JPH10335064A - Electroluminescent element and its manufacture - Google Patents

Electroluminescent element and its manufacture

Info

Publication number
JPH10335064A
JPH10335064A JP9128626A JP12862697A JPH10335064A JP H10335064 A JPH10335064 A JP H10335064A JP 9128626 A JP9128626 A JP 9128626A JP 12862697 A JP12862697 A JP 12862697A JP H10335064 A JPH10335064 A JP H10335064A
Authority
JP
Japan
Prior art keywords
layer
particles
light
light emitting
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9128626A
Other languages
Japanese (ja)
Inventor
Hidetoshi Abe
秀俊 阿部
Yoshinori Araki
好則 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Priority to JP9128626A priority Critical patent/JPH10335064A/en
Priority to US09/424,110 priority patent/US6406803B1/en
Priority to CA002289085A priority patent/CA2289085A1/en
Priority to KR1019997010652A priority patent/KR20010012691A/en
Priority to PCT/US1998/006119 priority patent/WO1998053645A1/en
Priority to CN98805242A priority patent/CN1257641A/en
Priority to BR9809125-5A priority patent/BR9809125A/en
Priority to EP98913220A priority patent/EP0992177A1/en
Priority to AU67824/98A priority patent/AU6782498A/en
Publication of JPH10335064A publication Critical patent/JPH10335064A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • G09F13/22Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent
    • G09F2013/227Electroluminescent displays for vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electroluminescent element in which the filling ratio of light emitting grains in a light emitting layer can be easily enhanced, and in which brightness of light emission is drastically improved. SOLUTION: An electroluminescent element is composed of a transparent base material 1, a transparent conductive layer 2 arranged on the back surface of the transparent base material 1, a light emitting layer 8 containing light emitting grains 8 and matrix resin and arranged on the back surface of the transparent conductive layer 2, and a back surface electrode 6 arranged on the back surface of the light emitting layer 8, the light emitting layer 8 is formed by containing matrix resin and composed of a transparent supporting layer 3 arranged on the transparent conductive layer 2 side, an insulating layer 5 containing insulating materials and arranged on the back surface electrode 6 side, and a light emitting grain layer 4 substantially formed of grains embedded between the supporting layer 3 and the insulating layer 5 and in which the grains contains light emitting grains 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光体粒子とマト
リックス樹脂とを含んでなる発光層を有するエレクトロ
ルミネッセンス素子(以下、「EL素子」という。)に
関し、特に、従来の「分散型発光層」とは異なる着想に
基づく高輝度発光EL素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescence device (hereinafter, referred to as an "EL device") having a light-emitting layer containing light-emitting particles and a matrix resin, and more particularly to a conventional "dispersed light-emitting layer". And a high-brightness light-emitting EL element based on an idea different from the above.

【0002】[0002]

【従来の技術】蛍光体等の発光体粒子を、高誘電率ポリ
マー等のマトリックス樹脂に分散させて形成した、いわ
ゆる「分散型発光層」を有するEL素子は、次のような
文献から知られている。たとえば、特公昭59−148
78号公報には、透明基材、透明電極層、フッ化ビニリ
デン系マトリックス樹脂だけからなる絶縁層、フッ化ビ
ニリデン系マトリックス樹脂と蛍光体粒子とからなる発
光層、上記と同一の絶縁層、および背面電極を、この順
に積層してなるEL素子が開示されている。また、特公
昭62−59879号公報には、ポリエステルフィル
ム、ITO電極、シアノエチル化エチレン−ビニルアル
コール共重合体(マトリックス樹脂)と蛍光体粒子とか
らなる発光層、およびアルミ箔(背面電極)を、この順
に積層してなるEL素子が開示されている。
2. Description of the Related Art An EL element having a so-called "dispersed light-emitting layer" formed by dispersing phosphor particles such as a phosphor in a matrix resin such as a high dielectric constant polymer is known from the following documents. ing. For example, Japanese Patent Publication No. 59-148
No. 78 discloses a transparent substrate, a transparent electrode layer, an insulating layer composed of only a vinylidene fluoride-based matrix resin, a light-emitting layer composed of a vinylidene fluoride-based matrix resin and phosphor particles, the same insulating layer as described above, and An EL element in which back electrodes are stacked in this order is disclosed. JP-B-62-59879 discloses a polyester film, an ITO electrode, a light-emitting layer composed of cyanoethylated ethylene-vinyl alcohol copolymer (matrix resin) and phosphor particles, and an aluminum foil (back electrode). An EL element formed by laminating in this order is disclosed.

【0003】[0003]

【発明が解決しよとする課題】しかしながら、この様な
「分散型発光層」では、発光輝度を高めることが困難で
あった。その理由は、発光体粒子をマトリックス樹脂溶
液中に分散させた発光層形成用塗料中で、マトリックス
樹脂に比べて比重の大きな発光体粒子が沈降しやく、こ
の様な塗料から形成した発光層中では、発光体粒子がマ
トリックス樹脂中で均一に分散した状態にすることが困
難であるからである。また、発光層中の発光体粒子の充
填率を高めるために、塗料中の発光体粒子の量を増加さ
せると、分散性が低下するので、添加量には限界があ
る。さらに、この様な分散型塗料を用いて均一な厚みで
発光層の塗布厚を大きくすることが比較的困難であるの
で、輝度を高めるために発光層の厚みを大きくするには
塗布回数を増やす必要があり、生産性が悪く、大面積の
シート状EL素子をつくることも困難であった。
However, in such a "dispersed light emitting layer", it was difficult to increase the light emission luminance. The reason is that in the light-emitting layer forming coating material in which the light-emitting particles are dispersed in a matrix resin solution, the light-emitting particles having a higher specific gravity than the matrix resin are liable to settle. This is because it is difficult to make the phosphor particles uniformly dispersed in the matrix resin. In addition, when the amount of the luminescent particles in the coating material is increased in order to increase the filling rate of the luminescent particles in the luminescent layer, the dispersibility is reduced. Furthermore, since it is relatively difficult to increase the thickness of the light-emitting layer with a uniform thickness using such a dispersion-type paint, the number of coatings must be increased to increase the thickness of the light-emitting layer in order to increase the luminance. Therefore, productivity was poor, and it was difficult to produce a large-area sheet-like EL element.

【0004】そこで、本発明の目的は、上記従来技術の
問題点を解決するために、発光層における発光体粒子の
充填率を容易に高め、発光輝度が飛躍的に向上したEL
素子を提供することにある。本発明の別の目的は、上記
の様な分散塗料を用いることなく、発光輝度が高い大面
積のシート状EL素子を生産性良く製造することが可能
な、EL素子の製造方法を提供することにある。
[0004] Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art by easily increasing the filling rate of luminescent particles in the luminescent layer and thereby dramatically improving the luminous brightness.
It is to provide an element. Another object of the present invention is to provide a method of manufacturing an EL element capable of manufacturing a large-area sheet-shaped EL element having high emission luminance with high productivity without using the above-mentioned dispersion paint. It is in.

【0005】[0005]

【課題を解決するための手段】本発明の1つの形態によ
れば、a)透明基材(1)、 b)透明基材(1)の背面に配置された透明導電層
(2)、 c)発光体粒子(7)とマトリックス樹脂とを含み、透
明導電層(2)の背面に配置された発光層(8)、およ
び d)発光層(8)の背面に配置された背面電極(6)を
有してなるEL素子において、発光層(8)は、(c−
1)マトリックス樹脂を含んでなり、透明導電層(2)
側に配置された透明な支持層(3)と、(c−2)絶縁
体物質を含んでなり、背面電極(6)側に配置された絶
縁層(5)と、(c−3)支持層(3)および絶縁層
(5)の両方の層に埋設された発光粒子(7)を含んで
なる発光粒子層(4)とからなる、エレクトロルミネッ
センス素子が提供される。
According to one aspect of the invention, a) a transparent substrate (1), b) a transparent conductive layer (2) disposed on the back of the transparent substrate (1), c. A) a light-emitting layer (8) including a phosphor particle (7) and a matrix resin, and disposed on the back of the transparent conductive layer (2); and d) a back electrode (6) disposed on the back of the light-emitting layer (8). ), The light-emitting layer (8) has (c-
1) A transparent conductive layer comprising a matrix resin (2)
A transparent support layer (3) disposed on the side of the back electrode (6), comprising an insulating material (c-2) disposed on the side of the back electrode (6); An electroluminescent device is provided, comprising a luminescent particle layer (4) comprising luminescent particles (7) embedded in both the layer (3) and the insulating layer (5).

【0006】また、本発明の別の形態によれば、透明基
材(1)、透明基材(1)の背面に配置された透明導電
層(2)、発光体粒子(7)とマトリックス樹脂とを含
み透明導電層(2)の背面に配置された発光層(8)、
および発光層(8)の背面に配置された背面電極(6)
を有してなるエレクトロルミネッセンス素子の製造方法
において、 i)透明導電層(2)が一方の表面に積層された透明基
材(1)を用意し、 ii)透明導電層(2)の上に、マトリックス樹脂を含ん
でなる支持層(3)形成用の塗料を塗布し、その塗料が
固化する前に、発光体粒子(7)を含む粒子を層状に散
布し、粒子を塗料中に部分的に埋設させた後、その塗料
を固化し、透明な支持層(3)と、支持層(3)に密着
した発光粒子層(4)とを形成し、 iii)発光粒子層(4)の上に、絶縁体物質を含んでなる
絶縁層(5)形成用の塗料を塗布し、その塗料を固化し
て発光粒子層(4)と密着した絶縁層(5)を形成し、 iv)絶縁層(5)の上に背面電極層(6)を積層する、
工程を含んでなる製造方法が提供される。
According to another aspect of the present invention, a transparent substrate (1), a transparent conductive layer (2) disposed on the back surface of the transparent substrate (1), luminescent particles (7) and a matrix resin A light emitting layer (8) disposed on the back of the transparent conductive layer (2),
And a back electrode (6) disposed on the back of the light emitting layer (8)
And i) preparing a transparent substrate (1) having a transparent conductive layer (2) laminated on one surface, and ii) forming a transparent substrate on the transparent conductive layer (2). A coating material for forming a support layer (3) containing a matrix resin is applied, and before the coating material is solidified, particles containing the phosphor particles (7) are dispersed in a layer, and the particles are partially dispersed in the coating material. After that, the paint is solidified to form a transparent support layer (3) and a luminescent particle layer (4) adhered to the support layer (3). Iii) On the luminescent particle layer (4) A coating material for forming an insulating layer (5) containing an insulating substance is applied to the coating layer, and the coating material is solidified to form an insulating layer (5) in close contact with the luminescent particle layer (4); iv) an insulating layer Laminating the back electrode layer (6) on (5);
A manufacturing method comprising the steps is provided.

【0007】本発明のEL素子では、発光層(8)に含
まれる発光粒子層(4)が、発光体粒子(7)を含む粒
子から実質的になり、支持層(3)と絶縁層(5)との
間に位置し、支持層(3)と絶縁層(5)との両方に密
着しているので、発光層(8)における発光体粒子の充
填率が容易に高められ、素子の発光輝度が飛躍的に向上
する。また、EL素子を、上記工程i)〜iv)を含んで
なる本発明の製造方法で製造することにより、従来の様
に発光体粒子の分散塗料を用いる必要がなくなり、発光
輝度が高い大面積のシート状EL素子を、生産性良く製
造することが可能となる。
In the EL device of the present invention, the luminescent particle layer (4) contained in the luminescent layer (8) is substantially composed of particles containing the luminescent particles (7), and the support layer (3) and the insulating layer ( 5), and is in close contact with both the support layer (3) and the insulating layer (5), so that the filling rate of the luminescent particles in the luminescent layer (8) can be easily increased, and Light emission brightness is dramatically improved. In addition, by manufacturing the EL element by the manufacturing method of the present invention including the above steps i) to iv), it is not necessary to use a coating material in which luminescent particles are dispersed as in the related art, and a large area with high luminous brightness is obtained. Can be manufactured with high productivity.

【0008】[0008]

【発明の実施の形態】EL素子 本発明の1つの形態によるEL素子の断面を図1に示
す。このEL素子は、透明基材(1)と透明導電層
(2)とからなる積層体、および背面電極(6)との間
に挟まれた発光層(8)とからなるシート状のEL素子
である。この形態では、発光層(8)の構成以外は、従
来の分散型のEL素子と実質的に同一である。発光層
(8)(詳細は後述する)は、マトリックス樹脂を含ん
でなる透明な支持層(3)と、絶縁体物質を含んでなる
絶縁層(5)と、それらの間に挟まれた発光体粒子から
実質的になる発光粒子層(4)とを互いに密着する様に
積層した構造を有する。EL素子全体の厚みは、通常5
0〜3000μmの範囲である。
The cross-section of an EL device according to one embodiment of the DETAILED DESCRIPTION OF THE INVENTION The EL device present invention shown in FIG. This EL element is a sheet-like EL element comprising a laminate comprising a transparent substrate (1) and a transparent conductive layer (2), and a light emitting layer (8) sandwiched between a back electrode (6). It is. This embodiment is substantially the same as a conventional dispersion-type EL element except for the structure of the light-emitting layer (8). The light-emitting layer (8) (to be described in detail later) includes a transparent support layer (3) containing a matrix resin, an insulating layer (5) containing an insulating substance, and a light-emitting layer sandwiched therebetween. It has a structure in which a luminescent particle layer (4) substantially consisting of body particles is laminated so as to be in close contact with each other. The thickness of the entire EL element is usually 5
The range is from 0 to 3000 μm.

【0009】透明基材 透明基材は、分散型のEL素子に用いられている基材と
同じであってよく、例えば、ガラス、プラスチックフィ
ルムなどが使用できる。この様なプラスチックフィルム
の例は、たとえば、ポリエチレンテレフタレート(PE
T)、ポリエチレンナフタレート(PEN)等のポリエ
ステル樹脂;ポリメチルメタクリレート、変性ポリメチ
ルメタクリレート等のアクリル樹脂;ポリフッ化ビニリ
デン、アクリル変成ポリフッ化ビニリデン等のフッ素樹
脂;ポリカーボネート樹脂;塩化ビニル系コポリマー等
の塩化ビニル樹脂などのフィルムである。
Transparent Substrate The transparent substrate may be the same as the substrate used for the dispersion type EL element, and for example, glass, plastic film, etc. can be used. An example of such a plastic film is, for example, polyethylene terephthalate (PE
T), polyester resins such as polyethylene naphthalate (PEN); acrylic resins such as polymethyl methacrylate and modified polymethyl methacrylate; fluorine resins such as polyvinylidene fluoride and acrylic-modified polyvinylidene fluoride; polycarbonate resins; It is a film such as a vinyl chloride resin.

【0010】透明基材は、図1に示す様な単層フィルム
であってよいが、多層フィルムであってもよい。たとえ
ば、多層フィルムの少なくとも一層が、透明性が高く、
かつ発光層の発光色と補色の色に発色する染料を含む様
にすると、光の白色度を高めることができる。この様な
染料としては、発光層の発光色が青緑色である場合、ロ
ーダミン6G、ローダミンB、ペリレン系染料などの赤
色または桃色系の蛍光染料が好ましい。またこれらの染
料を樹脂中に分散させて形成した加工顔料も使用でき
る。また、透明基材の表裏両面は通常平坦であるが、本
発明の効果を損なわない範囲において、透明導電層と接
しない表面が規則的な凹凸を有していても良い。
The transparent substrate may be a single-layer film as shown in FIG. 1, but may be a multilayer film. For example, at least one of the multilayer films has high transparency,
In addition, by including a dye that develops a color complementary to the emission color of the light emitting layer, the whiteness of light can be increased. As such a dye, when the emission color of the light emitting layer is blue-green, a red or pink fluorescent dye such as rhodamine 6G, rhodamine B, or a perylene dye is preferable. A processed pigment formed by dispersing these dyes in a resin can also be used. In addition, the front and back surfaces of the transparent substrate are usually flat, but the surface not in contact with the transparent conductive layer may have regular irregularities as long as the effects of the present invention are not impaired.

【0011】透明基材の光透過率は、通常60%以上、
好適には70%以上、特に好適には80%以上である。
本明細書における「光透過率」は、日本分光(株)社製
の紫外/可視分光光度計「型番:U best V−560」
を使用し、550nmの光を用いて測定された光線透過
率を意味する。透明基材の厚みは、シート状のEL素子
を形成する場合で、通常10〜1000μmである。ま
た、本発明の効果を損なわない範囲において、透明基材
中に、紫外線吸収剤、吸湿剤、着色剤、蛍光物質、燐光
物質等の添加剤を含有させることもできる。
The light transmittance of the transparent substrate is usually 60% or more,
It is preferably at least 70%, particularly preferably at least 80%.
The “light transmittance” in this specification is an ultraviolet / visible spectrophotometer “Model number: U best V-560” manufactured by JASCO Corporation.
Means the light transmittance measured using 550 nm light. The thickness of the transparent substrate is usually 10 to 1000 μm when forming a sheet-like EL element. Further, as long as the effects of the present invention are not impaired, additives such as an ultraviolet absorber, a moisture absorbent, a coloring agent, a fluorescent substance, and a phosphorescent substance may be contained in the transparent substrate.

【0012】透明導電層 透明導電層は、透明基材の背面に、密着する様に配置さ
れる。透明導電層には、分散型のEL素子に用いられて
いるITO(インジウム・チン・オキサイド)膜などの
透明電極が使用できる。透明導電層の厚みは、通常0.
01〜1000μmであり、表面抵抗値は、通常500
Ω/□以下、好適には1〜300Ω/□である。また、
光透過率は通常70%以上、好適には80%以上であ
る。
Transparent conductive layer The transparent conductive layer is disposed on the rear surface of the transparent substrate so as to be in close contact with it. As the transparent conductive layer, a transparent electrode such as an ITO (indium tin oxide) film used for a dispersion type EL element can be used. The thickness of the transparent conductive layer is usually 0.1.
01 to 1000 μm, and the surface resistance is usually 500
Ω / □ or less, preferably 1 to 300 Ω / □. Also,
The light transmittance is usually 70% or more, preferably 80% or more.

【0013】ITO膜は、通常の蒸着、スパッタリン
グ、ペーストの塗布等の製膜手段により形成する。図1
に示した形態では、透明基材の上に直接設けられている
が、透明基材の上にプライマー層を設けた後、そのプラ
イマー層の上にITO膜を形成しても良い。また、プラ
イマー層の代わりに、透明基材の表面にコロナ処理や酸
化珪素コーティング等の易接着処理を施しても良い。あ
るいは、発光層の上にITO膜を設けた後、そのITO
膜の上に、透明基材を積層することもできる。
The ITO film is formed by a film forming means such as ordinary vapor deposition, sputtering, and application of a paste. FIG.
In the embodiment shown in (1), it is provided directly on the transparent substrate, but after providing a primer layer on the transparent substrate, an ITO film may be formed on the primer layer. Further, instead of the primer layer, the surface of the transparent substrate may be subjected to an easy adhesion treatment such as a corona treatment or a silicon oxide coating. Alternatively, after providing an ITO film on the light emitting layer,
A transparent substrate can be laminated on the film.

【0014】背面電極層 背面電極層は、発光層の背面側、すなわち発光層の絶縁
層側に配置される。図1の形態では、発光層と直接接す
る様に配置されている。また、発光層との間に背面電極
との接着力を高める等の目的で、樹脂層を設けることも
できる。この樹脂層の樹脂には、たとえば、後述する高
誘電率ポリマーを使用する。また、樹脂層に、絶縁体無
機粒子を含有させることもできる。
Back Electrode Layer The back electrode layer is disposed on the back side of the light emitting layer, that is, on the insulating layer side of the light emitting layer. In the embodiment shown in FIG. 1, they are arranged so as to be in direct contact with the light emitting layer. In addition, a resin layer may be provided between the light emitting layer and the light emitting layer for the purpose of increasing the adhesive strength to the back electrode. As the resin of this resin layer, for example, a high dielectric constant polymer described later is used. Further, the resin layer may contain inorganic inorganic particles.

【0015】背面電極は、分散型のEL素子に用いられ
ているアルミニウム、金、銀、銅、ニッケル、クロム等
の金属膜;ITO膜等の透明導電膜;導電性カーボン膜
などの導電膜が使用できる。金属膜は、たとえば、蒸着
膜、スパッタ膜、または金属箔などである。背面電極の
厚みは、通常5nm〜1000μmである。また、背面
電極も透明導電膜からなり、かつ絶縁層が透明である場
合、EL素子の表裏両面を発光させることが可能であ
る。
The back electrode is made of a metal film such as aluminum, gold, silver, copper, nickel, chromium or the like used for the dispersion type EL device; a transparent conductive film such as an ITO film; or a conductive film such as a conductive carbon film. Can be used. The metal film is, for example, a deposition film, a sputtered film, a metal foil, or the like. The thickness of the back electrode is usually 5 nm to 1000 μm. When the back electrode is also made of a transparent conductive film and the insulating layer is transparent, it is possible to emit light on both the front and back surfaces of the EL element.

【0016】支持層 発光層の支持層は、好適には透明導電層の背面に密着す
る様に配置される。これにより、発光層の発光効率が容
易に高められる。支持層は、マトリックス樹脂を含んで
なる透明な層である。支持層の厚みは通常3〜1000
μmであり、光透過率は通常70%以上、好適には80
%以上である。マトリックス樹脂は、分散型のEL素子
の発光層に用いられる、エポキシ樹脂、高誘電率ポリマ
ーなどであってよい。高誘電率ポリマーは、1kHzの
交流電圧を印加して測定した誘電率が通常約5以上、好
適には7〜25、特に好適には8〜18の範囲のポリマ
ーである。誘電率が低すぎると発光輝度が高められない
おそれがあり、反対に高すぎると、発光層の寿命が短く
なるおそれがある。
Support Layer The support layer of the light-emitting layer is preferably disposed so as to be in close contact with the back surface of the transparent conductive layer. Thereby, the luminous efficiency of the light emitting layer can be easily increased. The support layer is a transparent layer containing a matrix resin. The thickness of the support layer is usually 3 to 1000
μm, and the light transmittance is usually 70% or more, preferably 80% or more.
% Or more. The matrix resin may be an epoxy resin, a high dielectric constant polymer, or the like used for the light emitting layer of the dispersion type EL element. The high dielectric constant polymer is a polymer having a dielectric constant of usually about 5 or more, preferably 7 to 25, particularly preferably 8 to 18 measured by applying an alternating voltage of 1 kHz. If the dielectric constant is too low, the light emission luminance may not be increased, while if it is too high, the life of the light emitting layer may be shortened.

【0017】高誘電率ポリマーの例は、フッ化ビニリデ
ン系樹脂、シアノ系樹脂等である。フッ化ビニリデン系
樹脂は、たとえば、フッ化ビニリデンモノマーと、少な
くとも1種の他のフッ素系モノマーとの混合物の共重合
により得られる。他のフッ素系モノマーとしては、4フ
ッ化エチレン、3フッ化塩化エチレン、6フッ化プロピ
レン等が例示できる。シアノ系樹脂の例は、シアノエチ
ルセルロース、シアノエチル化エチレン−ビニルアルコ
ール共重合体等である。
Examples of the high dielectric constant polymer include vinylidene fluoride resin, cyano resin and the like. The vinylidene fluoride resin is obtained, for example, by copolymerizing a mixture of a vinylidene fluoride monomer and at least one other fluorine monomer. Examples of other fluorine-based monomers include ethylene tetrafluoride, ethylene trifluoride chloride, and propylene hexafluoride. Examples of the cyano-based resin include cyanoethyl cellulose, cyanoethylated ethylene-vinyl alcohol copolymer, and the like.

【0018】図1の形態では、支持層はマトリックス樹
脂だけからなるが、本発明の効果を損なわない範囲にお
いて、他の樹脂や、充填剤、界面活性剤、紫外線吸収
剤、酸化防止剤、防黴剤、防錆剤、吸湿剤、着色剤、燐
光物質等の添加剤を含有させることもできる。たとえ
ば、発光粒子層の発光色が青緑色である場合、ローダミ
ン6G、ローダミンB、ペリレン系染料などの赤色また
は桃色系の蛍光染料を含有させることもできる。また、
上記他の樹脂は、透明性を損なわない限り、硬化性また
は粘着性を有していても良い。
In the embodiment shown in FIG. 1, the support layer comprises only a matrix resin. However, as long as the effects of the present invention are not impaired, other resins, fillers, surfactants, ultraviolet absorbers, antioxidants, anti-oxidants, etc. Additives such as fungicides, rust preventives, hygroscopic agents, coloring agents, phosphorescent substances and the like can also be contained. For example, when the luminescent color of the luminescent particle layer is bluish green, a red or pink fluorescent dye such as rhodamine 6G, rhodamine B, or a perylene dye may be contained. Also,
The other resin may have curability or tackiness as long as the transparency is not impaired.

【0019】絶縁層 発光層の絶縁層に含まれる絶縁体物質は、分散型のEL
素子に用いられる絶縁体粒子、高誘電率ポリマー等であ
ってよい。図1の形態では、絶縁層は、高誘電率ポリマ
ー中に絶縁体粒子を分散させて形成した塗料から形成さ
れた塗布層である。絶縁体粒子の例は、たとえば、二酸
化チタン、チタン酸バリウム、酸化アルミニウム、酸化
珪素、窒化珪素、酸化マグネシウム等の絶縁体無機粒子
である。高誘電率ポリマーとしては、支持層に用いられ
得るポリマーが使用できる。絶縁層は、たとえば、背面
電極または発光粒子層の上に塗布により設けることがで
きる。絶縁層が、絶縁体粒子と高誘電率ポリマーとを含
んでなる塗布層である場合、それらの配合割合は、高誘
電率ポリマー100重量部に対して、絶縁体粒子が1〜
400重量部、好適には10〜300重量部、特に好適
には20〜200重量部の範囲である。絶縁体粒子が少
なすぎると、絶縁効果が低減し発光輝度が低下するおそ
れがあり、反対に多すぎると、塗料の塗布が困難になる
おそれがある。
The insulator material contained in the insulating layer of the insulating layer light-emitting layer, dispersion EL of
It may be an insulator particle, a high dielectric constant polymer or the like used for the device. In the embodiment of FIG. 1, the insulating layer is a coating layer formed from a paint formed by dispersing insulating particles in a high dielectric constant polymer. Examples of the insulating particles are, for example, insulating inorganic particles such as titanium dioxide, barium titanate, aluminum oxide, silicon oxide, silicon nitride, and magnesium oxide. As the high dielectric constant polymer, a polymer that can be used for the support layer can be used. The insulating layer can be provided, for example, on the back electrode or the luminescent particle layer by coating. When the insulating layer is a coating layer containing insulating particles and a high dielectric constant polymer, the mixing ratio thereof is such that the insulating particles are 1 to 100 parts by weight of the high dielectric constant polymer.
The range is 400 parts by weight, preferably 10 to 300 parts by weight, particularly preferably 20 to 200 parts by weight. If the amount of the insulating particles is too small, the insulating effect may be reduced and the light emission luminance may be reduced. Conversely, if the amount is too large, application of the paint may be difficult.

【0020】絶縁層の厚みは、通常2〜1000μmで
ある。また 絶縁層には、絶縁性を損なわない範囲にお
いて、充填剤、界面活性剤、酸化防止剤、防黴剤、防錆
剤、吸湿剤、着色剤、燐光物質、硬化性樹脂、粘着剤等
の添加剤を含有させることもできる。
The thickness of the insulating layer is usually 2 to 1000 μm. In addition, as long as the insulating layer does not impair the insulating properties, fillers, surfactants, antioxidants, fungicides, rust inhibitors, moisture absorbents, coloring agents, phosphorescent substances, curable resins, adhesives, etc. Additives can also be included.

【0021】発光粒子層 発光粒子層の発光体粒子は、交流電界中に置かれた時に
自ら発光する粒子であり、たとえば、分散型のEL素子
の発光層に用いられている蛍光体粒子が使用できる。蛍
光体は、たとえば、ZnS、CdZnS、ZnSSe、CdZ
nSe等の蛍光化合物の単体、または蛍光化合物にCu、
I、Cl、Al、Mn、NdF3、Ag、B等の補助成分を添
加した複合体からなる。
Light-Emitting Particle Layer The light-emitting particles of the light-emitting particle layer are particles that emit light when placed in an AC electric field. For example, phosphor particles used in the light-emitting layer of a dispersion-type EL element are used. it can. Phosphors are, for example, ZnS, CdZnS, ZnSSe, CdZ
A single fluorescent compound such as nSe, or a fluorescent compound of Cu,
It is composed of a complex to which auxiliary components such as I, Cl, Al, Mn, NdF 3 , Ag and B are added.

【0022】蛍光体粒子の平均粒子径は、通常5〜10
0μmである。また、粒子化された蛍光体の表面にガラ
ス、セラミックス等で被覆膜を形成したものを用いても
良い。発光粒子層の厚みは、通常5〜500μmであ
る。また、発光粒子層が実質的に単層状に配置された複
数の粒子からなる場合、EL素子の薄型化が容易になる
ので好適である。
The average particle diameter of the phosphor particles is usually 5 to 10
0 μm. Further, a phosphor in which a coating film is formed with glass, ceramics, or the like on the surface of a particle-shaped phosphor may be used. The thickness of the luminescent particle layer is usually from 5 to 500 μm. In addition, it is preferable that the luminescent particle layer is composed of a plurality of particles arranged substantially in a single layer, because the thickness of the EL element can be easily reduced.

【0023】さらに発光粒子層は、2種以上の発光体粒
子を含んでいても良い。たとえば、青、青緑、緑、オレ
ンジなどの色の光を発光し、互いに独立するスペクトル
を持つ発光体粒子を、少なくとも2種類混合することに
より、白色度の高い発光層を形成することができる。発
光粒子層の粒子に含まれる発光体粒子の割合は、好適に
は40体積%以上である。40体積%未満であると、発
光輝度の向上効果が低下するおそれがある。発光輝度
は、粒子が発光体粒子だけからなる場合に最も高められ
る。したがって、特に好適な発光体粒子の割合は、50
〜100体積%の範囲である。
Further, the luminescent particle layer may contain two or more kinds of luminescent particles. For example, a light-emitting layer with high whiteness can be formed by mixing at least two kinds of light-emitting particles that emit light of colors such as blue, blue-green, green, and orange, and have mutually independent spectra. . The ratio of the luminescent particles contained in the particles of the luminescent particle layer is preferably at least 40% by volume. If the content is less than 40% by volume, the effect of improving the emission luminance may be reduced. Luminance is maximized when the particles consist only of phosphor particles. Thus, a particularly preferred proportion of phosphor particles is 50
-100% by volume.

【0024】発光粒子層は、発光体粒子以外の粒子(ガ
ラス、着色材、燐光物質、ポリマー、無機酸化物等から
なる粒子)を1種または2種以上を含有することができ
る。たとえば、青緑色の光を発光する発光体粒子と、そ
の光と補色の関係にある桃色着色材(ローダミン6G、
ローダミンBなどを含有する粒子等)とを混合し、白色
度の高い発光層を形成することができる。
The luminescent particle layer may contain one or more particles (particles made of glass, coloring material, phosphor, polymer, inorganic oxide, etc.) other than the luminescent particles. For example, luminescent particles that emit blue-green light and a pink coloring material (rhodamine 6G,
And particles containing rhodamine B or the like) to form a light-emitting layer having high whiteness.

【0025】発光層の形成 発光層の支持層、発光粒子層および絶縁層とからなる積
層構造は、たとえば、次のようにして形成する。まず、
発光粒子層を、通常の粉体コーティング法により、支持
層または絶縁層のいずれか一方の表面に形成する。たと
えば、支持層が流動性を有している間に、静電吸引法、
スプレー法、重力散布法等の手段により、発光体粒子を
含む粒子を支持層上に散布し、粒子が部分的に、または
ほぼ全体的に支持層中に埋没した状態の発光粒子層を形
成した後、支持層の流動性を失わせて、支持層と粒子層
とを互いに密着させる。支持層が流動性を有する状態に
するには、溶剤を含む支持層用の塗料から形成した塗布
層を未乾燥状態に保つ方法、支持層用の樹脂の軟化点ま
たは融点以上の温度に支持層を保つ方法、または、放射
線硬化型モノマーを支持層用の塗料に含ませる方法が好
適である。これらの方法によれば、支持層の流動性を失
わせる固化操作(乾燥、冷却または硬化)が容易であ
る。また、同様の方法により、支持層に代えて塗布層か
らなる絶縁層の上に、発光粒子層を形成することもでき
る。
Formation of Light Emitting Layer A laminated structure composed of the supporting layer of the light emitting layer, the light emitting particle layer and the insulating layer is formed, for example, as follows. First,
The luminescent particle layer is formed on one surface of either the support layer or the insulating layer by an ordinary powder coating method. For example, while the support layer has fluidity, the electrostatic suction method,
The particles including the phosphor particles were sprayed on the support layer by a method such as a spraying method or a gravity scattering method to form a light-emitting particle layer in which the particles were partially or almost entirely embedded in the support layer. Thereafter, the fluidity of the support layer is lost, and the support layer and the particle layer are brought into close contact with each other. In order for the support layer to have fluidity, a method of keeping the coating layer formed from the coating material for the support layer containing a solvent in an undried state, the support layer at a temperature equal to or higher than the softening point or melting point of the resin for the support layer. Or a method in which a radiation-curable monomer is included in the coating material for the support layer. According to these methods, a solidifying operation (drying, cooling, or hardening) for losing the fluidity of the support layer is easy. Further, in the same manner, the luminescent particle layer can be formed on the insulating layer formed of the coating layer instead of the support layer.

【0026】上記の様にして形成した発光粒子層の上
に、最後の層(支持層または絶縁層の他方)を積層し、
これらが互いに密着した積層構造を形成する。最後の層
は、その層を形成する材料を含んでなる塗料を塗布し、
固化させて積層するか、または、その層を形成する材料
からなるフィルムを圧着させる方法によって積層するの
が好ましい。これらの方法によれば、支持層、発光粒子
層および絶縁層の、それぞれの界面に気泡が存在しない
密着構造が確実に形成できる。
The last layer (the other of the support layer and the insulating layer) is laminated on the luminescent particle layer formed as described above,
These form a laminated structure which is in close contact with each other. The last layer is applied with a paint comprising the material forming the layer,
It is preferable to solidify and laminate, or to laminate by a method of pressing a film made of a material forming the layer. According to these methods, it is possible to reliably form a contact structure in which no air bubbles exist at the respective interfaces of the support layer, the luminescent particle layer and the insulating layer.

【0027】図1の形態では、発光粒子層は単層状に配
置された複数の粒子からなり、支持層および絶縁層の両
方に密着している。しかしながら、本発明の効果を損な
わない範囲において、発光粒子層は多層状の粒子層であ
っても良く、また、支持層または絶縁層のいずれか一方
に、発光粒子層の一部のまたはほぼ全部の粒子が完全に
埋没しても良い。要は、発光粒子層が、支持層と絶縁層
との間に配置され、いずれの層どうしの界面にも気泡が
実質的に存在しない、密着構造が形成できれば良いので
ある。
In the embodiment shown in FIG. 1, the luminescent particle layer is composed of a plurality of particles arranged in a single layer and is in close contact with both the support layer and the insulating layer. However, as long as the effects of the present invention are not impaired, the light-emitting particle layer may be a multilayer particle layer, and a part or almost all of the light-emitting particle layer may be provided on one of the support layer and the insulating layer. May be completely buried. The point is that the luminescent particle layer is disposed between the support layer and the insulating layer, and it is only necessary that an adhesive structure can be formed in which substantially no air bubbles exist at the interface between any of the layers.

【0028】また、上記の様にして形成された発光粒子
層では、通常、粒子間に支持層または絶縁層の材料が侵
入する。この場合、粒子の充填率は、通常20体積%以
上、好適に30体積%以上、特に好適には40体積%以
上になる様にする。充填率の低下は、発光輝度の低下を
招くおそれがあるからである。
In the luminescent particle layer formed as described above, the material of the support layer or the insulating layer usually penetrates between the particles. In this case, the filling rate of the particles is usually at least 20% by volume, preferably at least 30% by volume, particularly preferably at least 40% by volume. This is because a decrease in the filling rate may cause a decrease in light emission luminance.

【0029】ここでいう「粒子の充填率」は、発光粒子
層の全部の粒子と、その粒子間に存在するその粒子以外
の材料とからなる層を仮定し、その仮定層の全体積に対
する粒子の全体積の百分率であると定義する。さらに、
本発明の効果を損なわない限り、支持層または/および
絶縁層が2層以上の積層体であっても良い。
The term “particle filling rate” as used herein means that a layer composed of all the particles of the luminescent particle layer and a material other than the particles existing between the particles is defined as a particle relative to the total volume of the assumed layer. Is defined as a percentage of the total volume of further,
As long as the effects of the present invention are not impaired, the support layer and / or the insulating layer may be a laminate of two or more layers.

【0030】EL素子の製造方法 次に、上記の様なEL素子を製造するのに適した、本発
明の1形態の製造方法について説明する。まず、透明導
電層が表面に積層された透明基材を用意し、透明導電層
の上に支持層形成用の塗料を塗布し、その塗料が乾燥す
る前に発光体粒子を含む粒子を層状に散布し、支持層中
に粒子の層を部分的に埋設し、その後その塗料を乾燥す
る。これにより、支持層中に部分的に埋設され、かつ支
持層に密着した発光粒子層が容易に形成できる。
Manufacturing Method of EL Element Next, a manufacturing method according to an embodiment of the present invention, which is suitable for manufacturing the above-described EL element, will be described. First, a transparent base material having a transparent conductive layer laminated on its surface is prepared, a coating for forming a support layer is applied on the transparent conductive layer, and the particles including the phosphor particles are layered before the coating is dried. Spray and partially bury the layer of particles in the support layer, then dry the paint. This makes it possible to easily form a light-emitting particle layer that is partially buried in the support layer and adhered to the support layer.

【0031】粒子は、粒子の垂直方向(支持層の面に対
して垂直な方向)の長さ(たとえば、略球状粒子であれ
ば「直径」)の、通常は1〜99%、好適には10〜9
0%、特に好適には20〜80%の部分が、支持層中に
埋没する様にする。埋没割合が1%未満であると、絶縁
層の形成段階で粒子層が破損するおそれがあり、反対に
99%を超える様に埋設しようとすると、粒子層が均一
に形成できないおそれがある。
The particles are usually 1 to 99%, preferably, 1 to 99% of the length in the vertical direction (the direction perpendicular to the plane of the support layer) of the particles (for example, the “diameter” for substantially spherical particles). 10-9
0%, particularly preferably 20-80%, is buried in the support layer. If the burial ratio is less than 1%, the particle layer may be damaged at the stage of forming the insulating layer. Conversely, if the burying ratio exceeds 99%, the particle layer may not be formed uniformly.

【0032】支持層形成用の塗料の塗布厚は、乾燥厚が
上記の範囲になる様に選ばれる。支持層形成用の塗料の
固形分濃度は、通常5〜80重量%の範囲である。塗料
に用いられる溶剤は、マトリックス樹脂を均一に溶解し
得る様に、通常の有機溶媒の中から選択される。塗料の
調製には、ホモミキサー、サンドミル、プラネタリーミ
キサー等の混合、混練装置が使用できる。塗布操作に
は、バーコーター、ロールコーター、ナイフコーター、
ダイコーター等の塗布装置が使用できる。乾燥条件は、
塗料の溶剤の種類、固形分濃度にもよるが、通常、常温
(約25℃)〜150℃、5秒〜1時間の範囲で適宜選
ばれる。粒子の散布は前述の方法を用い、支持層形成用
の塗料を塗布後、通常1分以内に行う。これにより、粒
子の埋設を容易にすることができる。この時の支持層の
塗料の乾燥の程度は、粒子と支持層との濡れ性にもよる
が、固形分濃度で表せば通常10〜95重量%、好適に
は20〜90重量%の範囲である。
The coating thickness of the coating for forming the support layer is selected so that the dry thickness falls within the above range. The solid content of the coating material for forming the support layer is usually in the range of 5 to 80% by weight. The solvent used for the paint is selected from ordinary organic solvents so that the matrix resin can be uniformly dissolved. Mixing and kneading apparatuses such as a homomixer, a sand mill, and a planetary mixer can be used for preparing the coating. The coating operation includes a bar coater, roll coater, knife coater,
A coating device such as a die coater can be used. Drying conditions are
Although it depends on the type of the solvent of the paint and the solid content concentration, it is usually appropriately selected in the range of normal temperature (about 25 ° C.) to 150 ° C. for 5 seconds to 1 hour. The dispersion of the particles is carried out by the above-described method, usually within one minute after the coating material for forming the support layer is applied. Thereby, embedding of particles can be facilitated. The degree of drying of the coating material of the support layer at this time depends on the wettability between the particles and the support layer, but is usually in the range of 10 to 95% by weight, preferably 20 to 90% by weight in terms of solid content. is there.

【0033】続いて、発光粒子層を被覆する様に絶縁層
形成用の塗料を塗布し、その塗料を乾燥する。これによ
り、発光体粒子層が、支持層および絶縁層の両層に埋設
され、いずれの層どうしの界面にも気泡が実質的に存在
しない密着構造が形成できる。
Subsequently, a paint for forming an insulating layer is applied so as to cover the luminescent particle layer, and the paint is dried. As a result, the luminescent particle layer is buried in both the support layer and the insulating layer, and an adhesive structure in which substantially no air bubbles exist at the interface between any of the layers can be formed.

【0034】絶縁層形成用の塗料の塗布厚は、乾燥厚が
上記の範囲になる様に選ばれる。絶縁層形成用の塗料の
固形分濃度は、通常5〜70重量%の範囲である。塗料
に用いられる溶剤は、絶縁体物質を均一に溶解またはお
よび分散し得る様に、通常の有機溶媒の中から選択され
る。塗料の調製および塗布には、支持層形成用塗料の場
合と同様の装置、器具が使用できる。乾燥条件は、塗料
の溶剤の種類、固形分濃度にもよるが、通常、常温(約
25℃)〜150℃、5秒〜1時間の範囲で適宜選ばれ
る。
The coating thickness of the coating for forming the insulating layer is selected so that the dry thickness falls within the above range. The solid content of the coating material for forming the insulating layer is usually in the range of 5 to 70% by weight. The solvent used for the paint is selected from ordinary organic solvents so that the insulating material can be uniformly dissolved or dispersed. For the preparation and application of the paint, the same devices and equipment as in the case of the support layer forming paint can be used. The drying conditions depend on the type of the solvent of the paint and the solid content concentration, but are usually appropriately selected in the range of normal temperature (about 25 ° C.) to 150 ° C. for 5 seconds to 1 hour.

【0035】最後に、絶縁層の上に背面電極層を積層す
る。背面電極の形成は、前述の方法が使用できる。しか
しながら、乾燥後の絶縁層上に効率良く、かつ密着性良
く設けるには、蒸着、スパッタリング等の真空薄膜形成
法が好適である。
Finally, a back electrode layer is laminated on the insulating layer. The method described above can be used for forming the back electrode. However, a vacuum thin film forming method such as vapor deposition and sputtering is suitable for providing the insulating layer after drying efficiently and with good adhesion.

【0036】上記の製造方法は、各ステップが通常のシ
ート状の物品の製造方法と実質的に同一であるので、通
常のシート状の物品の製造工程を用い、発光輝度が高い
大面積のシート状EL素子を生産性良く製造することが
可能である。また、従来の様に発光体粒子の分散塗料を
用いる必要がないので、その分散塗料に起因する問題が
すべて解決できる。
In the above-described manufacturing method, since each step is substantially the same as that of a normal sheet-like article, a large-area sheet having a high luminous luminance is used by using a normal sheet-like article manufacturing process. It is possible to manufacture the shape EL element with high productivity. Further, since it is not necessary to use a dispersion paint of the phosphor particles as in the related art, all problems caused by the dispersion paint can be solved.

【0037】また、上記方法に類似の別法として、ま
ず、背面電極を含む支持体の上に絶縁層塗料を塗布し、
それが乾燥する前に発光粒子を散布し、絶縁層中に粒子
層を部分的に埋設した後乾燥し、続いて支持層塗料を塗
布、乾燥し、最後に、透明導電層付き透明基材をドライ
ラミネートするという、一連の工程を含む製造方法もあ
り、上記方法と同様の効果を奏する。
As another method similar to the above method, first, an insulating layer paint is applied on a support including a back electrode,
Before it dries, luminescent particles are sprinkled, the particle layer is partially buried in the insulating layer, and then dried.Then, the support layer paint is applied and dried. There is also a manufacturing method including a series of steps of dry lamination, and the same effect as the above method can be obtained.

【0038】EL素子の用途 本発明のEL素子は、自動車の液晶計器盤等の液晶ディ
スプレーのバックライト光源として使用できる。また、
内照式の看板、道路標識、装飾ディスプレー等の内照式
表示体の光源としても使用できる。たとえば、光透過性
シートの表面に、文字、図案等のイメージを設け、シー
トの背面とEL素子の発光面とを向かい合う様にして配
置して使用する。光透過性シートは、たとえば、上記透
明基材と同様の素材が使用でき、その光透過率は通常2
0%以上である。この時、シートの背面とEL素子の発
光面とが密着しているのが好ましい。密着させるために
は、光透過性の接着剤を使用する。この様な接着剤は、
例えば、アクリル系粘着剤、アクリル系感熱性接着剤な
どである。
Use of EL Element The EL element of the present invention can be used as a backlight source for a liquid crystal display such as a liquid crystal instrument panel of an automobile. Also,
It can also be used as a light source for internally illuminated displays such as internally illuminated signboards, road signs, and decorative displays. For example, images such as characters and designs are provided on the surface of a light transmissive sheet, and the light transmissive sheet is used with the back surface of the sheet and the light emitting surface of the EL element facing each other. As the light transmitting sheet, for example, the same material as the above transparent substrate can be used, and its light transmittance is usually 2 or more.
0% or more. At this time, it is preferable that the back surface of the sheet and the light emitting surface of the EL element are in close contact with each other. In order to make them adhere to each other, a light-transmitting adhesive is used. Such an adhesive is
For example, an acrylic pressure-sensitive adhesive, an acrylic heat-sensitive adhesive, and the like.

【0039】また、光透過性シートを、上記透明基材と
して用い、光透過性シートの背面に透明導電層を直接設
け、その導電層に発光層を積層してEL内蔵型表示体を
構成することもできる。さらに、プリズム型再帰性反射
シートを光透過性シート(または透明基材)として用い
ることもできる。再帰性反射シートとの組み合わせは、
EL内蔵型表示体に再帰反射性と自発光性能とを合わせ
持たせることができる。
Further, a light-transmitting sheet is used as the transparent substrate, a transparent conductive layer is directly provided on the back surface of the light-transmitting sheet, and a light-emitting layer is laminated on the conductive layer to form an EL-embedded display. You can also. Further, a prism type retroreflective sheet can be used as a light-transmitting sheet (or a transparent substrate). Combination with a retroreflective sheet
The retroreflective property and the self-luminous performance can be provided to the EL built-in display body.

【0040】EL素子の発光は、通常、透明導電層と背
面電極層とに設けられた2つの端子に電源を接続し、素
子に電圧を印加して行う。電源としては、たとえば、乾
電池、蓄電池、太陽電池等の電池を使用したり、送電線
から供給される交流電流を、インバータ(電圧や周波数
の大きさを変えたり、交流−直流間の変換を行う装置)
を介してEL素子に供給する。交流周波数は、通常50
〜1000Hzの範囲である。また、印加電圧は、通常
3〜200Vの範囲である。
Light emission of the EL element is usually performed by connecting a power source to two terminals provided on the transparent conductive layer and the back electrode layer and applying a voltage to the element. As the power source, for example, a battery such as a dry battery, a storage battery, or a solar battery is used, or an AC current supplied from a power transmission line is converted into an inverter (changing the magnitude of a voltage or a frequency or converting between AC and DC. apparatus)
Is supplied to the EL element via the. AC frequency is usually 50
It is in the range of -1000 Hz. The applied voltage is usually in the range of 3 to 200V.

【0041】本発明のEL素子は発光効率が高いので、
従来の分散型よりも低い電圧(たとえば、100V以
下)でも十分な明るさ(たとえば、50cd/m
上)で発光する。また、EL素子を屋外で使用する場
合、EL素子を、ポリアミド系樹脂等からなる捕水フィ
ルムや、ポリテトラフルオロエチレンフィルム等からな
る防湿フィルムにより被覆して用いるのが好ましい。
Since the EL device of the present invention has high luminous efficiency,
It emits light with sufficient brightness (for example, 50 cd / m 2 or more) even at a lower voltage (for example, 100 V or less) than the conventional dispersion type. When the EL element is used outdoors, it is preferable to use the EL element by covering it with a water-trapping film made of a polyamide resin or the like or a moisture-proof film made of a polytetrafluoroethylene film or the like.

【0042】[0042]

【実施例】【Example】

(実施例1)EL素子の形成 まず、ITO層付き透明基材として、尾池工業(株)社
製ITO/PET積層フィルム「品番:TCF・KPC
300−75(A)(厚み75μm、光透過率は81
%)」を使用した。このフィルムでは、一方の表面に、
ITO(インジウム−錫−オキサイド)からなる透明導
電層がスパッタ法により積層されていた。なお、ITO
層の厚みは50nm、表面抵抗値は250Ω/□であっ
た。一方、高誘電率ポリマー(3M社製テトラフルオロ
エチレン−ヘキサフルオロプロピレン−フッ化ビニリデ
ン共重合体「品番:THV200P」;誘電率8(1k
Hz)、光透過率96%)と、酢酸エチルとを混合し、
ホモミキサーを用いて均一に溶解させて、支持層形成用
塗料を調製した。塗料の固形分は約25重量%であっ
た。
(Example 1) Formation of EL element First, as a transparent substrate with an ITO layer, an ITO / PET laminated film manufactured by Oike Kogyo Co., Ltd. “Product number: TCF · KPC
300-75 (A) (thickness 75 μm, light transmittance 81
%)"It was used. In this film, on one surface,
A transparent conductive layer made of ITO (indium-tin-oxide) was laminated by a sputtering method. In addition, ITO
The thickness of the layer was 50 nm, and the surface resistance was 250 Ω / □. On the other hand, a high dielectric constant polymer (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer “product number: THV200P” manufactured by 3M Company; a dielectric constant of 8 (1 k
Hz), light transmittance of 96%) and ethyl acetate,
It was uniformly dissolved using a homomixer to prepare a coating for forming a support layer. The solids content of the paint was about 25% by weight.

【0043】次に、透明基材の透明導電層の上に、この
支持層形成用の塗料を塗布し、その塗料が乾燥する前に
発光体粒子を実質的に単層状に散布し、粒子が直径の約
50%が埋没する様に埋設させた後、塗料を乾燥した。
塗料の塗布は、ナイフコーターを用いて行い、塗布直後
に粒子を散布した。乾燥条件は、約65℃、約1分間で
あった。支持層と発光体粒子層とを合わせた乾燥後の厚
さは、40μmであった。発光体粒子は、オスラム・シ
ルバニア(株)社製ZnS系蛍光体粒子「品番:S−7
28(平均粒子径23μm)」であった。
Next, the coating material for forming the support layer is applied on the transparent conductive layer of the transparent substrate, and the phosphor particles are dispersed substantially in a single layer before the coating material is dried. After being buried such that about 50% of the diameter was buried, the paint was dried.
The application of the paint was performed using a knife coater, and particles were sprayed immediately after the application. Drying conditions were about 65 ° C. for about 1 minute. The combined thickness of the support layer and the phosphor layer after drying was 40 μm. The phosphor particles are ZnS-based phosphor particles manufactured by OSRAM Sylvania Co., Ltd. “Product number: S-7”
28 (average particle diameter 23 μm) ”.

【0044】続いて、発光粒子層を被覆する様に絶縁層
形成用の塗料を塗布し、その塗料を乾燥させ、絶縁層を
形成した。これにより、発光体粒子層が、支持層および
絶縁層の両層に埋設され、いずれの層どうしの界面にも
気泡が実質的に存在しない密着構造が形成できた。絶縁
層形成用の塗料は、高誘電率ポリマー(前述の「品番:
THV200P」)、絶縁体粒子(関東化学(株)社製
チタン酸バリウム)および酢酸エチルを混合した以外
は、支持層形成用の塗料と同様にして調製した。ポリマ
ー:絶縁体粒子の重量比は、100:80であり、塗料
の固形分は約38重量%であった。塗料の塗布は、ナイ
フコーターを用いて行い、乾燥条件は約65℃、約1分
間であった。支持層、発光体粒子層および絶縁層とから
なる積層体(発光層)の、乾燥後の厚さは45μmであ
った。
Subsequently, a coating material for forming an insulating layer was applied so as to cover the luminescent particle layer, and the coating material was dried to form an insulating layer. As a result, the luminescent particle layer was embedded in both the support layer and the insulating layer, and an adhesion structure in which substantially no air bubbles were present at the interface between any of the layers was formed. The coating for forming the insulating layer is made of a high dielectric constant polymer (the above-mentioned “article number:
THV200P ”), insulating particles (barium titanate manufactured by Kanto Chemical Co., Ltd.) and ethyl acetate were mixed in the same manner as the coating for forming the support layer. The weight ratio of polymer: insulator particles was 100: 80 and the solids content of the coating was about 38% by weight. The application of the paint was performed using a knife coater, and the drying conditions were about 65 ° C. and about 1 minute. The thickness of the laminate (light-emitting layer) composed of the support layer, the light-emitting particle layer, and the insulating layer after drying was 45 μm.

【0045】最後に、絶縁層の上に、真空蒸着法を用い
てアルミニウムからなる背面電極層を積層し、本例のフ
ィルム状EL素子を形成した。なお、ここで用いた真空
蒸着装置は、ULVAC(株)社製「型番:EBV−6
DA」であり、チャンバー内圧力は10-5Torr以下、
蒸着時間5秒間の条件で行った。
Finally, a back electrode layer made of aluminum was laminated on the insulating layer by using a vacuum evaporation method to form a film-like EL device of this example. In addition, the vacuum evaporation apparatus used here is "Model number: EBV-6" manufactured by ULVAC Corporation.
DA ”, the pressure in the chamber is 10 −5 Torr or less,
The deposition was performed for 5 seconds.

【0046】EL素子の発光 本例のEL素子(平面寸法100mm×100mmの正
方形状に裁断したもの)の透明導電層および背面電極層
にそれぞれ端子を設け、電源装置(菊水電子工業(株)
社製「品番:PCR500L」)を接続して、2組の条
件(条件A:100V、400Hz、条件B:120
V、600Hz)にて、交流電圧を印加したところ、ど
ちらの条件においても、均一に発光した。
Light Emission of EL Element A terminal was provided on each of the transparent conductive layer and the back electrode layer of the EL element of this example (cut into a square shape with a plane size of 100 mm × 100 mm), and a power supply device (Kikusui Electronics Corporation)
(Product number: PCR500L), and two sets of conditions (condition A: 100 V, 400 Hz, condition B: 120)
(V, 600 Hz), an AC voltage was applied, and uniform light emission was obtained under both conditions.

【0047】EL素子を暗箱内に設置し、透明基材の表
面から1m垂直方向に離れた点における発光輝度を、ミ
ノルタ(株)社製輝度計「品番:LS110」を用いて
測定した。結果を表1に示す。
The EL element was placed in a dark box, and the light emission luminance at a point 1 m vertically away from the surface of the transparent base material was measured using a luminance meter “LS110” manufactured by Minolta Co., Ltd. Table 1 shows the results.

【0048】(比較例1)「分散型」の発光層を用いた
以外は、実施例1と同様にして本例のEL素子を形成し
た。「分散型」発光層は、次のようにして形成した。実
施例1と同じ高誘電率ポリマー(100重量部)、蛍光
体粒子(150重量部)、および酢酸エチルを混合し、
ホモミキサーを用いて均一に分散させて、発光層形成用
塗料を調製した。塗料の固形分は約45重量%であっ
た。塗料の塗布は、透明基材の透明導電層の上に、ナイ
フコーターを用いて行い、約65℃、約1分間の条件で
乾燥した。発光層の乾燥後の厚さは30μmであた。本
例のEL素子の発光輝度を、実施例1と同様にして測定
した。結果を表1に示す。
Comparative Example 1 An EL device of this example was formed in the same manner as in Example 1 except that a “dispersion type” light emitting layer was used. The "dispersed" light emitting layer was formed as follows. The same high dielectric constant polymer (100 parts by weight), phosphor particles (150 parts by weight) and ethyl acetate as in Example 1 were mixed,
The coating material for forming a light emitting layer was prepared by uniformly dispersing using a homomixer. The solids content of the paint was about 45% by weight. The coating was applied on the transparent conductive layer of the transparent substrate using a knife coater, and dried at about 65 ° C. for about 1 minute. The thickness of the light emitting layer after drying was 30 μm. The light emission luminance of the EL element of this example was measured in the same manner as in Example 1. Table 1 shows the results.

【0049】(実施例2)蛍光体粒子を、オスラム・シ
ルバニア(株)社製のZnS系の蛍光体粒子「品番:S
−723」に換えた以外は、実施例1と同様にして本例
のEL素子を形成した。また、本例のEL素子の発光輝
度を、実施例1と同様にして測定した。結果を表1に示
す。
(Example 2) The phosphor particles were made of ZnS phosphor particles manufactured by OSRAM Sylvania Co., Ltd.
An EL device of this example was formed in the same manner as in Example 1, except that "-723" was used. Further, the emission luminance of the EL element of this example was measured in the same manner as in Example 1. Table 1 shows the results.

【0050】(実施例3)支持層および絶縁層の高誘電
率ポリマーを、信越化学(株)社製のシアノレジン「品
番:CR−M(誘電率=18(1kHz))」に換えた以外
は、実施例1と同様にして本例のEL素子を形成した。
また、本例のEL素子の発光輝度を、実施例1と同様に
して測定した。結果を表1に示す。
(Example 3) Except that the high dielectric constant polymer of the support layer and the insulating layer was changed to a cyanoresin “product number: CR-M (dielectric constant = 18 (1 kHz))” manufactured by Shin-Etsu Chemical Co., Ltd. The EL element of this example was formed in the same manner as in Example 1.
Further, the emission luminance of the EL element of this example was measured in the same manner as in Example 1. Table 1 shows the results.

【0051】[0051]

【表1】 [Table 1]

【0052】また、実施例2と比較例1のEL素子を用
い、耐湿性の評価を次のようにして行った。EL素子
を、65℃/95%RHの条件にて12時間のエージン
グを行った後、上記の条件Bにて交流電圧を印加し、発
光させて輝度を測定した。エージング前の輝度に対する
エージング後の輝度の保持率は、実施例2では90%、
比較例1では63%であった。これにより、本発明のE
L素子は、分散型発光層を有するEL素子に比べて耐湿
性が高いことが示された。
The moisture resistance of the EL devices of Example 2 and Comparative Example 1 was evaluated as follows. After aging the EL device for 12 hours under the conditions of 65 ° C./95% RH, an AC voltage was applied under the above condition B to emit light, and the luminance was measured. The retention ratio of the luminance after aging to the luminance before aging is 90% in Example 2,
In Comparative Example 1, it was 63%. Thereby, E of the present invention
It was shown that the L element had higher moisture resistance than the EL element having the dispersed light emitting layer.

【0053】[0053]

【発明の効果】本発明によれば、発光層における発光体
粒子の充填率が容易に高められ、分散型の発光層の約2
倍以上に発光輝度が向上した、EL素子が提供できる。
また、本発明によれば、発光層用の分散塗料を用いる必
要がなく、高発光輝度、大面積のシート状EL素子を、
生産性良く製造することができる。本発明の製造方法に
よれば、たとえば、幅25〜200cm、長さ100〜
20000mの透明基材のロール状原反から出発し、透
明導電層、支持層、発光粒子層、絶縁層および背面電極
を、次々に積層していくことにより、大面積のシート状
EL素子を量産可能である。
According to the present invention, the filling rate of the luminescent particles in the luminescent layer can be easily increased, and about 2% of the dispersion type luminescent layer can be obtained.
An EL element with improved emission luminance more than twice can be provided.
Further, according to the present invention, there is no need to use a dispersion paint for the light emitting layer, a high light emission luminance, a large area sheet-like EL element,
It can be manufactured with high productivity. According to the production method of the present invention, for example, a width of 25 to 200 cm and a length of 100 to
Starting from a roll of 20,000 m of transparent base material, a transparent conductive layer, a support layer, a luminescent particle layer, an insulating layer, and a back electrode are successively laminated to mass-produce a large-area sheet-like EL element. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のEL素子の一例の断面図。FIG. 1 is a cross-sectional view of an example of an EL element of the present invention.

【符号の説明】[Explanation of symbols]

1:透明基材、2:透明導電層、3:支持層、4:発光
粒子層、5:絶縁層、6:背面電極、7:発光粒子、
8:発光層
1: transparent substrate, 2: transparent conductive layer, 3: support layer, 4: luminescent particle layer, 5: insulating layer, 6: back electrode, 7: luminescent particles,
8: Light emitting layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 a)透明基材(1)、 b)透明基材(1)の背面に配置された透明導電層
(2)、 c)発光体粒子(7)とマトリックス樹脂とを含み、透
明導電層(2)の背面に配置された発光層(8)、およ
び d)発光層(8)の背面に配置された背面電極(6)を
有してなるエレクトロルミネッセンス素子において、 発光層(8)は、 (c−1)マトリックス樹脂を含んでなり、透明導電層
(2)側に配置された透明な支持層(3)と、 (c−2)絶縁体物質を含んでなり、背面電極(6)側
に配置された絶縁層(5)と、 (c−3)支持層(3)および絶縁層(5)の両方の層
に埋設された発光粒子(7)を含んでなる発光粒子層
(4)とからなる、エレクトロルミネッセンス素子。
1. a) a transparent substrate (1), b) a transparent conductive layer (2) disposed on the back surface of the transparent substrate (1), c) a phosphor particle (7) and a matrix resin, An electroluminescent device comprising: a light emitting layer (8) disposed on the back of the transparent conductive layer (2); and d) a back electrode (6) disposed on the back of the light emitting layer (8). 8) includes (c-1) a matrix resin, a transparent support layer (3) disposed on the side of the transparent conductive layer (2), and (c-2) an insulator material. (C-3) light emission comprising light emitting particles (7) embedded in both the support layer (3) and the insulating layer (5); and (c-3) an insulating layer (5) disposed on the electrode (6) side. An electroluminescent device comprising a particle layer (4).
【請求項2】 透明基材(1)、透明基材(1)の背面
に配置された透明導電層(2)、発光体粒子(7)とマ
トリックス樹脂とを含み透明導電層(2)の背面に配置
された発光層(8)、および発光層(8)の背面に配置
された背面電極(6)を有してなるエレクトロルミネッ
センス素子の製造方法において、 i)透明導電層(2)が一方の表面に積層された透明基
材(1)を用意し、 ii)透明導電層(2)の上に、マトリックス樹脂を含ん
でなる支持層(3)形成用の塗料を塗布し、その塗料が
固化する前に、発光体粒子(7)を含む粒子を層状に散
布し、粒子を塗料中に部分的に埋設させた後、その塗料
を固化し、透明な支持層(3)と、支持層(3)に密着
した発光粒子層(4)とを形成し、 iii)発光粒子層(4)の上に、絶縁体物質を含んでなる
絶縁層(5)形成用の塗料を塗布し、その塗料を固化し
て発光粒子層(4)と密着した絶縁層(5)を形成し、 iv)絶縁層(5)の上に背面電極層(6)を積層する、
工程を含んでなる製造方法。
2. A transparent substrate (1), a transparent conductive layer (2) disposed on the back surface of the transparent substrate (1), and a transparent conductive layer (2) including luminescent particles (7) and a matrix resin. In a method for manufacturing an electroluminescent device having a light-emitting layer (8) disposed on a back surface and a back electrode (6) disposed on a back surface of the light-emitting layer (8), i) the transparent conductive layer (2) A transparent substrate (1) laminated on one surface is prepared, and ii) a paint for forming a support layer (3) containing a matrix resin is applied on the transparent conductive layer (2), and the paint is applied. Before the particles are solidified, the particles including the phosphor particles (7) are sprayed in a layer form, and the particles are partially embedded in the paint. Then, the paint is solidified, and the transparent support layer (3) and the support Forming a luminescent particle layer (4) in close contact with the layer (3); iii) an insulating material on the luminescent particle layer (4). A coating for forming an insulating layer (5) comprising: coating the coating and solidifying the coating to form an insulating layer (5) in close contact with the luminescent particle layer (4); iv) On the insulating layer (5) A back electrode layer (6) is laminated on the
A manufacturing method comprising a step.
JP9128626A 1997-05-19 1997-05-19 Electroluminescent element and its manufacture Pending JPH10335064A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP9128626A JPH10335064A (en) 1997-05-19 1997-05-19 Electroluminescent element and its manufacture
US09/424,110 US6406803B1 (en) 1997-05-19 1998-03-27 Electroluminescent device and method for producing the same
CA002289085A CA2289085A1 (en) 1997-05-19 1998-03-27 Electroluminescent device and method for producing the same
KR1019997010652A KR20010012691A (en) 1997-05-19 1998-03-27 Electroluminescent device and method for producing the same
PCT/US1998/006119 WO1998053645A1 (en) 1997-05-19 1998-03-27 Electroluminescent device and method for producing the same
CN98805242A CN1257641A (en) 1997-05-19 1998-03-27 Electroluminescent device and method for producing the same
BR9809125-5A BR9809125A (en) 1997-05-19 1998-03-27 Electroluminescent device and process for producing it
EP98913220A EP0992177A1 (en) 1997-05-19 1998-03-27 Electroluminescent device and method for producing the same
AU67824/98A AU6782498A (en) 1997-05-19 1998-03-27 Electroluminescent device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9128626A JPH10335064A (en) 1997-05-19 1997-05-19 Electroluminescent element and its manufacture

Publications (1)

Publication Number Publication Date
JPH10335064A true JPH10335064A (en) 1998-12-18

Family

ID=14989462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9128626A Pending JPH10335064A (en) 1997-05-19 1997-05-19 Electroluminescent element and its manufacture

Country Status (8)

Country Link
EP (1) EP0992177A1 (en)
JP (1) JPH10335064A (en)
KR (1) KR20010012691A (en)
CN (1) CN1257641A (en)
AU (1) AU6782498A (en)
BR (1) BR9809125A (en)
CA (1) CA2289085A1 (en)
WO (1) WO1998053645A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11175007A (en) * 1997-11-21 1999-07-02 Minnesota Mining & Mfg Co <3M> Self-luminous retroreflection sheet capable and manufacture thereof
JP2000133465A (en) * 1998-10-30 2000-05-12 Minnesota Mining & Mfg Co <3M> Electroluminescent element and its manufacture
US6479941B1 (en) 1998-10-30 2002-11-12 3M Innovative Properties Company Electroluminescent device and method for the production of the same
US6613455B1 (en) 1999-01-14 2003-09-02 3M Innovative Properties Company Electroluminescent device and method for producing same
JP2000208275A (en) * 1999-01-14 2000-07-28 Minnesota Mining & Mfg Co <3M> Electroluminescent element and manufacture thereof
US6967053B1 (en) 1999-01-21 2005-11-22 Reflexite Corporation Durable, open-faced retroreflective prismatic construction
AU771338B2 (en) * 1999-01-21 2004-03-18 Orafol Americas Inc. Durable, open-faced retroreflective prismatic construction
CN100425103C (en) * 2001-03-29 2008-10-08 富士胶片株式会社 Electrolumine scence device
CA2473969A1 (en) 2001-04-30 2002-11-07 Lumimove, Inc. Electroluminescent devices fabricated with encapsulated light emitting polymer particles
US7361413B2 (en) * 2002-07-29 2008-04-22 Lumimove, Inc. Electroluminescent device and methods for its production and use
US7029763B2 (en) 2002-07-29 2006-04-18 Lumimove, Inc. Light-emitting phosphor particles and electroluminescent devices employing same
WO2008109420A2 (en) 2007-03-02 2008-09-12 Technology Solutions & Invention Llc Two-sided corner-cube retroreflectors and methods of manufacturing the same
JP5158561B2 (en) * 2007-04-13 2013-03-06 日本電気硝子株式会社 Laminated body and solar cell using the same
EP2484797A1 (en) * 2011-02-03 2012-08-08 RC Tritec AG Luminescent object
CN106793354B (en) * 2016-11-21 2018-06-22 万峰 A kind of luminous paint system
CN110637345B (en) * 2017-09-19 2021-10-29 株式会社Lg化学 Electrode substrate for transparent light emitting device display and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181753A (en) * 1976-08-19 1980-01-01 Brown, Boveri & Cie Aktiengesellschaft Process for the production of electroluminescent powders for display panels and coating the powders with zinc phosphate
WO1988004467A1 (en) * 1986-12-12 1988-06-16 Appelberg Gustaf T Electroluminescent panel lamp and method for manufacturing
US4902567A (en) * 1987-12-31 1990-02-20 Loctite Luminescent Systems, Inc. Electroluminescent lamp devices using monolayers of electroluminescent materials
JPH08148278A (en) * 1994-03-25 1996-06-07 Takashi Hirate El apparatus
JPH09129372A (en) * 1995-11-01 1997-05-16 Toshiba Corp Manufacture of el element

Also Published As

Publication number Publication date
AU6782498A (en) 1998-12-11
CA2289085A1 (en) 1998-11-26
EP0992177A1 (en) 2000-04-12
BR9809125A (en) 2000-08-01
CN1257641A (en) 2000-06-21
KR20010012691A (en) 2001-02-26
WO1998053645A1 (en) 1998-11-26

Similar Documents

Publication Publication Date Title
US6617784B1 (en) Electroluminescent device and method for producing the same
US6441551B1 (en) Electroluminescent device and apparatus
CN104508517B (en) Optical sheet and planar light source device
US5988822A (en) Luminous retroreflective sheeting and method for making same
US4684353A (en) Flexible electroluminescent film laminate
CN1132024C (en) Electroluminescent retroreflective article
JPH10335064A (en) Electroluminescent element and its manufacture
JPH1115415A (en) Recursively reflecting sheet capable of emitting light by itself and manufacture thereof
US6406803B1 (en) Electroluminescent device and method for producing the same
US6613455B1 (en) Electroluminescent device and method for producing same
JPH118063A (en) Electroluminescence element and manufacture thereof
US6479941B1 (en) Electroluminescent device and method for the production of the same
EP0998836B1 (en) Electroluminescent device and apparatus
WO2005099315A1 (en) Electro-luminescence element
EP1135973B1 (en) Electroluminescent device and method for the production of the same
EP1147688B1 (en) Electroluminescent device and method for producing same
JP2001284053A (en) Electroluminescent element
JP2001524687A (en) Luminescent retroreflective sheet and method for producing the same
JPH02197077A (en) El panel
JPH04282244A (en) Electric field light-emitting element
JP2001023779A (en) El lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060919

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070913

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080901