JPH06260284A - Dispersion type el element - Google Patents

Dispersion type el element

Info

Publication number
JPH06260284A
JPH06260284A JP5039753A JP3975393A JPH06260284A JP H06260284 A JPH06260284 A JP H06260284A JP 5039753 A JP5039753 A JP 5039753A JP 3975393 A JP3975393 A JP 3975393A JP H06260284 A JPH06260284 A JP H06260284A
Authority
JP
Japan
Prior art keywords
high dielectric
phosphor
layer
light emitting
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5039753A
Other languages
Japanese (ja)
Inventor
Kazumitsu Yamamoto
和光 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5039753A priority Critical patent/JPH06260284A/en
Publication of JPH06260284A publication Critical patent/JPH06260284A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase luminance and improve luminous efficiency by providing a light emitting layer in which a granular high dielectric layer having a specified average particle size is laminated on the back surface of a phosphor layer. CONSTITUTION:On the back surface of a transparent conductive electrode 1, a light emitting layer 3 consisting of a layer having a granular phosphor 6 dispersed in a binder and a layer having a granular high dielectric body 8 dispersed in the binder which is laminated on the back surface thereof is formed. Further, an insulating layer 4 and a back plate 5 are arranged on the back surface, and the whole laminated body is sealed by a moisture-proof resin 2. The average particle size of the granular dielectric body 7 is 0.5 time or more the average particle size of the phosphor 6. The phosphor situated on the upper part of the high dielectric body particle having a relatively large particle size is enhanced in field strength, and the high dielectric body can be sufficiently used in a small amount. Since the increase of electrostatic capacity of the light emitting layer is thus also minimized, the luminance is improved with a little increase of power consumption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分散型EL(エレクト
ロルミネッセンス)素子に関し、さらに詳しくは、蛍光
体の分散層の下部(素子の背面側)に蛍光体の平均粒径
の1/2以上の大きさを有する粒状高誘電体の分散層が
積層されてなる発光層を持ち、十分に向上された輝度を
有する分散型EL素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion-type EL (electroluminescence) device, and more specifically, a half or more of the average particle size of the phosphor is below the dispersion layer of the phosphor (on the back side of the device). The present invention relates to a dispersion type EL device having a light emitting layer formed by laminating a dispersion layer of a granular high dielectric material having a size of, and having sufficiently improved brightness.

【0002】[0002]

【従来の技術】一般に従来の分散型EL素子は、図2に
その断面を示すように、透明導電性電極(1)とアルミ
ニウム箔の背面電極(5)の間に、バインダーである高
誘電樹脂中に蛍光体を分散させた発光層(3)とバイン
ダーである高誘電樹脂中にサブミクロンのチタン酸バリ
ウムなどの超微粒状高誘電体を高充填した絶縁層(4)
とから構成されている。外側は防湿樹脂(2)で覆われ
ており、透明導電性電極と背面電極間に電圧を加えると
発光層中の蛍光体が発光する。
2. Description of the Related Art Generally, a conventional dispersion type EL element has a high dielectric resin as a binder between a transparent conductive electrode (1) and a back electrode (5) of aluminum foil, as shown in the cross section of FIG. A light emitting layer (3) in which a phosphor is dispersed, and an insulating layer (4) in which a highly dielectric resin, which is a binder, is highly filled with ultrafine granular high dielectric material such as submicron barium titanate.
It consists of and. The outside is covered with a moisture-proof resin (2), and when a voltage is applied between the transparent conductive electrode and the back electrode, the phosphor in the light emitting layer emits light.

【0003】このような分散型EL素子において、輝度
を向上させるために、発光層中の蛍光体にかかる電界を
大きくする工夫がなされている。一般に二種類の誘電体
から構成される物質に電圧を印加すると、電界の強さは
高誘電率の誘電体中よりも低誘電率の誘電体中の方が大
きくなる。
In such a dispersion type EL element, in order to improve the brightness, an electric field applied to the phosphor in the light emitting layer is increased. In general, when a voltage is applied to a substance composed of two kinds of dielectrics, the strength of the electric field is higher in the low dielectric constant dielectric material than in the high dielectric constant dielectric material.

【0004】このことを利用し、発光層中の高誘電樹脂
としてより高い誘電率の樹脂を使うことがなされてい
る。高誘電樹脂としてシアノエチル化セルロースなどが
使用されているが、樹脂の誘電率は一般に無機材料と比
較して低く、シアノエチル化セルロースでも、誘電率は
20程度である。このため高誘電樹脂中にさらに高誘電
率の物質を混合分散させ、高誘電樹脂の見かけの誘電率
を大きくすることがなされている。この例として、特公
昭38−20651公報ではチタン酸バリウムなどの反
射性高誘電率無機材料、特公平3−171591公報で
はP−ニトロアニリンなどの非線形光学材料、特公昭5
7−189496公報ではPZT(PbO・ZrO・T
iO2 混合焼結体)、特開平3−297092公報では
バリウムとチタンとジルコニウムの複合酸化物などの粒
状高誘電体をそれぞれ使って行われている。発光層中に
粒状高誘電体を混合分散させる従来方法は、高誘電樹脂
の見かけの誘電率を大きくするのが目的であり、発光層
中での光の反射、吸収による損失を小さくするため一般
に平均粒径1μm程度の粒状高誘電体を用いる。このた
め高誘電体の粒径は通常蛍光体(平均粒径30μm程
度)のそれより小さい。また、特公平4−34893公
報に示されているように蛍光体を液状の高誘電樹脂でコ
ーティングし、更にその外面を熱硬化樹脂で覆ってカプ
セル構造とする方法も提案されている。
Utilizing this fact, a resin having a higher dielectric constant has been used as the high dielectric resin in the light emitting layer. Although cyanoethylated cellulose and the like are used as the high dielectric resin, the dielectric constant of the resin is generally lower than that of the inorganic material, and even cyanoethylated cellulose has a dielectric constant of about 20. For this reason, a substance having a higher dielectric constant is mixed and dispersed in the high dielectric resin to increase the apparent dielectric constant of the high dielectric resin. As an example of this, Japanese Patent Publication No. 38-20651 discloses a reflective high dielectric constant inorganic material such as barium titanate, and Japanese Patent Publication No. 3-171591 discloses a nonlinear optical material such as P-nitroaniline.
In JP 7-189496, PZT (PbO.ZrO.T
iO 2 mixed sintered body), in JP-A-3-297092 Publication being performed using each granular high dielectric such as a composite oxide of barium, titanium and zirconium. The conventional method of mixing and dispersing the granular high dielectric material in the light emitting layer is to increase the apparent permittivity of the high dielectric resin, and is generally used to reduce the loss due to the reflection and absorption of light in the light emitting layer. A granular high dielectric material having an average particle size of about 1 μm is used. For this reason, the particle size of the high dielectric material is usually smaller than that of the phosphor (average particle size of about 30 μm). Also, as disclosed in Japanese Patent Publication No. 4-34893, a method has been proposed in which a phosphor is coated with a liquid high dielectric resin and the outer surface of the phosphor is covered with a thermosetting resin to form a capsule structure.

【0005】[0005]

【発明が解決しようとする課題】高誘電樹脂中にさらに
高誘電体を混合分散させる従来の技術においては、バイ
ンダーである高誘電樹脂の見かけの誘電率が大きくなる
ので蛍光体への電界集中のため輝度は向上するが、発光
層の静電容量も増加するため、電流が増加し消費電力も
増加するという欠点がある。このため、特公平3−29
7092公報に示されているように発光効率(ルーメン
/ワット)は従来品とほぼ同等であった。また、蛍光体
を高誘電樹脂でコーティングする方法でも輝度の改善は
十分でない。
In the conventional technique of further mixing and dispersing a high dielectric material in a high dielectric resin, the apparent dielectric constant of the high dielectric resin, which is a binder, becomes large, so that the concentration of an electric field on the phosphor is reduced. Therefore, the brightness is improved, but the electrostatic capacity of the light emitting layer is also increased, so that there is a drawback that the current is increased and the power consumption is also increased. Therefore, the Japanese Examined Patent Publication 3-29
As shown in Japanese Patent Publication No. 7092, the luminous efficiency (lumen / watt) was almost the same as that of the conventional product. Further, the method of coating the phosphor with a high dielectric resin does not sufficiently improve the brightness.

【0006】本発明の目的は、電流をほとんど増加させ
ることなく蛍光体への電界集中をおこすことができ、輝
度の高い分散型EL素子を提供することにある。
An object of the present invention is to provide a dispersion type EL element which can concentrate an electric field on a phosphor with almost no increase in current and has high brightness.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記問題
に鑑み、鋭意検討を重ねた結果、EL素子において蛍光
体層の背面に特定の平均粒径の粒状高誘電体の層を積層
した構造を発光層内につくると、電流をほとんど増加さ
せることなく蛍光体への電界集中をおこすことができ輝
度が向上することを見出し、本発明を完成させるに至っ
た。
The inventors of the present invention have made extensive studies in view of the above problems, and as a result, in an EL device, a layer of a granular high dielectric material having a specific average particle size is laminated on the back surface of a phosphor layer. It was found that when the above structure is formed in the light emitting layer, the electric field can be concentrated on the phosphor with almost no increase in current and the brightness is improved, and the present invention has been completed.

【0008】すなわち、本発明は、粒状蛍光体がバイン
ダ−中に分散した層と、粒状高誘電体がバインダ−中に
分散した層が積層されてなり、前者に対して後者の層が
素子の背面側に位置し、かつ該粒状高誘電体の平均粒径
が該粒状蛍光体のそれの1/2以上の大きさである発光
層を有することを特徴とする分散型エレクトロルミネッ
センス素子に関する。
That is, according to the present invention, a layer in which a granular phosphor is dispersed in a binder and a layer in which a granular high dielectric material is dispersed in a binder are laminated, and the latter layer is an element for the former. The present invention relates to a dispersive electroluminescent device having a light emitting layer located on the back surface side and having an average particle diameter of the granular high dielectric material that is at least ½ of that of the granular phosphor.

【0009】本発明における平均粒径は、粉体工学便覧
(日刊工業刊)の12〜13ページに記載されている顕
微鏡による粒度測定の個数平均粒径である。本発明のE
L素子の一例を模式的に示せば図1の通りである。図1
において、粒状蛍光体(6)がバインダ−中に分散した
層と、粒状高誘電体(7)がバインダ−中に分散した層
が積層されてなり、前者に対して後者の層が素子の背面
側に位置してなる発光層(3)があり、さらにその背面
側に絶縁層(4)が積層されている。そして、発光層
(3)および絶縁層(4)を挟持するようにして、前面
の透明導電性電極(1)および背面電極(5)が配置さ
れている。そして、これらの積層体全体が防湿樹脂
(2)で密封されている。
The average particle diameter in the present invention is the number average particle diameter measured by a microscope as described on pages 12 to 13 of the Handbook of Powder Engineering (Nikkan Kogyo). E of the present invention
An example of the L element is schematically shown in FIG. Figure 1
In the above, a layer in which the granular phosphor (6) is dispersed in a binder and a layer in which the granular high dielectric material (7) is dispersed in a binder are laminated, and the latter layer is the back surface of the device with respect to the former. There is a light emitting layer (3) located on the side, and an insulating layer (4) is further laminated on the back side thereof. The front transparent conductive electrode (1) and the back electrode (5) are arranged so as to sandwich the light emitting layer (3) and the insulating layer (4). The entire laminated body is sealed with the moisture-proof resin (2).

【0010】本発明のEL素子の発光層において、粒状
蛍光体がバインダー中に分散した層と粒状高誘電体がバ
インダー中に分散した層を積層する方法としては、バイ
ンダーである高誘電樹脂溶液に蛍光体と粒状高誘電体と
をそれぞれ混合分散させて蛍光体ペーストと高誘電体ペ
ーストをつくり、基材上にまず高誘電体ペースト次に蛍
光体ペーストを常法に従って順次重ねて塗布する方法、
または別々の基材上に蛍光体ペーストと誘電体ペースト
を常法に従って塗布しその後両者を基材を外にして貼り
合わせる方法等がある。前者の方法によれば後者と比較
して現状の製品化プロセスに対応しやすく、連続処理に
も向いていると考えられる。
In the light emitting layer of the EL device of the present invention, a method of laminating a layer in which a granular phosphor is dispersed in a binder and a layer in which a granular high dielectric material is dispersed in a binder are laminated on a high dielectric resin solution which is a binder. A phosphor paste and a high-dielectric paste are prepared by mixing and dispersing the phosphor and the granular high-dielectric, respectively, and a method in which the high-dielectric paste and then the phosphor paste are sequentially laminated and applied on the base material according to a conventional method.
Alternatively, there is a method in which the phosphor paste and the dielectric paste are applied on different base materials according to a conventional method, and then both are adhered with the base material outside. It is considered that the former method is easier to handle the current commercialization process than the latter method and is suitable for continuous processing.

【0011】本発明で使用される蛍光体としては、硫化
亜鉛などの蛍光体にマンガンや銅などの活性剤と塩素や
臭素などの賦活剤をドープした硫化亜鉛系蛍光体が例示
されるが、これに限定されることなく、分散型EL素子
用蛍光体として使用可能なII−IV族化合物なら全て
使用できる。本発明で使用される粒状蛍光体の平均粒径
はこれに限定されるものではないが通常1〜40μmで
ある。
Examples of the phosphor used in the present invention include zinc sulfide-based phosphors obtained by doping a phosphor such as zinc sulfide with an activator such as manganese or copper and an activator such as chlorine or bromine. Without being limited to this, any II-IV group compound that can be used as a phosphor for a dispersion-type EL device can be used. The average particle size of the granular phosphor used in the present invention is not limited to this, but is usually 1 to 40 μm.

【0012】また、本発明において発光層に使用される
高誘電体としては、誘電率が100以上程度の金属酸化
物が一般的であり、二酸化チタン、チタン酸バリウムな
どが例示されるが、これ以外にもPZT(既述)、PL
ZT(PZTにLaを添加したもの)などの鉛系複合酸
化物なども使用できる。ここで使用される粒状高誘電体
の平均粒径はこれに限定されるものではないが通常10
〜200μmである。このような比較的平均粒径の大き
い高誘電体は、それの小さいものをふるいにかけて得る
など周知の方法で得ることができる。本発明において用
いられる粒状高誘電体の粒子形状としては、球形および
球形に近いもの以外に板状のものなどどのような形状の
ものも含まれる。本発明における粒状高誘電体の平均粒
径と蛍光体の平均粒径の比は1:2〜3:1、さらに好
ましくは、1:1〜2:1が好ましい。高誘電体の平均
粒径が蛍光体のそれの1/2より小さいと素子の輝度の
向上が充分でない。
The high dielectric used in the light emitting layer in the present invention is generally a metal oxide having a dielectric constant of about 100 or more, and examples thereof include titanium dioxide and barium titanate. Besides, PZT (described above), PL
Lead-based composite oxides such as ZT (PZT with La added) can also be used. The average particle size of the granular high dielectric material used here is not limited to this, but is usually 10
Is about 200 μm. Such a high-dielectric material having a relatively large average particle diameter can be obtained by a known method such as sieving a small one. The particle shape of the granular high dielectric material used in the present invention includes any shape such as a plate shape as well as a spherical shape and a shape close to a sphere. In the present invention, the ratio of the average particle size of the granular high dielectric material to the average particle size of the phosphor is 1: 2 to 3: 1, more preferably 1: 1 to 2: 1. If the average particle diameter of the high dielectric material is smaller than half that of the phosphor, the improvement of the brightness of the device is not sufficient.

【0013】本発明における発光層において、バインダ
ーである高誘電樹脂と蛍光体と高誘電体との使用割合は
1:1:1〜1:5:5の程度が好ましい。発光層にお
いて、高誘電体を含む層の厚みは通常10〜200μ
m、好ましくは20〜100μm程度であり、蛍光体を
含む層の厚みは通常10〜200μm、好ましくは20
〜100μm程度である。本発明の分散型EL素子は、
発光層を上記の通りとする以外は、図2に示したような
従来公知の構成とすることができる。すなわち、本発明
において、絶縁層は従来公知のサブミクロンのチタン酸
バリウムなどの超微粒状高誘電体をバインダ−中に高充
填したもので、厚みは通常10〜200μm、好ましく
は20〜100μmのものが使用される。また、発光層
や絶縁層におけるバインダ−としては、従来公知のシア
ノエチル化セルロ−スなどの高誘電樹脂が使用される。
また、透明導電性電極としては、従来公知の同様目的の
電極がいずれも使用でき、例えば、ポリメチルメタクリ
レ−ト、ポリエステルなどの透明な合成樹脂やガラスの
シ−トの表面に酸化インジウム、酸化スズ、インジウム
−スズ酸化物(ITO)などの透明導電材料を全面ある
いはパタ−ン状に被覆したものが使用される。また、素
子の背面に用いられる不透明電極層も従来公知のもので
よく、例えば、アルミニウム、銀、金等の蒸着膜が用い
られる。
In the light emitting layer of the present invention, the ratio of the high dielectric resin as a binder, the phosphor and the high dielectric used is preferably about 1: 1 to 1: 5: 5. In the light emitting layer, the thickness of the layer containing a high dielectric material is usually 10 to 200 μm.
m, preferably about 20 to 100 μm, and the thickness of the layer containing the phosphor is usually 10 to 200 μm, preferably 20.
It is about 100 μm. The dispersion type EL element of the present invention is
A configuration known in the related art as shown in FIG. 2 can be adopted except that the light emitting layer is as described above. That is, in the present invention, the insulating layer is formed by filling the binder with an ultrafine granular high dielectric material such as conventionally known submicron barium titanate and having a thickness of usually 10 to 200 μm, preferably 20 to 100 μm. Stuff used. Further, as the binder in the light emitting layer or the insulating layer, a high dielectric resin such as conventionally known cyanoethylated cellulose is used.
As the transparent conductive electrode, any of the conventionally known electrodes having the same purpose can be used. For example, transparent synthetic resin such as polymethylmethacrylate or polyester, or indium oxide on the surface of a glass sheet, A transparent conductive material such as tin oxide or indium-tin oxide (ITO) coated on the entire surface or in a pattern is used. The opaque electrode layer used on the back surface of the device may be a conventionally known one, for example, a vapor deposition film of aluminum, silver, gold or the like is used.

【0014】発光層中に粒状高誘電体を混合分散させる
従来方法は、高誘電樹脂の見かけの誘電率を大きくする
のが目的であり、発光層中での光の反射、吸収による損
失を小さくするため一般に平均粒径1μm程度の粒状高
誘電体を用いる。このため高誘電体の粒径は通常蛍光体
(平均粒径30μm程度)のそれより小さい。
The conventional method of mixing and dispersing the granular high dielectric material in the light emitting layer is to increase the apparent dielectric constant of the high dielectric resin, and to reduce the loss due to the reflection and absorption of light in the light emitting layer. Therefore, a granular high dielectric material having an average particle size of about 1 μm is generally used. For this reason, the particle size of the high dielectric material is usually smaller than that of the phosphor (average particle size of about 30 μm).

【0015】発光層中に高誘電体粒子が存在しないと、
発光層中の電界分布はほぼ一様で、発光層中のどの部分
でも電界強度はほぼ同じとなる。一方、発光層中に高誘
電体粒子が存在すると高誘電体粒子の周辺の電界分布が
変化し、電界強度の大きい部分と小さい部分とが高誘電
体粒子の周辺に現れる。
When high dielectric particles are not present in the light emitting layer,
The electric field distribution in the light emitting layer is almost uniform, and the electric field strength is almost the same in any part of the light emitting layer. On the other hand, when the high-dielectric particles are present in the light emitting layer, the electric field distribution around the high-dielectric particles changes, and a portion having a high electric field strength and a portion having a low electric field strength appear around the high-dielectric particles.

【0016】本発明の分散型EL素子の発光層における
高誘電体は、発光層中の電界を局部的に変化させ、蛍光
体の周囲に電界強度の大きな部分を作り出すために使用
されている。本発明のように粒径の大きな高誘電体粒子
が発光層内下部(背面側)にあると高誘電体粒子の上部
の発光層内の電界強度が大きくなる。蛍光体は高誘電体
粒子の上部の発光層内に位置しているので効果的に蛍光
体の電界強度が大きくなり、本発明のEL素子の輝度は
向上する。前述した通り、従来の発光層中に高誘電体を
混合分散させる方法によるものでは、使用される高誘電
体の平均粒径が蛍光体に比べ小さいため、発光層中の高
誘電樹脂の見かけの誘電率を高めることはできるが、高
誘電体粒子周辺の電界分布を乱して発光層内の特定部分
に位置する蛍光体の電界強度を大きくすることはできな
い。
The high dielectric substance in the light emitting layer of the dispersion type EL device of the present invention is used to locally change the electric field in the light emitting layer to create a portion having a large electric field strength around the phosphor. When the high-dielectric-constant particles having a large particle size are present in the lower part (back side) in the light-emitting layer as in the present invention, the electric field strength in the light-emitting layer above the high-dielectric particle becomes large. Since the phosphor is located in the light emitting layer above the high dielectric particles, the electric field strength of the phosphor is effectively increased, and the brightness of the EL device of the present invention is improved. As described above, according to the conventional method of mixing and dispersing the high dielectric material in the light emitting layer, since the average particle diameter of the high dielectric material used is smaller than that of the phosphor, the appearance of the high dielectric resin in the light emitting layer is Although it is possible to increase the dielectric constant, it is not possible to disturb the electric field distribution around the high-dielectric-constant particles and increase the electric field strength of the phosphor located at a specific portion in the light emitting layer.

【0017】本発明において、発光層中の粒状高誘電体
の量は従来の発光層中に高誘電体を混合分散させる方法
によるものと比較し少量で済み、発光層の静電容量の増
加も少ないので、電流の増加が少なく、消費電力増加も
少ない。
In the present invention, the amount of the granular high dielectric material in the light emitting layer is small compared to the conventional method of mixing and dispersing the high dielectric material in the light emitting layer, and the capacitance of the light emitting layer is increased. Since it is small, the increase in current is small and the increase in power consumption is also small.

【0018】[0018]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。 実施例1および比較例1 溶剤のジメチルホルムアミドにシアノエチル化セルロー
ス系高誘電樹脂を溶解し、シアノエチル化セルロース系
高誘電樹脂が20重量%である溶液を作成した。この溶
液50gに平均粒径約20μmの分散型EL素子用蛍光
体(硫化亜鉛系)20gを混合分散し、蛍光体ペースト
を作成した。また、上記のシアノエチル化セルロース系
高誘電樹脂が20重量%である溶液50gに高誘電体粒
子20gを混合分散し、高誘電体ペーストを作成した。
高誘電体粒子は、チタン酸バリウムの焼結体を粉砕し、
ふるいで分級したもので、粒径は45〜74μmの分布
を有し、平均粒径は50μmであり、誘電率は約400
0のものを使用した。次に図3に示されるような発光強
度観察用分散型EL素子を以下の手順で作成した。イン
ジウム−スズ酸化物の透明電極が形成されている厚み約
100μmのポリエステルフィルム上にアプリケーター
で蛍光体ペーストを塗布し、120℃で5分間乾燥し半
乾燥の状態とした。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Example 1 and Comparative Example 1 A cyanoethylated cellulose-based high dielectric resin was dissolved in dimethylformamide as a solvent to prepare a solution containing 20% by weight of the cyanoethylated cellulose-based high dielectric resin. 20 g of a dispersion type EL element phosphor (zinc sulfide-based) having an average particle size of about 20 μm was mixed and dispersed in 50 g of this solution to prepare a phosphor paste. Further, 20 g of high-dielectric particles were mixed and dispersed in 50 g of a solution containing 20% by weight of the cyanoethylated cellulose-based high-dielectric resin to prepare a high-dielectric paste.
High dielectric particles are obtained by crushing a barium titanate sintered body,
It is classified by a sieve, and has a particle size distribution of 45 to 74 μm, an average particle size of 50 μm, and a dielectric constant of about 400.
0 was used. Next, a dispersion type EL device for observing the emission intensity as shown in FIG. 3 was prepared by the following procedure. The phosphor paste was applied by an applicator onto a polyester film having a thickness of about 100 μm on which a transparent electrode of indium-tin oxide was formed, and dried at 120 ° C. for 5 minutes to be in a semi-dried state.

【0019】またインジウム−スズ酸化物の透明電極が
形成されている厚み約100μmのポリエステルフィル
ム上にアプリケーターで高誘電体ペーストを塗布し、1
20℃で5分間乾燥し半乾燥の状態とした。半乾燥状態
の高誘電体層を形成したポリエステルフィルムに蛍光体
層を形成したポリエステルフィルムを重ね合わせ、10
0℃に加熱した二本ロールラミネータ間を通した。その
後60℃で8時間の乾燥をおこない、発光強度観察用分
散型EL素子を作成した。
A high dielectric paste is applied by an applicator onto a polyester film having a thickness of about 100 μm on which a transparent electrode of indium-tin oxide is formed, and 1
It was dried at 20 ° C. for 5 minutes to be semi-dried. A polyester film having a phosphor layer formed thereon is superposed on a polyester film having a semi-dried high dielectric layer formed thereon.
It was passed between two roll laminators heated to 0 ° C. Then, it was dried at 60 ° C. for 8 hours to prepare a dispersion type EL device for observing emission intensity.

【0020】比較例1として図4に示されるような発光
強度観察用分散型EL素子を作成した。高誘電体ペース
トに代えてブランク(高誘電体を含まない)のペースト
を用いた以外は実施例1と同様に作成した。
As Comparative Example 1, a dispersion type EL device for observing emission intensity as shown in FIG. 4 was prepared. It was prepared in the same manner as in Example 1 except that a blank paste (not containing a high dielectric material) was used in place of the high dielectric material paste.

【0021】実施例1の発光強度観察用分散型EL素子
の発光層内部構造を電子顕微鏡の素子断面観察により観
察し、図3に示されるような構造が形成されていること
を確認した。マイクロメーターによる測定結果から実施
例1および比較例1の発光層の厚みは、それぞれ139
μm、115μmであった。実施例1の発光層におい
て、高誘電体層と蛍光体層の厚みの比は大体6:4であ
る。実施例1および比較例1の各発光強度観察用分散型
EL素子の透明電極を交流電源に接続し、100V、4
00Hzの正弦波電圧を印加し輝度及び電流の測定を行
った。その結果、実施例1の分散型EL素子では比較例
1と比較して、電流は約1.1倍また輝度は約2.8倍
に増加した。
The internal structure of the light emitting layer of the dispersion type EL device for observing the emission intensity of Example 1 was observed by observing the cross section of the device with an electron microscope, and it was confirmed that the structure as shown in FIG. 3 was formed. The thickness of the light emitting layers of Example 1 and Comparative Example 1 was 139, respectively, based on the measurement results by the micrometer.
μm and 115 μm. In the light emitting layer of Example 1, the thickness ratio of the high dielectric layer and the phosphor layer is approximately 6: 4. The transparent electrodes of the dispersion-type EL devices for observing the emission intensity of Example 1 and Comparative Example 1 were connected to an AC power source, and 100 V, 4
A sine wave voltage of 00 Hz was applied and the brightness and current were measured. As a result, in the dispersion type EL device of Example 1, the current increased by about 1.1 times and the brightness increased by about 2.8 times as compared with Comparative Example 1.

【0022】[0022]

【発明の効果】本発明の分散型EL素子は、従来品に比
べて電流の増加が小さく、蛍光体への電界集中により輝
度が向上する。電流増加による消費電力の増加が少ない
ので、輝度が向上するだけでなく、発光効率(ルーメン
/ワット)も向上させることができる。
EFFECT OF THE INVENTION The dispersion type EL device of the present invention has a smaller increase in current as compared with the conventional product, and the brightness is improved by the electric field concentration on the phosphor. Since the increase in power consumption due to the increase in current is small, not only the brightness is improved, but also the luminous efficiency (lumen / watt) can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分散型EL素子の例を示す断面図であ
る。
FIG. 1 is a sectional view showing an example of a dispersion type EL device of the present invention.

【図2】従来の一般的な分散型EL素子の断面図であ
る。
FIG. 2 is a cross-sectional view of a conventional general dispersion type EL device.

【図3】実施例1の発光強度観察用分散型EL素子を示
す断面図である。
FIG. 3 is a cross-sectional view showing a dispersion type EL element for luminescence intensity observation of Example 1.

【図4】比較例1の発光強度観察用分散型EL素子を示
す断面図である。
4 is a cross-sectional view showing a dispersion type EL device for observing emission intensity of Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1.透明導電性電極 2.防湿樹脂 3.発光層 4.絶縁層 5.背面電極(アルミニウム箔など) 6.蛍光体粒子 7.高誘電体粒子 8.ポリエステルフィルム 1. Transparent conductive electrode 2. Moisture-proof resin 3. Light-emitting layer 4. Insulating layer 5. Back electrode (aluminum foil, etc.) 6. Phosphor particles 7. High dielectric particles 8. Polyester film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粒状蛍光体がバインダ−中に分散した層
と、粒状高誘電体がバインダ−中に分散した層が積層さ
れてなり、前者に対して後者の層が素子の背面側に位置
し、かつ該粒状高誘電体の平均粒径が該粒状蛍光体のそ
れの1/2以上の大きさである発光層を有することを特
徴とする分散型エレクトロルミネッセンス素子。
1. A layer in which a granular phosphor is dispersed in a binder and a layer in which a granular high dielectric material is dispersed in a binder are laminated, and the latter layer is located on the back side of the device with respect to the former. In addition, the dispersion type electroluminescence device is characterized by having a light emitting layer in which the average particle size of the granular high dielectric material is 1/2 or more of that of the granular phosphor.
JP5039753A 1993-03-01 1993-03-01 Dispersion type el element Pending JPH06260284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039753A JPH06260284A (en) 1993-03-01 1993-03-01 Dispersion type el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039753A JPH06260284A (en) 1993-03-01 1993-03-01 Dispersion type el element

Publications (1)

Publication Number Publication Date
JPH06260284A true JPH06260284A (en) 1994-09-16

Family

ID=12561717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039753A Pending JPH06260284A (en) 1993-03-01 1993-03-01 Dispersion type el element

Country Status (1)

Country Link
JP (1) JPH06260284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251458A (en) * 2007-03-30 2008-10-16 Chugoku Electric Power Co Inc:The Light emitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251458A (en) * 2007-03-30 2008-10-16 Chugoku Electric Power Co Inc:The Light emitter

Similar Documents

Publication Publication Date Title
US4684353A (en) Flexible electroluminescent film laminate
US4020389A (en) Electrode construction for flexible electroluminescent lamp
JP2874926B2 (en) Electroluminescent lamp
KR20060114387A (en) Field-emission phosphor, its manufacturing method, and field-emission device
JPH10335064A (en) Electroluminescent element and its manufacture
US20050151465A1 (en) Electroluminescence system and device for the production thereof
JPH0878164A (en) Conductive paste, translucent conductive film, and dispersion type electroluminescent element using them
US6639355B1 (en) Multidirectional electroluminescent lamp structures
JPH06260284A (en) Dispersion type el element
JPH0765950A (en) Dispersion type el element
JP3250276B2 (en) Dispersion type EL element
JPH08288066A (en) Dispersed powder type electroluminescent element
JPS6321004Y2 (en)
JPH0224995A (en) Electroluminescence element
JPH09232076A (en) El lamp
JPH03250582A (en) Dispersion type el element and its manufacture
JPH02227992A (en) Transparent conductive laminate and manufacture of electroluminescence display using the same laminate
JPH02276193A (en) Manufacture of electroluminescent element
JPH01264196A (en) Dispersion type electroluminescent element
JPH0757874A (en) Element for dispersion type el panel
JPH0779035B2 (en) Distributed EL device
JP2000100571A (en) Distributed type electroluminescent device
JPH06223969A (en) Organic dispersion type el panel
JPS6235235B2 (en)
JPH031485A (en) Electroluminescent lamp