JPH031485A - Electroluminescent lamp - Google Patents

Electroluminescent lamp

Info

Publication number
JPH031485A
JPH031485A JP1136835A JP13683589A JPH031485A JP H031485 A JPH031485 A JP H031485A JP 1136835 A JP1136835 A JP 1136835A JP 13683589 A JP13683589 A JP 13683589A JP H031485 A JPH031485 A JP H031485A
Authority
JP
Japan
Prior art keywords
light
electroluminescent lamp
wavelength
lamp
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1136835A
Other languages
Japanese (ja)
Other versions
JP2665379B2 (en
Inventor
Naoyuki Mori
尚之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP1136835A priority Critical patent/JP2665379B2/en
Publication of JPH031485A publication Critical patent/JPH031485A/en
Application granted granted Critical
Publication of JP2665379B2 publication Critical patent/JP2665379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide good reflectance and accomplish a higher brightness by locating the distribution of particle sizes of high dielectric substance powder between the max. and min. values as specified. CONSTITUTION:In an EL lamp 10 an insulation layer 4 and a light emitting layer 5 are contacting each other, and the total output light is expressed by the sum of the direct incident light and reflected light. To maximize this reflected light, the particle sizes of highly dielectric particles are distributed according to Eq. I so that the light absorbed in the binder in the insulation layer 4 maximizes. In Eq I, lambda1 is max. wavelength of the spectral distribution in the EL lamp 10, lambda2 is the min. wavelength of the spectral distribution in the EL lamp 10, no is reflectance of the binder, and np the reflectance of the highly dielectric substance powder. This optimizes the highly dielectric substance powder used to insulation layer 4 according to the light emission wavelength, raise the brightness of the EL lamp 10, and achieves high brightness and high efficiency.

Description

【発明の詳細な説明】 庄ヱ」Jソ月1分1− 本発明は、電界発光灯に関し、特に有機分散型電界発光
灯における高輝度・高効率化に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electroluminescent lamp, and particularly to improving the brightness and efficiency of an organic dispersion type electroluminescent lamp.

従未盆皮直 従来、有機分散型電界発光灯は、第2図に示すようにア
ル、ミ箔などによりなる背面電極3上に絶縁物(例えば
チタン酸バリウムのような高誘電体粉末)及び蛍光体(
例えば硫化亜鉛を銅で活性化した蛍光体)を有機バイン
ダ(例えばシアノエチルセルロース)中にそれぞれ分散
させたものを順次塗布して絶縁層4、発光層5を形成し
、その上に集電帯を印刷した透明導電フィルム等からな
る透明電極6を設け、上下より吸湿フィルム(例えばナ
イロン6(デュポン社商標)7,7で覆い形成された電
界発光素子9を更に上下から防水性の外皮フィルム(例
えばフッ素系フィルム)8,8で密閉封止した構造を有
する。尚、背面電極3と透明電極6からリードがそれぞ
れ接続され外部に導出されている。
Traditionally, organic dispersion type electroluminescent lamps have an insulating material (for example, high dielectric powder such as barium titanate) and Phosphor (
For example, a phosphor made of zinc sulfide activated with copper) dispersed in an organic binder (for example, cyanoethyl cellulose) is sequentially applied to form an insulating layer 4 and a light emitting layer 5, and a current collecting band is placed on top of these. A transparent electrode 6 made of a printed transparent conductive film or the like is provided, and an electroluminescent element 9 formed by covering with a moisture-absorbing film (for example, nylon 6 (trademark of DuPont) 7, 7 from above and below) is further covered with a waterproof outer film (for example, from above and below). It has a structure that is hermetically sealed with fluorine-based films (fluorine-based films) 8, 8.Leads are connected to the back electrode 3 and the transparent electrode 6, respectively, and led out to the outside.

上記構造の電界発光灯において、絶縁層は発光層に効果
的に電界を与えるための高誘電体層であるり発光を効率
良く反射させるための反射層でもある。しかし、使用さ
れているチタン酸バリウムは粒径が1〜2μmと大きく
、かつばらつきも大きいため反射率が悪く、高輝度化の
実現が困難であった。
In the electroluminescent lamp having the above structure, the insulating layer is a high dielectric layer for effectively applying an electric field to the light emitting layer, and also serves as a reflective layer for efficiently reflecting light emitted. However, the barium titanate used has a large particle size of 1 to 2 μm and has large variations, resulting in poor reflectance and difficulty in achieving high brightness.

=の 上記、課題を解決するため、のぞましくは絶縁層を構成
する高誘電体粉末を発光ピーク波長に対して下記の式で
表される散乱力を最大にする粒径D optとすること
を特徴する。
In order to solve the above problem of =, it is desirable to make the high dielectric powder constituting the insulating layer have a particle size Dopt that maximizes the scattering power expressed by the following formula with respect to the emission peak wavelength. It is characterized by

但し、高誘電体粉末の粒径を全く同じにそろえることは
現実的でない。そこで発光スペクトルの最大波長と最小
波長とを下記の式に適用して定まる最大値と最小値の間
に分布することを特徴とする。
However, it is not realistic to make the particle sizes of the high dielectric powders exactly the same. Therefore, it is characterized in that the emission spectrum is distributed between the maximum and minimum values determined by applying the maximum wavelength and minimum wavelength of the emission spectrum to the following equation.

”pt”1.414 yr no M λ:光の波長 no=バインダの屈折率 M = L orentz −L orentz係数n
、、=高誘電体粉末の屈折率 1反 上記構成によると散乱力が最大、すなわち反射率が良く
なり、輝度φ効率が向上する。
"pt" 1.414 yr no M λ: Wavelength of light no = refractive index of binder M = L orentz - L orentz coefficient n
, , = refractive index of high dielectric powder 1. According to the above configuration, the scattering power is maximized, that is, the reflectance is improved, and the luminance φ efficiency is improved.

これは、散乱力が大きい程、塗膜中で光が通過する距離
が短くなるため塗膜中で減衰させられる機会が少ないた
めに隠ペイ力が増し、反射率が増すためである。
This is because the greater the scattering power, the shorter the distance that light travels within the coating film, so there is less opportunity for light to be attenuated within the coating film, which increases the hiding power and increases the reflectance.

また、チタン酸バリウムが均一な微粒子であるため、充
てん率を上げることができ、絶縁層の誘電率が向上し、
発光層に効果的な電界を印加できる。
In addition, since barium titanate is uniform fine particles, it is possible to increase the filling rate, improve the dielectric constant of the insulating layer,
An effective electric field can be applied to the light emitting layer.

尖血阻 一般にあるバインダ中の均一粒径顔料の散乱係数は次式
のように表される。(色材協会誌37巻P5〜P9) ここで、K:比例定数 り二粒径 λ:先の波長 no:バインダの屈折率 M : L orentz −L orentz係数n
、:顔料の屈折率 電界発光灯の場合、絶縁層と発光層が接しており、全出
力光は、直出光と反射光の和で表され、さらに反射光は
l)絶縁層の表面でF resnelの法則に従って反
射される光、2)絶縁層中で絶縁物表面で反射され外に
出る光、3)絶縁層を通過し、素地で反射され再び塗膜
を通光して外へ出る光の和で表され、この反射光を最大
にするためには絶縁層の内のバインダに吸収される光及
び素地で吸収されるか、素地で反射されてバインダに吸
収される光を最大にすればよい。すなわち絶縁層の散乱
係数が大きい程、光が通過する距離が短くなり、吸収さ
れる光の量を抑えることができる。それ故、(1)式に
おいて散乱係数を最大にするための最適粒径は次式のよ
うに表される。
The scattering coefficient of a pigment with a uniform particle size in a binder is generally expressed as follows. (Coloring Materials Association Magazine Vol. 37 P5-P9) Here, K: proportionality constant 2 particle diameter λ: previous wavelength no: refractive index of binder M: L orentz - L orentz coefficient n
,: Pigment refractive index In the case of an electroluminescent lamp, the insulating layer and the light emitting layer are in contact, and the total output light is expressed as the sum of the direct light and the reflected light, and the reflected light is l) F at the surface of the insulating layer. Light that is reflected according to Resnel's law; 2) Light that is reflected on the surface of the insulating material in the insulating layer and exits; 3) Light that passes through the insulating layer, is reflected by the base material, passes through the coating again, and exits to the outside. In order to maximize this reflected light, the light absorbed by the binder in the insulating layer and the light absorbed by the substrate, or the light reflected by the substrate and absorbed by the binder, should be maximized. Bye. That is, the larger the scattering coefficient of the insulating layer, the shorter the distance through which light passes, and the amount of absorbed light can be suppressed. Therefore, in equation (1), the optimum particle size for maximizing the scattering coefficient is expressed as follows.

ここで、絶縁発光電界発光灯のピーク波長は510 n
a+であり、バインダの屈折率no ==l、5 * 
チタン酸バリウムの屈折率n si ” 3.0とする
と、最適粒径は、 Dopt =0.15.czm となり、その時の散乱係数81は58.8にとなる。
Here, the peak wavelength of the insulated light-emitting electroluminescent lamp is 510 n
a+, and the refractive index of the binder no ==l, 5 *
When the refractive index of barium titanate is n si ” 3.0, the optimum particle size is Dopt =0.15.czm, and the scattering coefficient 81 at that time is 58.8.

また、従来のチタン酸バリウムは1〜2μmと大粒子で
かつばらつきが大きいが、粒径がり、からD2まで分布
する場合の散乱係数82は次式であられされ、 上記の値λ=510nm 、  no :1.5 + 
np=3.0を代入すると、S2は22.OKとなる。
In addition, conventional barium titanate has large particles of 1 to 2 μm and has large variations, but the scattering coefficient 82 when the particle size is distributed from D2 to D2 is calculated by the following formula, and the above value λ = 510 nm, no :1.5+
Substituting np=3.0, S2 becomes 22. OK.

すなわち、本発明による電界発光灯に用いる絶縁は従来
品にくらべると2.87倍散乱係数が大きくなることが
わかる。次にこれらのチタン酸バリウムを用いた絶縁層
の反射率を表1に示す。また、第1図には本発明による
電界発光灯の輝度−電圧特性を示す。尚、点線は従来の
電界発光灯の特性である。
That is, it can be seen that the insulation used in the electroluminescent lamp according to the present invention has a scattering coefficient 2.87 times larger than that of the conventional product. Next, Table 1 shows the reflectance of the insulating layer using these barium titanates. Further, FIG. 1 shows the brightness-voltage characteristics of the electroluminescent lamp according to the present invention. Note that the dotted line indicates the characteristics of a conventional electroluminescent lamp.

表、1 このように、発光波長により最適な粒径のチタン酸バリ
ウムを絶縁層として用いることにより、反射率が改善さ
れ電界発光灯の輝度を向上させることができる。
Table 1 As described above, by using barium titanate as an insulating layer with a particle size that is optimal depending on the emission wavelength, the reflectance can be improved and the brightness of the electroluminescent lamp can be improved.

次に他の実施例として各発光波長における最適粒径の一
覧を表2に示す。
Next, as another example, Table 2 shows a list of optimum particle sizes for each emission wavelength.

表、ま ただし、np =3.0 no=1.5 とする。front, ma However, np = 3.0 no=1.5 shall be.

光1四復果− 以上説明したように、本発明によれば高誘電体かつ白色
反射層である絶縁層に用いる高誘電体粉末粒径を発光波
長に応じて最適化し、かっばらっきを抑えることにより
、反射率が向上し、消費電力を増加させることなしに電
界発光灯の輝度を上げ、高輝度、高効率化を実現できる
As explained above, according to the present invention, the particle size of the high dielectric powder used in the insulating layer, which is a high dielectric and white reflective layer, is optimized according to the emission wavelength, thereby reducing the light emission. By suppressing the amount of light, the reflectance improves, and the brightness of the electroluminescent lamp can be increased without increasing power consumption, making it possible to achieve high brightness and high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による電界発光灯の輝度電圧特性を示
す。 第2図は、従来の電界発光灯の拡大断面図である。 第2図 8−彷徨フィルべ 9、− を刈−4丘X」撃ニド 10−・4L芥媛≦Lナミ[
FIG. 1 shows the brightness-voltage characteristics of an electroluminescent lamp according to the invention. FIG. 2 is an enlarged sectional view of a conventional electroluminescent lamp. Figure 2 8 - Wandering Philbe 9, - Mowing - 4 hills

Claims (1)

【特許請求の範囲】  背面電極と透明電極により絶縁層、発光層を挟持した
電界発光灯の前記絶縁層が高誘電体粉末をバインダに分
散してなるものにおいて、前記高誘電体粉末の粒径分布
が下記の式で定まる最大値と最小値の間にあることを特
徴とする電界発光灯。  最大値= ▲数式、化学式、表等があります▼  最小値= ▲数式、化学式、表等があります▼ ここで、 λ1:前記電界発光灯のスペクトル分布における最大波
長 λ2:電界発光灯のスペクトル分布における最小波長 n_o:前記バインダの屈折率 n_p:前記高誘電体粉末の屈折率
[Scope of Claims] In an electroluminescent lamp in which an insulating layer and a light emitting layer are sandwiched between a back electrode and a transparent electrode, the insulating layer is formed by dispersing high dielectric powder in a binder, wherein the particle size of the high dielectric powder is An electroluminescent lamp characterized in that the distribution is between a maximum value and a minimum value determined by the following formula. Maximum value = ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Minimum value = ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Where, λ1: Maximum wavelength in the spectral distribution of the electroluminescent lamp λ2: Maximum wavelength in the spectral distribution of the electroluminescent lamp Minimum wavelength n_o: refractive index of the binder n_p: refractive index of the high dielectric powder
JP1136835A 1989-05-30 1989-05-30 Electroluminescent lamp Expired - Lifetime JP2665379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136835A JP2665379B2 (en) 1989-05-30 1989-05-30 Electroluminescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136835A JP2665379B2 (en) 1989-05-30 1989-05-30 Electroluminescent lamp

Publications (2)

Publication Number Publication Date
JPH031485A true JPH031485A (en) 1991-01-08
JP2665379B2 JP2665379B2 (en) 1997-10-22

Family

ID=15184620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136835A Expired - Lifetime JP2665379B2 (en) 1989-05-30 1989-05-30 Electroluminescent lamp

Country Status (1)

Country Link
JP (1) JP2665379B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895526A (en) * 1995-08-07 1999-04-20 Nippondenso Co., Ltd. Process for growing single crystal
WO2002080626A1 (en) * 2001-03-29 2002-10-10 Fuji Photo Film Co., Ltd. Electroluminescence device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895526A (en) * 1995-08-07 1999-04-20 Nippondenso Co., Ltd. Process for growing single crystal
WO2002080626A1 (en) * 2001-03-29 2002-10-10 Fuji Photo Film Co., Ltd. Electroluminescence device

Also Published As

Publication number Publication date
JP2665379B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
US8106578B2 (en) Highly transmissive electroluminescent lamp having a light emissive layer composition incorporating phosphor nano-particles and dielectric nano-particles
JP4740582B2 (en) Electroluminescent device
US5726531A (en) Electroluminescent element
JPH031485A (en) Electroluminescent lamp
JP2000228285A (en) Multicolor luminescence diffusing el lamp
JPH0533514B2 (en)
JPH04190586A (en) Electroluminescence lamp
JPH1039811A (en) Electrluminescent light source body
JPS6025195A (en) El element
JPS5836475B2 (en) porcelain luminary
JP3250276B2 (en) Dispersion type EL element
JPH0747836Y2 (en) EL lamp having conductive film
KR100495899B1 (en) AC edge-emitting EL device and method of manufacturing the same
JP2779373B2 (en) EL element
JPS63283934A (en) Optically diffusive and electrically conductive film
JPH08222372A (en) Electroluminescent element
JPH0644077Y2 (en) Distributed EL lamp
JPH03138891A (en) Organic dispersion type el element
JPH01157091A (en) Dispersion type electroluminescence element
JPS6321004Y2 (en)
JPH03257790A (en) Electroluminescence (el) light emitting element
JPH06260284A (en) Dispersion type el element
WO1995028597A1 (en) Electroluminescent lamps and methods of manufacture
JPH0278191A (en) Electro-luminescence
JPS6331519Y2 (en)