JPH0748299A - Production of ethanol - Google Patents

Production of ethanol

Info

Publication number
JPH0748299A
JPH0748299A JP5193506A JP19350693A JPH0748299A JP H0748299 A JPH0748299 A JP H0748299A JP 5193506 A JP5193506 A JP 5193506A JP 19350693 A JP19350693 A JP 19350693A JP H0748299 A JPH0748299 A JP H0748299A
Authority
JP
Japan
Prior art keywords
iodine
ruthenium
ethanol
reaction
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5193506A
Other languages
Japanese (ja)
Other versions
JP3614449B2 (en
Inventor
Kenichi Tominaga
健一 富永
Masahiro Saito
昌弘 斉藤
Yoshiyuki Sasaki
義之 佐々木
Daiki Watanabe
大器 渡辺
Masami Takeuchi
正己 武内
Terumitsu Kakumoto
輝充 角本
Yuuki Kanai
勇樹 金井
Keiko Moriya
圭子 守屋
Yasunosuke Hagiwara
康之輔 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Sumitomo Metal Mining Co Ltd
Kawasaki Heavy Industries Ltd
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Mitsui Toatsu Chemicals Inc
National Institute of Advanced Industrial Science and Technology AIST
Osaka Gas Co Ltd
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Sumitomo Metal Mining Co Ltd
Agency of Industrial Science and Technology
Kawasaki Heavy Industries Ltd
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Mitsui Toatsu Chemicals Inc
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Sumitomo Metal Mining Co Ltd, Agency of Industrial Science and Technology, Kawasaki Heavy Industries Ltd, Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd, Mitsui Toatsu Chemicals Inc, Osaka Gas Co Ltd filed Critical CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Priority to JP19350693A priority Critical patent/JP3614449B2/en
Publication of JPH0748299A publication Critical patent/JPH0748299A/en
Application granted granted Critical
Publication of JP3614449B2 publication Critical patent/JP3614449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce ethanol by hydrogenating carbon dioxide in a liquid phase in the presence of a catalyst. CONSTITUTION:This method for producing ethanol is characterized by hydrogenating carbon dioxide in a solvent in the presence of a ruthenium carbonyl complex, a cobalt carbonyl complex and iodine or an iodine compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭酸ガスの水素化による
エタノールの製造方法に関するものであり、詳細にはル
テニウムカルボニル錯体、コバルトカルボニル錯体及び
ヨウ素またはヨウ素化合物の存在下、溶媒中で炭酸ガス
を水素化することによりエタノールを製造する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ethanol by hydrogenation of carbon dioxide gas, and more particularly to the production of carbon dioxide gas in a solvent in the presence of a ruthenium carbonyl complex, a cobalt carbonyl complex and iodine or an iodine compound. The present invention relates to a method for producing ethanol by hydrogenating.

【0002】[0002]

【従来の技術】炭酸ガスを水素化してメタノール、メタ
ン、一酸化炭素等を製造する方法においては、各種金属
及び金属酸化物等を触媒として使用することが有効であ
る旨知られている(例えば、荒川裕則、触媒、31, 558,
1989 )。また、炭酸ガスの水素化によるエタノールや
高級アルコールの製造に関しても、メタノール製造用触
媒を各種の金属や金属酸化物等で修飾したものを触媒と
して使用することが有効である旨報告されている(例え
ば、T. Tatsumi et al., Chem. Lett., 593, 1985)。こ
れらの金属触媒または金属酸化物触媒を用いた炭酸ガス
の水素化反応は、反応物質(気体)と触媒(固体)とが
相を異にする不均一系反応であり、かつ多量の発熱を伴
う発熱反応である。この様に多量の発熱を伴う気固不均
一系反応の場合には、反応器の温度制御が難しく、特に
大型の反応器を用いて目的物質を大量に製造したい場合
にはこの方法を用いることは困難であると考えられてい
る。
2. Description of the Related Art It is known that it is effective to use various metals and metal oxides as catalysts in a method for producing methanol, methane, carbon monoxide or the like by hydrogenating carbon dioxide gas (for example, for example, , Arakawa Hironori, Catalyst, 31 , 558,
1989). Also, regarding the production of ethanol and higher alcohols by hydrogenation of carbon dioxide, it is reported that it is effective to use a catalyst for methanol production modified with various metals or metal oxides as a catalyst ( For example, T. Tatsumi et al., Chem. Lett., 593, 1985). The hydrogenation reaction of carbon dioxide gas using these metal catalysts or metal oxide catalysts is a heterogeneous reaction in which the reactant (gas) and the catalyst (solid) have different phases and is accompanied by a large amount of heat generation. It is an exothermic reaction. In the case of a gas-solid heterogeneous reaction involving a large amount of heat generation, it is difficult to control the temperature of the reactor, and this method should be used especially when a large amount of the target substance is to be produced using a large reactor. Are considered difficult.

【0003】この様な問題を解決するために、炭酸ガス
の水素化反応において、遷移金属錯体を溶媒に溶解した
ものを触媒として用い、液相で均一系の反応を行うこと
が考えられる。実際にこの様な反応によって、ギ酸、ギ
酸アミド、ギ酸エステル(例えば、Darensbourg, Chemt
ech, 636, 1985) 、メタノール、メタン及び一酸化炭素
(特願平5−52272号)が得られているが、エタノ
ールについてはまだ得られていない。
In order to solve such a problem, it is considered that in the hydrogenation reaction of carbon dioxide gas, a solution of a transition metal complex dissolved in a solvent is used as a catalyst to carry out a homogeneous reaction in a liquid phase. In fact, such reactions allow formic acid, formic acid amides, formic acid esters (eg, Darensbourg, Chemt.
ech, 636, 1985), methanol, methane and carbon monoxide (Japanese Patent Application No. 5-52272), but ethanol has not yet been obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の状況
に鑑みて行われたものであり、その目的は均一系反応に
よって効率よくエタノールを製造する方法を提供するこ
とにある。
The present invention has been made in view of the above situation, and an object thereof is to provide a method for efficiently producing ethanol by a homogeneous reaction.

【0005】[0005]

【課題を解決するための手段】本発明のエタノールの製
造方法は、ルテニウムカルボニル錯体、コバルトカルボ
ニル錯体、及びヨウ素またはヨウ素化合物の存在下、溶
媒中で炭酸ガスを水素化することに要旨を有する。
The method for producing ethanol of the present invention is characterized in that carbon dioxide gas is hydrogenated in a solvent in the presence of a ruthenium carbonyl complex, a cobalt carbonyl complex, and iodine or an iodine compound.

【0006】[0006]

【作用】本発明では、触媒作用を有するものとしてルテ
ニウムカルボニル錯体及びコバルトカルボニル錯体の遷
移金属錯体、並びにヨウ素またはヨウ素化合物が用いら
れる。
In the present invention, a transition metal complex such as a ruthenium carbonyl complex and a cobalt carbonyl complex, and iodine or an iodine compound is used as a substance having a catalytic action.

【0007】上記ルテニウムカルボニル錯体は特に限定
されず、配位子としては一酸化炭素以外にハロゲン化物
イオン、水素化物イオン、ホスフィン類等が用いられ
る。この様な錯体の例として、例えばRu(CO)5
Ru3 (CO)12等の様に一酸化炭素のみを含有する錯
体;例えばRu24 (CO)12等の様にヨウ素を含有
する錯体;Ru44 (CO)12等の様に水素を含有す
る錯体;例えばRu(CO)2 (PPh33 等の様に
ホスフィン類を含有する錯体等が挙げられ、好ましくは
Ru3 (CO)12が挙げられる。
The ruthenium carbonyl complex is not particularly limited, and as the ligand, halide ion, hydride ion, phosphine and the like are used other than carbon monoxide. Examples of such complexes include, for example, Ru (CO) 5 ,
Complexes containing only carbon monoxide such as Ru 3 (CO) 12 ; complexes containing iodine such as Ru 2 I 4 (CO) 12 ; such as Ru 4 H 4 (CO) 12 A complex containing hydrogen; a complex containing a phosphine such as Ru (CO) 2 (PPh 3 ) 3 and the like can be mentioned, and Ru 3 (CO) 12 is preferable.

【0008】上記コバルトカルボニル錯体についても特
に限定されず、配位子としては一酸化炭素以外にハロゲ
ン化物イオン、水素化物イオン、ホスフィン類等が用い
られる。この様な錯体の例として、例えばCo2 (C
O)8 、Co4 (CO)12等の様に一酸化炭素のみを含
有する錯体;例えばHCo(CO)5 等の様に水素を含
有する錯体;例えばCo2 (CO)6 (PPh32
の様にホスフィン類を含有する錯体等が挙げられ、好ま
しくはCo2 (CO)8 が挙げられる。ルテニウム錯体
及びコバルト錯体は上述の様に夫々別のものを用いても
よいが、ルテニウムとコバルトとの混合錯体を用いる場
合も本発明に包含される。この様な錯体の例として、例
えばCo3 RuH(CO)12等の様に一酸化炭素と水素
を含有する錯体等が挙げられる。
The cobalt carbonyl complex is also not particularly limited, and as the ligand, halide ions, hydride ions, phosphines and the like can be used in addition to carbon monoxide. Examples of such a complex include Co 2 (C
O) 8 , Co 4 (CO) 12, etc. containing only carbon monoxide; for example HCo (CO) 5 etc. containing hydrogen; for example Co 2 (CO) 6 (PPh 3 ) Examples thereof include complexes containing phosphines such as 2 , and Co 2 (CO) 8 is preferable. As the ruthenium complex and the cobalt complex, different ones may be used as described above, but the present invention also includes the case where a mixed complex of ruthenium and cobalt is used. Examples of such a complex include a complex containing carbon monoxide and hydrogen, such as Co 3 RuH (CO) 12 .

【0009】エタノールの生成量を高めるためにはコバ
ルト/ルテニウムの原子比は0.1〜10であることが
好ましく、より好ましくは0.5〜3、最も好ましくは
0.9〜1.1である。コバルト/ルテニウムの原子比
が0.1未満の場合にはエタノールの収率が悪くなり、
一方10を超えると炭酸ガスの水素化反応が進行しな
い。
In order to increase the amount of ethanol produced, the atomic ratio of cobalt / ruthenium is preferably 0.1-10, more preferably 0.5-3, most preferably 0.9-1.1. is there. When the atomic ratio of cobalt / ruthenium is less than 0.1, the yield of ethanol becomes poor,
On the other hand, when it exceeds 10, the hydrogenation reaction of carbon dioxide does not proceed.

【0010】上記ヨウ素化合物は特に限定されず、例え
ばKI、NaI、LiI等のアルカリ金属ヨウ化物、例
えばCaI2 、MgI2 等のアルカリ土類金属ヨウ化
物、例えばZnI2 、CdI2 等の遷移金属ヨウ化物等
の金属ヨウ化物;例えばHIO、HIO3 等の酸化物;
例えばICl、IBr等のハロゲン間化合物等が用いら
れ、好ましくはKI、NaI、LiIが用いられ、より
好ましくはNaIが用いられる。これらのヨウ素及びヨ
ウ素化合物は、単独で用いてもよく、あるいは2種以上
を混合して用いてもよい。
[0010] The iodine compound is not particularly limited, for example KI, NaI, alkali metal iodides such as LiI, e.g. CaI 2, MgI 2 such as alkaline earth metal iodides, for example ZnI 2, CdI 2 such as a transition metal Metal iodides such as iodides; oxides such as HIO, HIO 3 ;
For example, interhalogen compounds such as ICl and IBr are used, preferably KI, NaI and LiI are used, and more preferably NaI is used. These iodine and iodine compounds may be used alone or in combination of two or more.

【0011】ヨウ素またはヨウ素化合物/ルテニウムの
原子比は1〜50であることが好ましく、5〜10であ
ることがより好ましい。一方、ヨウ素またはヨウ素化合
物/コバルトの原子比は1〜50であることが好まし
く、5〜10であることがより好ましい。これらの比率
が上記範囲未満の場合には、ルテニウムまたはコバルト
が金属として析出するため反応率が低下し、一方上記範
囲を超えるとエタノールの代わりにメタン等の副生物の
量が増加するため好ましくない。
The atomic ratio of iodine or iodine compound / ruthenium is preferably 1 to 50, more preferably 5 to 10. On the other hand, the atomic ratio of iodine or iodine compound / cobalt is preferably 1 to 50, and more preferably 5 to 10. If these ratios are less than the above range, the reaction rate decreases because ruthenium or cobalt precipitates as a metal, while if it exceeds the above range, the amount of by-products such as methane instead of ethanol increases, which is not preferable. .

【0012】これらの触媒は予め反応系外で上述した範
囲内の比率となる様に溶媒に溶解し、その後反応系に加
えてもよいが、反応容器に触媒と溶媒を直接供給して均
一な液相反応触媒とした方が操作上便利である。
These catalysts may be dissolved in a solvent in advance in a ratio within the above range outside the reaction system and then added to the reaction system, but the catalyst and the solvent may be directly supplied to the reaction vessel to obtain a uniform mixture. The liquid phase reaction catalyst is more convenient in operation.

【0013】本発明に用いられる溶媒としては、例えば
Nーメチルピロリドン(NMP)、N−エチルピロリド
ン(NEP)、1,3−ジメチルイミダゾリジノン(D
MI)、テトラメチル尿素(TMU)等の極性の非プロ
トン性溶媒が挙げられ、好ましくはDMIが挙げられ
る。
Examples of the solvent used in the present invention include N-methylpyrrolidone (NMP), N-ethylpyrrolidone (NEP) and 1,3-dimethylimidazolidinone (D
Examples thereof include polar aprotic solvents such as MI) and tetramethylurea (TMU), and preferably DMI.

【0014】ルテニウムカルボニル錯体及びコバルトカ
ルボニル錯体の濃度は、好ましくは溶媒1L当たり1〜
100mmolであり、より好ましくは5〜25mmo
lである。1mmol/L未満では反応が進行しにく
く、一方100mmol/Lを超えると溶媒に溶解しに
くくなるため好ましくない。
The concentration of the ruthenium carbonyl complex and the cobalt carbonyl complex is preferably 1 to 1 L of the solvent.
100 mmol, more preferably 5 to 25 mmo
It is l. If it is less than 1 mmol / L, the reaction is difficult to proceed, while if it exceeds 100 mmol / L, it is difficult to dissolve in the solvent, which is not preferable.

【0015】ヨウ素及びヨウ素化合物の濃度は、好まし
くは溶媒1L当たり100〜2000mmolである。
これらは、上記遷移金属錯体が分解してルテニウム及び
コバルトが金属として析出するのを防ぐ作用を有する。
これらの金属が析出すると、反応が不均一系触媒反応と
して進行することになり、副生成物としてメタンが多量
に生成したり、発熱反応が進行して反応器の温度制御が
困難になる等の問題が生じるため、好ましくない。
The concentration of iodine and iodine compound is preferably 100 to 2000 mmol per 1 L of the solvent.
These have an action of preventing the above transition metal complex from decomposing and depositing ruthenium and cobalt as metal.
When these metals are deposited, the reaction proceeds as a heterogeneous catalytic reaction, a large amount of methane is produced as a by-product, and an exothermic reaction proceeds to make temperature control of the reactor difficult. This is not preferable because it causes problems.

【0016】本発明の方法によれば、上記ルテニウムカ
ルボニル錯体、コバルトカルボニル錯体及びヨウ素また
はヨウ素化合物の触媒をNーメチルピロリドン等の極性
の非プロトン性溶媒に溶解し、炭酸ガス及び水素の加圧
下で加熱することによってエタノールが製造される。
According to the method of the present invention, the ruthenium carbonyl complex, the cobalt carbonyl complex and the catalyst of iodine or an iodine compound are dissolved in a polar aprotic solvent such as N-methylpyrrolidone and the mixture is pressurized with carbon dioxide gas and hydrogen. Ethanol is produced by heating at.

【0017】炭酸ガスと水素の容積比(CO2 /H2
は0.1〜1とすることが好ましく、容積比が0.1未
満の場合は、ルテニウムカルボニル錯体及びコバルトカ
ルボニル錯体が分解して金属ルテニウム及び金属コバル
トが析出し易く、一方容積比が1を超えると反応率が低
下するため、推奨できない。反応時における炭酸ガスと
水素の全圧は1〜1000気圧であることが好ましく、
より好ましくは50〜300気圧である。反応温度は1
50〜300℃であることが好ましく、より好ましくは
170〜210℃である。150℃未満では反応が進行
しにくく、一方300℃を超えるとルテニウムカルボニ
ル錯体及びコバルトカルボニル錯体が分解して金属ルテ
ニウム及び金属コバルトが析出するため好ましくない。
Volume ratio of carbon dioxide and hydrogen (CO 2 / H 2 )
Is preferably 0.1 to 1. When the volume ratio is less than 0.1, the ruthenium carbonyl complex and the cobalt carbonyl complex are easily decomposed to precipitate metal ruthenium and metal cobalt, while the volume ratio is 1 or less. If it exceeds the limit, the reaction rate will decrease and it is not recommended. The total pressure of carbon dioxide gas and hydrogen during the reaction is preferably 1 to 1000 atm,
The pressure is more preferably 50 to 300 atm. Reaction temperature is 1
The temperature is preferably 50 to 300 ° C, more preferably 170 to 210 ° C. If the temperature is lower than 150 ° C., the reaction is difficult to proceed, whereas if the temperature exceeds 300 ° C., the ruthenium carbonyl complex and the cobalt carbonyl complex are decomposed to deposit metal ruthenium and metal cobalt, which is not preferable.

【0018】好適な実施態様では、上記反応はメタノー
ルの存在下で行われる。メタノールは本発明では反応中
間体として作用し、エタノールへの転換反応に利用され
る結果、エタノールの生成量が増加することが期待され
る。本発明に用いられるメタノールの濃度は1mol/
Lであることが好ましい。以下に実施例を挙げて本発明
をさらに詳細に説明するが、これは代表的例示を示すた
めのものであり、本発明を制限する主旨ではない。
In a preferred embodiment, the above reaction is carried out in the presence of methanol. In the present invention, methanol acts as a reaction intermediate and is used in the conversion reaction into ethanol, and as a result, it is expected that the amount of ethanol produced will increase. The concentration of methanol used in the present invention is 1 mol /
It is preferably L. Hereinafter, the present invention will be described in more detail with reference to Examples, but this is for the purpose of showing representative exemplification, and is not intended to limit the present invention.

【0019】[0019]

【実施例】【Example】

(実施例1〜7)実施例1〜6では、100mL容のオ
ートクレーブ中に、溶媒(20mL)、表1に示す所定
量のRu3 (CO)12、Co2 (CO)8 (これらはい
ずれもRu及びCoのmmol数として表わす)、ヨウ
素(5mmol)またはヨウ素化合物(10mmol)
を仕込み、炭酸ガス20気圧、水素ガス100気圧を室
温で圧入した後、30℃で15時間反応を行った。溶媒
としては、NMPまたはDMIを用いた。実施例7で
は、予めメタノール(20mmol)を加えた後、実施
例2と同様の反応を行った。なお、実施例1〜7では、
錯体中のルテニウムとコバルトの合計量は全て0.12
mmolと一定にした。これらの反応により得られた生
成物を、ガスクロマトグラフィーにより定量分析した。
その結果を表1に示す。
(Examples 1 to 7) In Examples 1 to 6, in a 100 mL autoclave, a solvent (20 mL), a predetermined amount of Ru 3 (CO) 12 , and Co 2 (CO) 8 shown in Table 1 (these are either Is also expressed as mmol number of Ru and Co), iodine (5 mmol) or iodine compound (10 mmol)
After charging carbon dioxide gas at 20 atm and hydrogen gas at 100 atm at room temperature, the reaction was carried out at 30 ° C. for 15 hours. NMP or DMI was used as a solvent. In Example 7, after adding methanol (20 mmol) in advance, the same reaction as in Example 2 was performed. In addition, in Examples 1 to 7,
The total amount of ruthenium and cobalt in the complex is 0.12
It was kept constant at mmol. The products obtained by these reactions were quantitatively analyzed by gas chromatography.
The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】いずれの実施例においてもルテニウム錯体
およびコバルト錯体は金属に分解しておらず、均一な液
相で反応が進行していることが確認された。またエタノ
ールの生成量を増加させるためには、下記の条件を満た
すことが好ましいことがわかった。
In each of the examples, it was confirmed that the ruthenium complex and cobalt complex were not decomposed into metal, and the reaction proceeded in a uniform liquid phase. Further, it has been found that the following conditions are preferable to increase the production amount of ethanol.

【0022】1)コバルト/ルテニウムの原子比につい
て:実施例1、2及び3を比較すると、コバルト/ルテ
ニウムの原子比が0.5から1へ増加するに従ってエタ
ノールの生成量も増加する(実施例1から2)が、コバ
ルト/ルテニウムの原子比が1から2に増加すると逆に
エタノールの生成量は減少する(実施例2から3)。こ
のことから、コバルト/ルテニウムの原子比を1近傍に
すると、エタノールの生成量が最も多くなることがわか
る。
1) Regarding the atomic ratio of cobalt / ruthenium: When Examples 1, 2 and 3 are compared, the amount of ethanol produced increases as the atomic ratio of cobalt / ruthenium increases from 0.5 to 1 (Examples). However, when the atomic ratio of cobalt / ruthenium is increased from 1 to 2, the amount of ethanol produced is decreased (Examples 2 to 3). From this, it is understood that when the cobalt / ruthenium atomic ratio is close to 1, the amount of ethanol produced is the largest.

【0023】2)ヨウ素またはヨウ素化合物の種類につ
いて:コバルト/ルテニウムの原子比を1にした場合に
おけるヨウ素またはヨウ素化合物の効果は、実施例2、
4及び5を対比することによって明らかになる通り、ヨ
ウ化カリウムやヨウ素よりもヨウ化ナトリウムを用いた
方がエタノールの生成量が増加している。
2) Regarding the type of iodine or iodine compound: The effect of iodine or iodine compound when the atomic ratio of cobalt / ruthenium is set to 1 is shown in Example 2,
As is clear from comparison between 4 and 5, the amount of ethanol produced is increased when sodium iodide is used rather than potassium iodide or iodine.

【0024】3)溶媒について:コバルト/ルテニウム
の原子比を1にした場合における使用溶媒の効果は実施
例2と6を対比することによって明らかになる。即ち、
溶媒としては、NMPよりもDMIを用いた方がエタノ
ールの生成量が増加することがわかる。
3) Solvent: The effect of the solvent used when the atomic ratio of cobalt / ruthenium was set to 1 becomes clear by comparing Examples 2 and 6. That is,
It can be seen that the amount of ethanol produced increases when DMI is used as the solvent rather than NMP.

【0025】4)メタノールの共存について:実施例2
と実施例7を比較すると、メタノールの存在下ではエタ
ノールの生成量が約2倍になり、エタノールの生成量が
増加することがわかる。
4) Coexistence of methanol: Example 2
Comparing Example 7 with Example 7, it can be seen that in the presence of methanol, the production amount of ethanol is approximately doubled, and the production amount of ethanol is increased.

【0026】[0026]

【発明の効果】本発明では、ルテニウムカルボニル錯
体、コバルトカルボニル錯体及びヨウ素またはヨウ素化
合物を溶媒に溶解させて用いているため、炭酸ガスの水
素化反応は全て均一に液相で行なわれる。従って、金属
触媒または金属酸化物触媒を用いた従来の不均一系触媒
反応の場合に比べて反応器の温度制御が容易となり、エ
タノールを効率よく製造することができる。さらに反応
に用いられる溶媒やヨウ素若しくはヨウ素化合物を選択
し、またメタノールを共存させることによってエタノー
ルの生成量を一層高めることも可能である。
INDUSTRIAL APPLICABILITY In the present invention, since the ruthenium carbonyl complex, the cobalt carbonyl complex and iodine or an iodine compound are used by dissolving them in a solvent, the hydrogenation reaction of carbon dioxide gas is uniformly carried out in the liquid phase. Therefore, the temperature of the reactor can be controlled more easily than in the case of the conventional heterogeneous catalytic reaction using a metal catalyst or a metal oxide catalyst, and ethanol can be efficiently produced. Further, it is possible to further increase the production amount of ethanol by selecting a solvent, iodine or an iodine compound used in the reaction and coexisting with methanol.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000000284 大阪瓦斯株式会社 大阪府大阪市中央区平野町四丁目1番2号 (71)出願人 000000974 川崎重工業株式会社 兵庫県神戸市中央区東川崎町3丁目1番1 号 (71)出願人 000156961 関西熱化学株式会社 兵庫県尼崎市大浜町2丁目23番地 (71)出願人 000003126 三井東圧化学株式会社 東京都千代田区霞が関三丁目2番5号 (71)出願人 000183303 住友金属鉱山株式会社 東京都港区新橋5丁目11番3号 (74)上記7名の代理人 弁理士 植木 久一 (72)発明者 富永 健一 茨城県つくば市小野川16−3 資源環境技 術総合研究所内 (72)発明者 斉藤 昌弘 茨城県つくば市小野川16−3 資源環境技 術総合研究所内 (72)発明者 佐々木 義之 茨城県つくば市小野川16−3 資源環境技 術総合研究所内 (72)発明者 渡辺 大器 東京都港区西新橋2−8−11 第7東洋海 事ビル8F 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 武内 正己 東京都港区西新橋2−8−11 第7東洋海 事ビル8F 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 角本 輝充 東京都港区西新橋2−8−11 第7東洋海 事ビル8F 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 金井 勇樹 東京都港区西新橋2−8−11 第7東洋海 事ビル8F 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 守屋 圭子 東京都港区西新橋2−8−11 第7東洋海 事ビル8F 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 萩原 康之輔 東京都港区西新橋2−8−11 第7東洋海 事ビル8F 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000000284 Osaka Gas Co., Ltd. 4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka (71) Applicant 000000974 Kawasaki Heavy Industries, Ltd. 3 Higashi-Kawasaki-cho, Chuo-ku, Kobe-shi, Hyogo 1-1-1 (71) Applicant 000156961 Kansai Thermochemical Co., Ltd. 2-23 Ohama-cho, Amagasaki-shi, Hyogo (71) Applicant 000003126 Mitsui Toatsu Chemical Co., Ltd. 3-5-2 Kasumigaseki, Chiyoda-ku, Tokyo ( 71) Applicant 000183303 Sumitomo Metal Mining Co., Ltd. 5-11-3 Shimbashi, Minato-ku, Tokyo (74) Attorney-at-law attorney Kuichi Ueki (72) Inventor Kenichi Tominaga 16-3 Onogawa, Tsukuba, Ibaraki Resource and Environmental Technology Research Laboratory (72) Inventor Masahiro Saito 16-3 Onogawa, Tsukuba, Ibaraki Prefecture Resource and Environmental Technology Research Laboratory (72) Inventor Sasaki Yoshiyuki 16-3 Onogawa, Tsukuba-shi, Ibaraki (72) Inventor Daiki Watanabe 2-8-11 Nishishimbashi, Nishishinbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building 8F Research Institute for Global Environmental Technology Organization CO2 Immobilization Project Room (72) Inventor Masami Takeuchi 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Kaijuku Building 8F Research Institute for Global Environmental Technology CO2 Immobilization Project Room (72) Inventor Terumitsu Kakumoto 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building 8F Research Institute for Global Environmental Science and Technology, CO2 immobilization project room (72) Inventor Yuki Kanai Nishi, Minato-ku, Tokyo 2-8-11 Shimbashi 7th Tokai Kaijuku Building 8F Research Institute for Global Environment and Industrial Technology CO2 fixation project room (72) Inventor Keiko Moriya 2-8-11 Nishishinbashi, Minato-ku, Tokyo 7th Tokai Building 8F Global Environmental Industrial Technology Research Institute CO2 Immobilization Project Room (72) Inventor Konosuke Hagiwara 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Kaiji Building 8F Institute for Global Environmental Technology Research CO2 Immobilization Project Room

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ルテニウムカルボニル錯体、コバルトカ
ルボニル錯体、及びヨウ素またはヨウ素化合物の存在
下、溶媒中で炭酸ガスを水素化することを特徴とするエ
タノールの製造方法。
1. A method for producing ethanol, which comprises hydrogenating carbon dioxide in a solvent in the presence of a ruthenium carbonyl complex, a cobalt carbonyl complex, and iodine or an iodine compound.
【請求項2】 メタノールの存在下で行われる請求項1
に記載の方法。
2. The method according to claim 1, which is carried out in the presence of methanol.
The method described in.
【請求項3】 前記ヨウ素化合物がアルカリ金属ヨウ化
物、アルカリ土類金属ヨウ化物及び遷移金属ヨウ化物よ
りなる群から選択される少なくとも一種である請求項1
または2に記載の方法。
3. The iodine compound is at least one selected from the group consisting of alkali metal iodides, alkaline earth metal iodides, and transition metal iodides.
Or the method described in 2.
【請求項4】 前記溶媒がNーメチルピロリドン、N−
エチルピロリドンまたは1,3−ジメチルイミダゾリジ
ノンである請求項1に記載の方法。
4. The solvent is N-methylpyrrolidone, N-
The method according to claim 1, which is ethylpyrrolidone or 1,3-dimethylimidazolidinone.
JP19350693A 1993-08-04 1993-08-04 Ethanol production method Expired - Lifetime JP3614449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19350693A JP3614449B2 (en) 1993-08-04 1993-08-04 Ethanol production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19350693A JP3614449B2 (en) 1993-08-04 1993-08-04 Ethanol production method

Publications (2)

Publication Number Publication Date
JPH0748299A true JPH0748299A (en) 1995-02-21
JP3614449B2 JP3614449B2 (en) 2005-01-26

Family

ID=16309191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19350693A Expired - Lifetime JP3614449B2 (en) 1993-08-04 1993-08-04 Ethanol production method

Country Status (1)

Country Link
JP (1) JP3614449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502840A (en) * 2003-08-21 2007-02-15 ピアースン テクノロジーズ, インコーポレイテッド Method and apparatus for preparing useful products derived from carbonaceous feedstock

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912240B2 (en) 2013-02-22 2014-12-16 Eastman Chemical Company Production of methanol and ethanol from CO or CO2

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502840A (en) * 2003-08-21 2007-02-15 ピアースン テクノロジーズ, インコーポレイテッド Method and apparatus for preparing useful products derived from carbonaceous feedstock
JP2007502835A (en) * 2003-08-21 2007-02-15 ピアースン テクノロジーズ, インコーポレイテッド Method and apparatus for preparing useful products derived from carbonaceous feedstock
JP4804352B2 (en) * 2003-08-21 2011-11-02 ピアースン テクノロジーズ, インコーポレイテッド Method and apparatus for preparing useful products derived from carbonaceous feedstock
JP4804351B2 (en) * 2003-08-21 2011-11-02 ピアースン テクノロジーズ, インコーポレイテッド Method and apparatus for preparing useful products derived from carbonaceous feedstock

Also Published As

Publication number Publication date
JP3614449B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
Guo et al. Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction
Tian et al. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts
Calle‐Vallejo et al. Theoretical Considerations on the Electroreduction of CO to C 2 Species on Cu (100) Electrodes.
Fukuoka et al. A novel catalytic synthesis of carbamates by the oxidative alkoxycarbonylation of amines in the presence of platinum group metal and alkali metal halide or onium halide
Creager et al. An efficient electrocatalytic model cytochrome P-450 epoxidation cycle
Kishida et al. Air-stable calcium cyanamide-supported ruthenium catalyst for ammonia synthesis and decomposition
Cai et al. Interfacial hydrogen bonding-involved electrocatalytic ammonia synthesis on OH-terminated MXene
Du et al. Selectively reducing nitrate into NH3 in neutral media by PdCu single-atom alloy electrocatalysis
Nakamura et al. Molybdenum (0)/dehydroxylated alumina catalysts
US20240044021A1 (en) A cascade co2 electroreduction system and related methods for enhanced production of ethylene
Young et al. Metal oxynitrides for the electrocatalytic reduction of nitrogen to ammonia
Merakeb et al. Advances in molecular electrochemical activation of dinitrogen
US3492314A (en) Process for catalytic hydrogenation of dicarboxylic acid anhydride and catalyst therefor
JP3146216B2 (en) CO2 catalytic hydrogenation
Greenwell et al. Noncovalent immobilization of a nickel cyclam catalyst on carbon electrodes for CO2 reduction using aqueous electrolyte
Gong et al. Enhanced Electrochemical Hydrogenation of Benzaldehyde to Benzyl Alcohol on Pd@ Ni-MOF by Modifying the Adsorption Configuration
Markó et al. Hydrogenation of aldehydes and ketones with molecular hydrogen using iron pentacarbonyl as catalyst precursor
JPH0748299A (en) Production of ethanol
Roy et al. Computational mechanistic insights into non-noble-metal-catalysed CO 2 conversion
de Zwart et al. Computational mechanistic studies of ruthenium catalysed methanol dehydrogenation
Lima et al. CO2 reduction on Cu/C used as a cathode in a polymeric electrolyte reactor-Fuel cell type
JP2545734B2 (en) Hydrocarbon producing catalyst and hydrocarbon producing method
JP3108714B2 (en) Method for producing carbon monoxide
Kongkaew et al. Importance of amine in carbon dioxide conversion to methanol catalyzed by Ru-PNP complex
Ogura Mediated reduction of CO and CO2 to methanol by surface-confined metal complexes in the presence of homogeneous catalysts

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050330

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term