2011-01-05 2014-07-30 東京瓦斯株式会社 Method for synthesizing methane from carbon dioxide and hydrogen
JP6579561B2 (en) * 2015-12-01 2019-09-25 国立研究開発法人産業技術総合研究所 Process for producing methanol from carbon dioxide and hydrogen gas in aqueous media in homogeneous catalytic reactions
CN112645797B (en) * 2019-10-12 2023-05-26 中国石油化工股份有限公司 Process for synthesizing methanol by carbon dioxide-carbon-water
JP2021191732A (en) * 2020-06-05 2021-12-16 三菱マテリアル株式会社 Method of producing valuables from exhaust from cement production
WO2021246316A1 (en) * 2020-06-04 2021-12-09 三菱マテリアル株式会社 Method for producing valuable substances from cement production exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912240B2 (en) 2013-02-22 2014-12-16 Eastman Chemical Company Production of methanol and ethanol from CO or CO2
KR102292182B1 (en) 2019-07-05 2021-08-20 이범진 Aerial lifting device for spoon set

Also Published As

Publication number Publication date
JPH06263665A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
Collin et al. Electrocatalytic properties of (tetraazacyclotetradecane) nickel (2+) and Ni2 (biscyclam) 4+ with respect to carbon dioxide and water reduction
Sánchez-Sánchez et al. Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation
Sen et al. Homogeneous Hydrogenation of CO2 and CO to methanol: The renaissance of low‐temperature catalysis in the context of the methanol economy
CN112221528A (en) Monoatomic catalyst, preparation method and application thereof
JP3146216B2 (en) CO2 catalytic hydrogenation
CN113416316B (en) MOFs-zinc material and preparation method and application thereof
Tagawa et al. Improvement of kinetics of ammonia synthesis at ambient pressure by the chemical looping process of lithium hydride
Wu et al. Integrated tandem electrochemical‐chemical‐electrochemical coupling of biomass and nitrate to sustainable alanine
CN111185209B (en) Preparation of molybdenum carbide supported nickel-based catalyst and application of catalyst in preparation of ethanol by hydrogenation of carbon dioxide
WO2016133213A1 (en) Ammonia synthesis catalyst and method for producing same
CN112023934B (en) Preparation method of copper-indium bimetallic monatomic catalyst
EP3260198A1 (en) Ammonia synthesis catalyst and method for producing same
US20140219911A1 (en) Dihydroxybipyridine complexes of ruthenium and iridium for water oxidation and hydrogenation
Kuznetsov et al. Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid
JP2545734B2 (en) Hydrocarbon producing catalyst and hydrocarbon producing method
CN112774670A (en) Application of rhodium monatomic catalyst in reaction for preparing m-chloroaniline through selective hydrogenation of m-chloronitrobenzene
CN115584527A (en) Preparation method and application of mesoporous palladium-copper nano catalyst for producing ammonia by nitrate reduction
JPH07157304A (en) Production of carbon monoxide
CN114622239A (en) PdCu-Ni (OH)2Catalyst, preparation method and application in electrocatalytic synthesis of urea
Ogura Mediated reduction of CO and CO2 to methanol by surface-confined metal complexes in the presence of homogeneous catalysts
WO2009129325A2 (en) Hydrogenolysis processes and hydrogenolysis catalyst preparation methods
JPH0748299A (en) Production of ethanol
JP3081878B2 (en) Method for producing carbon monoxide and glycols
CN113713810A (en) Aluminum trioxide-ruthenium gallium indium liquid alloy composite catalyst and preparation method and application thereof
Li et al. Driving electrochemical organic hydrogenations on metal catalysts by tailoring hydrogen surface coverages

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term