JPH062625B2 - Ceramic metallization method - Google Patents

Ceramic metallization method

Info

Publication number
JPH062625B2
JPH062625B2 JP63015310A JP1531088A JPH062625B2 JP H062625 B2 JPH062625 B2 JP H062625B2 JP 63015310 A JP63015310 A JP 63015310A JP 1531088 A JP1531088 A JP 1531088A JP H062625 B2 JPH062625 B2 JP H062625B2
Authority
JP
Japan
Prior art keywords
ceramic
powder
metal
coating
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63015310A
Other languages
Japanese (ja)
Other versions
JPH01192783A (en
Inventor
英徳 林田
征一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WORLD METAL KK
Original Assignee
WORLD METAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WORLD METAL KK filed Critical WORLD METAL KK
Priority to JP63015310A priority Critical patent/JPH062625B2/en
Publication of JPH01192783A publication Critical patent/JPH01192783A/en
Publication of JPH062625B2 publication Critical patent/JPH062625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は,セラミックのメタライズ方法に係わり,更に
詳細には,セラミックの表面に極めて精密で強度の高い
金属被膜を形成できるメタライズ方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a metallizing method for ceramics, and more particularly to a metallizing method capable of forming an extremely precise and strong metal coating on the surface of ceramics. is there.

〈従来の技術〉 セラミックに膜厚の薄い精密な被膜を形成する方法とし
て,現在メッキあるいは蒸着法があるが,これらの被膜
はセラミックに単に物理的に付着しているだけであるの
に,容易に剥離する。
<Prior Art> Currently, there is a plating or vapor deposition method as a method for forming a precise thin film on a ceramic. However, since these coatings are merely physically attached to the ceramic, they can be easily formed. Peel off.

剥離強度を上げるためには界面に反応相を形成させる必
要がある。
In order to increase the peel strength, it is necessary to form a reaction phase at the interface.

この方法として,現在Mo-Mnペーストを用いる方法,あ
るいは活性金属を融着させる方法がある。
As this method, there is currently a method of using a Mo-Mn paste or a method of fusing an active metal.

これらの方法は強度の点では極めて優れた方法である
が,膜厚が薄くて精密な被膜が得にくい欠点がある。
These methods are extremely excellent in terms of strength, but they have the drawback that the film thickness is thin and it is difficult to obtain a precise coating.

〈発明が解決する問題点〉 本発明は,かかる問題点に鑑みてなされたもので,その
目的とする所は,精密で膜厚が薄く,しかも剥離強度の
極めて高い金属膜を形成できる新しいメタライズ方法を
提供するにある。
<Problems to be Solved by the Invention> The present invention has been made in view of the above problems, and an object thereof is to provide a new metallization capable of forming a metal film which is precise, has a small film thickness, and has extremely high peel strength. There is a way to provide.

〈問題点を解決するための手段〉 上記問題点は次の方法によって解決される。<Means for Solving Problems> The above problems can be solved by the following method.

(1)セラミックのメタライズ面に金属薄膜を被覆した
後,セラミックに拡散性のある材料の粉末を被着する工
程と,該被着面に金属を被覆する工程と,該被着した粉
末の拡散成分をセラミックに拡散させる工程を備えてな
ることを特徴とするセラミックのメタライズ方法。
(1) After coating a metal thin film on the metallized surface of the ceramic, depositing a powder of a diffusible material on the ceramic, coating the deposited surface with a metal, and diffusing the deposited powder. A method of metallizing a ceramic, comprising a step of diffusing components into the ceramic.

(2)上記セラミックに拡散性のある材料が,活性金属お
よびこれらの熱分解性化合物から選ばれる上記第1項に
記載のセラミックのメタライズ方法。
(2) The ceramic metallizing method according to the above item 1, wherein the material having diffusibility in the ceramic is selected from active metals and their thermally decomposable compounds.

〈作用〉 本発明の「被着」とは次の様な概念を指すものである。<Operation> The “adhesion” of the present invention refers to the following concept.

(1)粉末は本来物の表面に吸着する性質があり,一旦く
っつくと,洗浄しても容易に取り去ることができない。
(1) The powder originally has a property of adsorbing to the surface of the object, and once attached, it cannot be easily removed by washing.

この特性を利用して,上記したセラミック面に粉末の吸
着層を形成すること。
Use this property to form a powder adsorption layer on the ceramic surface.

(2)電気泳動や静電塗装に代表される静電気の力を利用
して表面に粉体を沈積させること。
(2) To deposit powder on the surface by using the force of static electricity, which is typified by electrophoresis and electrostatic coating.

(3)ペーストあるいは液状にして,表面に塗着あるいは
印刷すること。
(3) Make paste or liquid and apply or print on the surface.

(4)その他物質の拡散を伴わないで表面に粉体が物理的
あるいは化学的にくっついた状態全般。
(4) In general, the state in which powder is physically or chemically attached to the surface without diffusion of other substances.

セラミックに拡散性のある材料の最も代表的なものは,
活性金属および,これらの熱分解性化合物である。
The most typical materials that have diffusivity in ceramics are
Active metals and their thermally decomposable compounds.

活性金属とは,例えば,Ti,Zr,V,Nb,Ta,Ca,Mg,
Y,希土類金属およびこれらの合金を指し,熱分解性化
合物とは,拡散処理するときの温度では実質的に活性金
属に分解される化合物を指し,最も代表的なものは,上
記した活性金属の水素化物である。
Active metals include, for example, Ti, Zr, V, Nb, Ta, Ca, Mg,
Y, rare earth metals and their alloys are referred to, and thermally decomposable compounds are compounds that are substantially decomposed into active metals at the temperature during diffusion treatment. The most typical ones are the active metals mentioned above. It is a hydride.

粉末の被着は、セラミックの表面に予め金属の薄膜を被
覆した後に行う。これにより、予め金属の薄膜を形成せ
ずに、活性金属の粉末をセラミックの表面に、直接、被
着した場合に比べ、エッチングで微細パターンを形成す
る場合に適したものとなる。
The deposition of the powder is performed after coating the surface of the ceramic with a thin film of metal in advance. This is suitable for forming a fine pattern by etching, as compared with a case where active metal powder is directly deposited on the surface of a ceramic without forming a metal thin film in advance.

金属の薄膜形成には既存の手法,たとえば湿式メッキや
真空メッキ,気相メッキが使用でき,金属には,例え
ば,Cu,Fe,Ni,Co,Ag,Au,Al,Sn,In,Zn やこれ
らの合金,あるいはCu-P,Ni-P,Ni-B,Co-P,Co-B等の
メッキ金属がそれぞれ単独で,あるいは相互に組合せて
適宜利用できる。
Existing methods such as wet plating, vacuum plating, and vapor phase plating can be used for forming a metal thin film. For metals, for example, Cu, Fe, Ni, Co, Ag, Au, Al, Sn, In, Zn and These alloys or plating metals such as Cu-P, Ni-P, Ni-B, Co-P, and Co-B can be appropriately used alone or in combination with each other.

被着後,更に金属が被覆される。After deposition, more metal is coated.

この被覆には,湿式メッキや真空メッキ,気相メッキ等
の既存の手法が全て利用でき,金属には,薄膜金属と同
様例えばCu,Fe,Ni,Co,Ag,Au,Al,Sn,In,Znやこれらの
合金あるいはCu-P,Ni-P,Ni-B,Co-P,Co-B,等のメッキ金
属がそれぞれ単独であるいは適宜組合せて利用できる。
For this coating, all existing methods such as wet plating, vacuum plating, vapor phase plating can be used. For the metal, similar to thin film metal, for example, Cu, Fe, Ni, Co, Ag, Au, Al, Sn, In , Zn, alloys thereof, or plated metals such as Cu-P, Ni-P, Ni-B, Co-P, and Co-B can be used individually or in appropriate combination.

尚上例は,いずれも代表的な金属を列挙したものであ
り,これ以外のものでも必要に応じて適宜使用できるこ
とはいうまでもないことである。
In addition, it is needless to say that each of the above examples is a list of typical metals, and that other metals can be appropriately used as needed.

セラミックに拡散性のある材料成分のセラミックへの拡
散処理は、熱処理によってなされる。
Diffusion treatment of a material component having a ceramic diffusivity into a ceramic is performed by heat treatment.

雰囲気は,非酸化性雰囲気が好しく,温度は,上記拡散
材料がセラミックに拡散するに充分な時間さえ与えられ
れば,薄膜金属,被覆金属の融点以下の温度でも,ある
いは必要に応じて融点以上の温度でも適宜実施できる。
The atmosphere is preferably a non-oxidizing atmosphere, and the temperature may be below the melting point of the thin-film metal or the coating metal, or above the melting point if necessary, as long as it is sufficient for the diffusion material to diffuse into the ceramic. It can also be carried out as appropriate at the temperature of.

適用できるセラミックは,いわゆる酸化物,窒化物,炭
化物セラミックから,カーボン,ガラスに到るまですべ
てのセラミックに適用できる。
Applicable ceramics are applicable to all ceramics from so-called oxide, nitride and carbide ceramics to carbon and glass.

〈実施例〉 実施例1. セラミック:96%アルミナ板(50×50×1mm) アルミナの板にCuを0.1ミクロン蒸着した後,10ミクロ
ンアンダーの水素化チタンの粉末を表面にまぶした。
<Example> Example 1. Ceramic: 96% alumina plate (50 x 50 x 1 mm) After depositing 0.1 micron of Cu on an alumina plate, the surface of the plate was dusted with titanium hydride powder of 10 micron under.

表面にTiH2の粉末が被着された。TiH 2 powder was deposited on the surface.

次に,これを水洗して余分の粉末を取り去った後,この
上からCuを10ミクロンメッキした。
Next, this was washed with water to remove excess powder, and then Cu was plated to a thickness of 10 μm.

〈拡散処理〉 2×10-4Torrの真空中で900℃×30分熱処理した。<Diffusion treatment> Heat treatment was performed in a vacuum of 2 × 10 −4 Torr at 900 ° C. for 30 minutes.

〈評価〉 0.8φのハンダメッキ線をハンダ付けし,引張テストし
た。
<Evaluation> A 0.8 mm solder-plated wire was soldered and a tensile test was performed.

サンプル数 N=5回 サンプルは5例中4例がセラミックがえぐられる形で破
断された。
Number of Samples N = 5 Times 4 of 5 samples were fractured in the form of ceramic scooping.

引張強さは2.1〜3.8Kg/mm3であった。The tensile strength was 2.1 to 3.8 Kg / mm 3 .

尚,因みに熱処理しないものは,0.2〜0.4Kg/mm3であ
り,全数メッキ面から剥離した。
Incidentally, the one that was not heat treated was 0.2 to 0.4 kg / mm 3 , and it was peeled off from the 100% plated surface.

参考例1 セラミック:96%アルミナ(50×50×1mm) アルミナの板に粒度が325メッシュアンダーのチタン
を粉末をまぶし,水洗して余分のチタンを取り去った
後,この上からCuを20ミクロンメッキした。
Reference Example 1 Ceramic: 96% Alumina (50 x 50 x 1 mm) Alumina plate is sprinkled with titanium powder having a grain size of 325 mesh, washed with water to remove excess titanium, and then plated with Cu to a thickness of 20 microns. did.

〈拡散処理〉 1×10-4Torrの真空中で950℃×1Hr熱処理した。<Diffusion Treatment> Heat treatment was performed at 950 ° C. for 1 hour in a vacuum of 1 × 10 −4 Torr.

〈評価〉 熱処理後,実施例1と同じ方法で引張テストした。<Evaluation> After the heat treatment, a tensile test was performed in the same manner as in Example 1.

サンプル数 N=5回 強度は1.9〜2.7Kg/mm2であった。Number of samples N = 5 times The strength was 1.9 to 2.7 Kg / mm 2 .

尚熱処理しないものは,0.1〜0.3Kg/mm2であった。In addition, those that were not heat-treated were 0.1 to 0.3 kg / mm 2 .

実施例2 セラミック:部分安定化ジルコニア(15×15×5mm) ジルコニアの板にNi−Pを1ミクロンメッキした後,粒
度が10ミクロンアンダーの水素化チタンの粉末を電気
泳動によって表面に沈積させた。
Example 2 Ceramic: Partially Stabilized Zirconia (15 × 15 × 5 mm) A plate of zirconia was plated with Ni—P for 1 micron, and a titanium hydride powder having a particle size of 10 micron was deposited on the surface by electrophoresis. .

沈積後,洗浄した後,Niを約10ミクロンメッキした。After depositing and cleaning, Ni was plated to about 10 microns.

〈拡散処理〉 2×10-4Torrの真空中で950℃×20分熱処理した。<Diffusion Treatment> Heat treatment was performed at 950 ° C. for 20 minutes in a vacuum of 2 × 10 −4 Torr.

〈評価〉 熱処理後,実施例1と同じ方法で引張テストした。<Evaluation> After the heat treatment, a tensile test was performed in the same manner as in Example 1.

サンプル数 N=5回 強度は2.5〜3.7Kg/mm3であった。Number of samples N = 5 times The strength was 2.5 to 3.7 kg / mm 3 .

実施例3 セラミック:窒化アルミ(20×20×0.5mm) 窒化アルミの板に銅を0.2ミクロンメッキした後、10ミ
クロンアンダーの水素化チタンの粉末を表面にまぶし
た。
Example 3 Ceramic: Aluminum Nitride (20 × 20 × 0.5 mm) An aluminum nitride plate was plated with 0.2 μm of copper, and then 10 μm under titanium hydride powder was sprinkled on the surface.

水洗して余分の粉末を取り去った後,銀を1ミクロン蒸
着し,この上に更にNiを5ミクロンメッキした。
After washing with water to remove excess powder, silver was vapor-deposited to 1 micron, and Ni was further plated to 5 micron.

〈拡散処理〉 1×10-4Torrの真空中で850℃×10分熱処理した。<Diffusion treatment> Heat treatment was performed at 850 ° C for 10 minutes in a vacuum of 1 × 10 -4 Torr.

〈評価〉 熱処理後,実施例1と同じ方法で引張テストした。<Evaluation> After the heat treatment, a tensile test was performed in the same manner as in Example 1.

サンプル数 N=5回 強度は,1.8〜2.7Kg/mm3であった。Number of samples N = 5 times The strength was 1.8 to 2.7 kg / mm 3 .

実施例4 セラミック:99%アルミナ(20×20×5mm) セラミックの板にNi−Pを0.5ミクロンメッキした後,
粒度が10ミクロンアンダーの水素化ジルコニウム粉末を
表面にまぶした。
Example 4 Ceramic: 99% Alumina (20 × 20 × 5 mm) After 0.5 μm Ni-P was plated on a ceramic plate,
The surface was dusted with zirconium hydride powder with a particle size of 10 microns under.

水洗して余分の粉末を取り去った後,この上に更にNi-
Pを10ミクロンンメッキした。
After washing with water to remove excess powder, Ni-
P was plated with 10 microns.

〈拡散熱処理〉 5×10-5Torrの真空中で980℃×10分熱処理した。<Diffusion heat treatment> Heat treatment was performed at 980 ° C for 10 minutes in a vacuum of 5 × 10 -5 Torr.

〈評価〉 熱処理後,実施例1と同じ方法で引張テストした。<Evaluation> After the heat treatment, a tensile test was performed in the same manner as in Example 1.

サンプル数 N=5回 強度は1.4〜2.3Kg/mm2であった。Number of samples N = 5 times The strength was 1.4 to 2.3 Kg / mm 2 .

〈発明の効果〉 以上詳記した様に,本発明は精密で,しかも強度の高い
メタライズ膜を形成できる特徴を有し,機械部品用途の
ほか,精密部品あるいは電子部分のメタライズ法として
も極めて有用なものである。
<Effects of the Invention> As described in detail above, the present invention has a feature that a metallized film having high precision and high strength can be formed, and is extremely useful as a metallizing method for precision parts or electronic parts as well as mechanical parts. It is something.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミックのメタライズ面に金属薄膜を被
覆した後、セラミックに拡散性のある材料の粉末を被着
する工程と、該被着面に金属を被覆する工程と、該被着
した粉末の拡散成分をセラミックに拡散させる工程を備
えてなることを特徴とするセラミックのメタライズ方
法。
1. A method of coating a metal thin film on a metallized surface of a ceramic and then applying a powder of a diffusible material to the ceramic, a step of coating the adhered surface with a metal, and the applied powder. A method of metallizing a ceramic, comprising the step of diffusing the diffusion component of (4) into the ceramic.
【請求項2】該セラミックに拡散性のある材料が、活性
金属および活性金属の熱分解性化合物から選ばれる特許
請求の範囲第1項に記載のセラミックのメタライズ方
法。
2. The ceramic metallizing method according to claim 1, wherein the material having diffusivity in the ceramic is selected from active metals and thermally decomposable compounds of the active metals.
JP63015310A 1988-01-25 1988-01-25 Ceramic metallization method Expired - Lifetime JPH062625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63015310A JPH062625B2 (en) 1988-01-25 1988-01-25 Ceramic metallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015310A JPH062625B2 (en) 1988-01-25 1988-01-25 Ceramic metallization method

Publications (2)

Publication Number Publication Date
JPH01192783A JPH01192783A (en) 1989-08-02
JPH062625B2 true JPH062625B2 (en) 1994-01-12

Family

ID=11885212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015310A Expired - Lifetime JPH062625B2 (en) 1988-01-25 1988-01-25 Ceramic metallization method

Country Status (1)

Country Link
JP (1) JPH062625B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075416B2 (en) * 1986-11-29 1995-01-25 株式会社東芝 Ceramicizing method of metallizing

Also Published As

Publication number Publication date
JPH01192783A (en) 1989-08-02

Similar Documents

Publication Publication Date Title
CA1330913C (en) Silicon carbide abrasive particles having multilayered coating
EP0061010B1 (en) Process for forming refractory metal layers on ceramic substrates
JPS61104085A (en) Coated structure on metallized metallic layer for electronic parts
US4535029A (en) Method of catalyzing metal depositions on ceramic substrates
US4780332A (en) Process for producing adherent, electrochemically reinforcible and solderable metal layers on an aluminum-oxide containing ceramic substrate
JP2637804B2 (en) Substrate with plating
JPH02208274A (en) Composition for metallizing ceramic surface, surface-metallizing method and surface-metallized product
JPH0687402B2 (en) Getter device manufacturing method
JPH062625B2 (en) Ceramic metallization method
JPH07507973A (en) Thin film metallization and brazing of aluminum nitride
JPH01181499A (en) Ceramic wiring board
JPS63310956A (en) Film forming metal mask
JP2896518B2 (en) Manufacturing method of low melting point sputtering target
JP2780303B2 (en) Sintered body of ceramic and plating film
JP2780304B2 (en) Sintered body of ceramic and plating film
JPH0798706B2 (en) Surface treatment method for non-oxide ceramics
JP3486438B2 (en) Glaze composition and inorganic substrate provided with the composition
JPH02213197A (en) Ceramic multilayer circuit board
JP3121587B2 (en) Equipment for attaching metal
JPS61101481A (en) Metallization of silicon carbide base ceramic sintered body
JPH035387A (en) Method for coating ceramic body with metallic layer
JPH01192786A (en) Ceramic circuit board
JP2001270790A (en) Method for producing ceramic substrate and metallizing substrate
JP2004176117A (en) Method of metallizing copper to ceramics surface
JPS6120358A (en) Substrate for mounting semiconductor element