JPH06260040A - Manufacture of nb3al multi-core superconducting wire - Google Patents

Manufacture of nb3al multi-core superconducting wire

Info

Publication number
JPH06260040A
JPH06260040A JP5044954A JP4495493A JPH06260040A JP H06260040 A JPH06260040 A JP H06260040A JP 5044954 A JP5044954 A JP 5044954A JP 4495493 A JP4495493 A JP 4495493A JP H06260040 A JPH06260040 A JP H06260040A
Authority
JP
Japan
Prior art keywords
core
based metal
billet
sheet
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5044954A
Other languages
Japanese (ja)
Inventor
Masamitsu Ichihara
政光 市原
Nobuo Aoki
青木  伸夫
Toshihisa Ogaki
俊久 大垣
Keiichiro Maeda
慶一郎 前田
Haruto Noro
治人 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP5044954A priority Critical patent/JPH06260040A/en
Publication of JPH06260040A publication Critical patent/JPH06260040A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve the workability of a ultra-fine muti-core Nb3Al super conducting wire manufactured by the jelly roll method. CONSTITUTION:A composite sheet 20 formed with Al deposition layers and Nb deposition layers in turn into many layers on one face of a Nb sheet is wound on the outer periphery of a Cu metal rod 21, it is inserted into a Cu metal pipe 22 to form a single-core billet 23, then face reducing machining, is applied to the billet 23 to manufacture a single-core wire 24 having a hexagonal cross section. Many single-core wires 24 are inserted into a Cu metal pipe 25 to form a multi-core billet 26, face reducing machining is applied to the billet 26 to manufacture a multi-core wire 27, then it is heat-treated at the temperature of 750-850 deg.C for the period from several hrs. to tens hrs. to manufacture a multi-core Nb3Al superconducting wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導線の製造方法に係
り、特に改善されたジェリーロール法により、特性の優
れたNb3 Al多芯超電導線を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a superconducting wire, and more particularly to a method for producing a Nb 3 Al multifilamentary superconducting wire having excellent characteristics by an improved jelly roll method.

【0002】[0002]

【従来の技術】A15型の金属間化合物である超電導材
料は、一般にNb−Ti合金等の合金系超電導材料に比
較して優れた超電導特性を有しており、特にNb3 Al
はNb3 Snに比べ臨界温度(Tc)や臨界磁界(HC
2)が高い上、機械的性質に優れる等の利点を有する
が、Nb3 Alは拡散反応では生成し難いため、長尺の
線材を製造することは困難である。
The superconducting material is [Prior Art] A15 type intermetallic compound, has excellent superconducting properties generally compared to an alloy-based superconducting material such as Nb-Ti alloy, in particular Nb 3 Al
The critical temperature (Tc) and critical magnetic field than in the Nb3 Sn is (H C
Although it has advantages such as high 2 ) and excellent mechanical properties, it is difficult to produce a long wire because Nb 3 Al is difficult to generate by a diffusion reaction.

【0003】即ち、化学量論組成のNb3 Alは高温で
のみ安定で、その生成速度が極めて小さいため、低温の
熱処理ではNb3 Alを拡散生成させることが難しいと
いう問題がある。しかしながら、NbとAlの拡散距離
を極めて小さくすれば、粒界拡散が支配的となり熱処理
条件を改善することができるため、1000℃以下の温
度で熱処理を施すことにより実用レベルの超電導材料を
製造することが可能となる。
That is, since Nb 3 Al having a stoichiometric composition is stable only at a high temperature and its generation rate is extremely low, there is a problem that it is difficult to diffuse and generate Nb 3 Al by heat treatment at a low temperature. However, if the diffusion distance between Nb and Al is made extremely small, grain boundary diffusion becomes dominant and the heat treatment conditions can be improved. Therefore, by applying heat treatment at a temperature of 1000 ° C. or less, a practical level superconducting material is manufactured. It becomes possible.

【0004】従来、このような観点から、融体急冷法等
に比較して高磁界特性が若干劣るものの、長尺の線材を
容易に製造する方法として、ジェリーロール法が知られ
ている。この方法は、厚さ数百μmのNbシートと厚さ
数十μmのAlシートを積層し、これを丸めて円筒状の
シース材に挿入して伸線加工を施した後、熱処理を施す
ものである.例えば、NbシートとAlシートを重ねて
Cuロッド上に巻き付けてCuパイプ中に挿入し、Al
シートを約0.2μmの厚さまで伸線加工した後、80
0℃の温度で熱処理を施してTc=15.6K、Jc=
104 A/cm2のNb3 Al超電導線が得られてい
る。
From such a point of view, the jelly roll method has hitherto been known as a method for easily producing a long wire although the high magnetic field characteristics are slightly inferior to those of the melt quenching method and the like. In this method, a Nb sheet having a thickness of several hundred μm and an Al sheet having a thickness of several tens of μm are laminated, rolled, inserted into a cylindrical sheath material, subjected to wire drawing, and then subjected to heat treatment. Is. For example, an Nb sheet and an Al sheet are overlapped, wrapped around a Cu rod, and inserted into a Cu pipe.
After drawing the sheet to a thickness of about 0.2 μm, 80
After heat treatment at a temperature of 0 ° C., Tc = 15.6K, Jc =
A 10 4 A / cm 2 Nb 3 Al superconducting wire has been obtained.

【0005】この方法により多芯構造の超電導線材を製
造するには、上記のCuパイプ中に挿入した単芯構造の
ビレットに静水圧押出加工および伸線加工を施して単芯
線を製造した後、この多数本をCuパイプ中に収容して
多芯ビレットを作製し、次いで、これに静水圧押出加工
および伸線加工を施して多芯線を製造した後、750〜
850℃の温度で数〜数十時間の熱処理を施してNb3
Alを生成することが行われている。
In order to manufacture a superconducting wire having a multi-core structure by this method, a single core wire is manufactured by subjecting the billet having a single core structure inserted in the above-mentioned Cu pipe to hydrostatic extrusion and wire drawing. The multifilamentary billet was prepared by accommodating the large number of the multifilamentary wires in a Cu pipe, and then subjected to hydrostatic extrusion processing and wire drawing processing to manufacture the multifilamentary wire, and then 750 to 750.
Heat treatment is performed at a temperature of 850 ° C. for several to several tens of hours to obtain Nb 3
Al is being produced.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
方法で多芯構造の超電導線材を製造する場合に、多芯線
の加工性が大きな問題となっている。この加工性が悪く
なる原因としては、以下の理由が挙げられる。 (a)マトリックスがCu(またはCu合金)で形成さ
れるため、Nb3 Al生成の熱処理を1000℃以下で
施す必要があるが、この温度範囲で良好なNb3Al相
を得るには、NbとAlとの拡散距離を非常に小さくす
る必要がある。即ち、NbシートとAlシートを極めて
薄くするために、加工度を非常に大きくして加工する必
要があるため、フィラメントの断線を生じ易く、長尺の
線材を製造することが非常に困難である。 (b)NbシートとAlシートを重ね巻きする単芯構造
のビレット作製時に、Alシートに皺を生じたり、ある
いNbシートとAlシートの界面に空気が残留すること
に起因して加工性が低下する。即ち、薄いNbシートと
Alシートを密にCuロッド上に重ね巻きすることが非
常に困難である。
However, when manufacturing a superconducting wire having a multi-core structure by the above-mentioned method, the workability of the multi-core wire is a serious problem. The reason for the deterioration of the workability is as follows. (A) Since the matrix is formed of Cu (or a Cu alloy), it is necessary to perform heat treatment for Nb 3 Al generation at 1000 ° C. or lower, but in order to obtain a good Nb 3 Al phase in this temperature range, Nb 3 Al It is necessary to make the diffusion distance between Al and Al very small. That is, in order to make the Nb sheet and the Al sheet extremely thin, it is necessary to process them with an extremely high degree of processing, so that the filament is likely to be broken, and it is very difficult to manufacture a long wire rod. . (B) When a billet having a single-core structure in which an Nb sheet and an Al sheet are superposed and wound, is manufactured, wrinkles are generated in the Al sheet, or air remains at the interface between the Nb sheet and the Al sheet, resulting in workability. descend. That is, it is very difficult to tightly stack the thin Nb sheet and Al sheet on the Cu rod.

【0007】本発明は以上の問題を解決するためになさ
れたもので、フィラメントの断線を防止して高い加工度
で安定して成形することができ、これにより特性の優れ
た多芯構造のNb3 Al超電導線を製造する方法を提供
することをその目的とする。
The present invention has been made in order to solve the above problems, and it is possible to prevent filament breakage and stably form a filament with a high degree of processing. As a result, Nb having a multicore structure with excellent characteristics is obtained. An object of the present invention is to provide a method for manufacturing a 3 Al superconducting wire.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明のNb3 Al多芯超電導線の製造方法は、
(イ)Nb系金属シート上にAl系金属層およびNb系
金属層を交互に多層に形成して複合シートを作成する工
程と、(ロ)この複合シートをCu系金属ロッド上に巻
き付け、これをCu系金属パイプ中に挿入して単芯構造
のビレットを形成する工程と、(ハ)この単芯構造のビ
レットに減面加工を施して単芯線を製造する工程と、
(ニ)この単芯線の多数本をCu系金属パイプ中に収容
して多芯ビレットを形成する工程と、(ホ)この多芯ビ
レットに減面加工を施して多芯線を製造する工程と、
(ヘ)この多芯線にNb3 Al生成の熱処理を施す工程
とを順次施すようにしたものである。
In order to achieve the above object, the method for producing a Nb 3 Al multifilamentary superconducting wire of the present invention comprises:
(A) a step of forming a composite sheet by alternately forming Al-based metal layers and Nb-based metal layers on the Nb-based metal sheet to form a composite sheet; and (b) winding the composite sheet on a Cu-based metal rod, To form a single core structure billet by inserting into a Cu-based metal pipe, and (c) a step of subjecting the single core structure billet to surface reduction processing to manufacture a single core wire,
(D) a step of accommodating a large number of this single-core wire in a Cu-based metal pipe to form a multi-core billet, and (e) a step of subjecting this multi-core billet to surface-reduction processing to manufacture a multi-core wire,
(F) The multifilamentary wire is sequentially subjected to a heat treatment for producing Nb 3 Al.

【0009】上記の複合シートは、イオンプレーティン
グ法により、Al又はAl合金およびNbまたはNb合
金を蒸発源としてNb系金属シート上にAl又はAl合
金とNbまたはNb合金の蒸着層を交互に多層に形成す
ることにより作製することができる。この場合、Nb系
金属層に対するAl系金属層の厚さを略1:3、即ちA
l/Nb=1/3となるように形成することによりその
特性を向上させることができる。
In the above composite sheet, a vapor deposition layer of Al or Al alloy and Nb or Nb alloy is alternately laminated on the Nb type metal sheet by using Al or Al alloy and Nb or Nb alloy as evaporation sources by the ion plating method. It can be manufactured by forming In this case, the thickness of the Al-based metal layer with respect to the Nb-based metal layer is approximately 1: 3, that is, A
By forming it so that 1 / Nb = 1/3, its characteristics can be improved.

【0010】図3は、このような複合シートの製造に用
いられるアーク放電型高真空イオンプレーティング装置
1の概略図を示したもので、2は真空槽、3は電子ビー
ム、4は蒸発源、5はNbシートである。同図におい
て、真空槽2内は真空ポンプ6により高真空に排気さ
れ、るつぼ7内に収容された蒸発源4は電子ビーム3の
衝突により蒸発する。
FIG. 3 is a schematic view of an arc discharge type high vacuum ion plating apparatus 1 used for manufacturing such a composite sheet. 2 is a vacuum chamber, 3 is an electron beam, and 4 is an evaporation source. 5 is an Nb sheet. In the figure, the vacuum chamber 2 is evacuated to a high vacuum by a vacuum pump 6, and the evaporation source 4 accommodated in the crucible 7 is evaporated by the collision of the electron beam 3.

【0011】イオン化電極8は蒸発源4の近傍に配置さ
れ、蒸発源4に対して正の電圧が印加されており、蒸発
源4から放出される熱電子あるいは2次電子はイオン化
電極8に向かって進む。蒸発源4の近くに配置された熱
電子放射電極9は熱電子の放射量を増加させる働きをす
る。熱電子あるいは2次電子は蒸発粒子と衝突して蒸発
粒子をイオン化し、このイオン化された蒸発粒子が走行
中に他の蒸発粒子と衝突してプラスイオンと電子を発生
させ、多くの蒸発粒子をイオン化する。
The ionization electrode 8 is arranged in the vicinity of the evaporation source 4, and a positive voltage is applied to the evaporation source 4, so that the thermoelectrons or secondary electrons emitted from the evaporation source 4 are directed to the ionization electrode 8. And proceed. The thermionic emission electrode 9 arranged near the evaporation source 4 serves to increase the amount of emitted thermoelectrons. Thermal electrons or secondary electrons collide with the vaporized particles to ionize the vaporized particles, and the ionized vaporized particles collide with other vaporized particles during traveling to generate positive ions and electrons, and many vaporized particles are generated. Ionize.

【0012】一方、Nbシート5は蒸発源に対して正の
電圧が印加されており、送出しボビン10および巻取ボ
ビン11の間を走行して、その表面にシャッター12に
より制御された蒸発粒子が付着する。尚、13は巻取ボ
ビン11の駆動装置である。これにより、付着強度が強
く、かつ雰囲気ガスの影響を受けない、高純度の被膜が
Nbシート5上に連続して作製される。
On the other hand, a positive voltage is applied to the evaporation source of the Nb sheet 5, the Nb sheet 5 travels between the delivery bobbin 10 and the winding bobbin 11, and the evaporation particles controlled by the shutter 12 are on the surface thereof. Adheres. Reference numeral 13 is a drive device for the winding bobbin 11. As a result, a high-purity coating film having high adhesion strength and not affected by the atmospheric gas is continuously formed on the Nb sheet 5.

【0013】上記の蒸発源4としてAlまたはNbを用
いてその工程を繰り返すことにより、Nbシート5上に
AlおよびNbの蒸着層を交互に形成することができ
る。この時、Al蒸着層の厚さをNb蒸着層の約1/3
となるように制御する。このようにして、図2に示すよ
うにNbシート5上ににAl蒸着層5aおよびNbの蒸
着層5bが交互に、かつ多層に形成された複合シート2
0を用いて多芯構造のNb3 Al超電導線を製造する。
By repeating the process using Al or Nb as the evaporation source 4, the vapor deposition layers of Al and Nb can be alternately formed on the Nb sheet 5. At this time, the thickness of the Al vapor deposition layer is about 1/3 of that of the Nb vapor deposition layer.
Control so that. In this way, as shown in FIG. 2, the composite sheet 2 in which the Al vapor deposition layers 5a and the Nb vapor deposition layers 5b are alternately and multilayered on the Nb sheet 5 as shown in FIG.
No. 0 is used to manufacture a Nb 3 Al superconducting wire having a multi-core structure.

【0014】即ち、図1に示すように、Cu系金属ロッ
ド21を中心として、その外周に複合シート20を巻回
し、これをCu系金属パイプ22中に挿入して単芯構造
のビレット23を形成する。この単芯構造のビレット2
3に減面加工を施して、例えば断面六角形の単芯線24
を製造した後、この多数本をCu系金属パイプ25中に
その側面を当接して密に収容し多芯ビレット26を形成
する。次いで、この多芯ビレット26に静水圧押出加
工、伸線加工等の減面加工を施して多芯線27を製造し
た後、Nb3 Al生成の熱処理を施すことにより多芯構
造のNb3 Al超電導線を製造することができる。
That is, as shown in FIG. 1, the composite sheet 20 is wound around the Cu-based metal rod 21 as the center, and the composite sheet 20 is inserted into the Cu-based metal pipe 22 to form the billet 23 having a single core structure. Form. This single core structure billet 2
3 is subjected to surface-reduction processing, for example, a single core wire 24 having a hexagonal cross section
After manufacturing, the multi-core billet 26 is formed by accommodating a large number of these in a Cu-based metal pipe 25 with their side surfaces in close contact. Then, hydrostatic extrusion on the multi-core billet 26, after producing a multifilamentary wire 27 is subjected to reduction process of wire drawing and the like, Nb 3 Al superconducting multi-core structure by heat treatment of the Nb 3 Al product Wires can be manufactured.

【0015】上記のNb3 Al生成の熱処理は、例えば
750〜850℃の温度で数時間〜数十時間施される。
The above heat treatment for producing Nb 3 Al is performed, for example, at a temperature of 750 to 850 ° C. for several hours to several tens of hours.

【0016】[0016]

【作用】上記の構成により、本発明においては、ジェリ
ーロール法におけるNbシートとAlシートの代わり
に、複合シート、即ち、Nb系金属シート上にAl系金
属層およびNb系金属層が交互に多層に形成された複合
シートを用いることにより、単芯構造のビレットの作製
時に、Alシートに皺を生じたり、あるいNbシートと
Alシートの界面に空気が残留することを防止すること
ができるため、フィラメントに断線を生ずることなく、
高い加工度で長尺の線材を安定して成形することができ
る。
With the above-described structure, in the present invention, instead of the Nb sheet and the Al sheet in the jelly roll method, a composite sheet, that is, an Nb type metal sheet is alternately laminated with Al type metal layers and Nb type metal layers. By using the composite sheet formed in 1., it is possible to prevent wrinkles from being formed in the Al sheet or to prevent air from remaining at the interface between the Nb sheet and the Al sheet during the production of the single core structure billet. , Without breaking the filament,
A long wire can be stably formed with a high degree of processing.

【0017】[0017]

【実施例】以下、本発明の一実施例について説明する。
図3に示す装置を用いて、厚さ100μmのNbシート
上に10μmの厚さのAl蒸着層および30μmの厚さ
のNb蒸着層を計10層形成して複合シートを製造し
た。
EXAMPLES An example of the present invention will be described below.
Using the apparatus shown in FIG. 3, a total of 10 Al vapor deposition layers having a thickness of 10 μm and Nb vapor deposition layers having a thickness of 30 μm were formed on a Nb sheet having a thickness of 100 μm to manufacture a composite sheet.

【0018】この複合シートをCuロッド上に巻付け、
これをCuパイプ内に収容した後、伸線加工を施して対
辺間距離2.13mmの断面六角形の単芯線を製造し
た。次いで、この単芯線の931本を、その側面を当接
してCuパイプ中に組み込んで多芯ビレットを形成し、
これに静水圧押出加工および伸線加工を施して外径φ
1.0mmの多芯線を製造した。この加工において、フ
ィラメントの断線は認められず加工性は良好であった。
この時のAl蒸着層およびNb蒸着層の厚さは、それぞ
れ25nmと75nmであった。またその加工度は従来
の約1/3であった。
This composite sheet is wound on a Cu rod,
After this was housed in a Cu pipe, wire drawing was performed to manufacture a single core wire having a hexagonal cross section with a distance between opposite sides of 2.13 mm. Next, 931 pieces of this single-core wire are brought into contact with the side surfaces thereof and incorporated into a Cu pipe to form a multi-core billet,
This is subjected to hydrostatic extrusion and wire drawing to give an outer diameter of φ
A 1.0 mm multifilamentary wire was manufactured. In this processing, breakage of the filament was not recognized and the workability was good.
At this time, the thicknesses of the Al vapor deposition layer and the Nb vapor deposition layer were 25 nm and 75 nm, respectively. In addition, the workability was about 1/3 of the conventional one.

【0019】このようにして得られた外径φ1.0mm
の多芯線に、850℃の温度で5時間の熱処理を施して
多芯構造のNb3 Al超電導線を製造した。この超電導
線の非銅部の臨界電流密度(Jc)は、12T(テス
ラ)で650A/mm2 の実用レベルの値を示した。
Outer diameter φ1.0 mm obtained in this way
Was heat-treated at a temperature of 850 ° C. for 5 hours to produce a Nb 3 Al superconducting wire having a multi-core structure. The critical current density (Jc) of the non-copper part of this superconducting wire showed a practical level value of 650 A / mm 2 at 12 T (Tesla).

【0020】[0020]

【発明の効果】以上述べたように、本発明の製造方法は
加工性に優れるため、フィラメントの断線を防止して特
性の優れた多芯構造のNb3 Al超電導線を製造するこ
とができる。また、Nb系金属シート上にAl系金属層
およびNb系金属層が交互に多層に形成された複合シー
トを使用するため、従来のジェリーロール法に比較して
小さな加工度でその特性を向上させることができる利点
を有する。本方法により製造されたNb3 Al超電導線
は高磁界マグネット用および核融合炉用に適する。
As described above, since the manufacturing method of the present invention is excellent in workability, it is possible to manufacture a Nb 3 Al superconducting wire having a multicore structure with excellent characteristics by preventing filament breakage. In addition, since a composite sheet in which Al-based metal layers and Nb-based metal layers are alternately formed in multiple layers on the Nb-based metal sheet is used, its characteristics can be improved with a smaller workability as compared with the conventional jelly roll method. It has the advantage that it can. The Nb 3 Al superconducting wire produced by this method is suitable for high field magnets and fusion reactors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における多芯線の製造工程の一実施例を
示す概略図。
FIG. 1 is a schematic view showing an example of a manufacturing process of a multifilamentary wire according to the present invention.

【図2】本発明に用いられる複合シートの一実施例を示
す斜視図。
FIG. 2 is a perspective view showing an embodiment of a composite sheet used in the present invention.

【図3】図2に示す複合シートを製造するためのアーク
放電型高真空イオンプレーティング装置の概略図。
3 is a schematic view of an arc discharge type high vacuum ion plating apparatus for manufacturing the composite sheet shown in FIG.

【符号の説明】[Explanation of symbols]

1…アーク放電型高真空イオンプレーティング装置 3…電子ビーム 4…蒸発源 5…Nbシート 5a…Al蒸着層 5b…Nb蒸着層 8…イオン化電極 12…シャッター 20…複合シート 21…Cu系金属ロッド 22、25…Cu系金属パイプ 23…単芯構造のビレット 24…単芯線 26…多芯ビレット 27…多芯線 DESCRIPTION OF SYMBOLS 1 ... Arc discharge type high vacuum ion plating apparatus 3 ... Electron beam 4 ... Evaporation source 5 ... Nb sheet 5a ... Al vapor deposition layer 5b ... Nb vapor deposition layer 8 ... Ionizing electrode 12 ... Shutter 20 ... Composite sheet 21 ... Cu-based metal rod 22, 25 ... Cu-based metal pipe 23 ... Single core structure billet 24 ... Single core wire 26 ... Multi-core billet 27 ... Multi-core wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大垣 俊久 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 前田 慶一郎 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 野呂 治人 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toshihisa Ogaki, Toshihisa Ogaki 2-1-1 Oda Sakae, Kawasaki-ku, Kanagawa Prefecture 1st-1st Showa Cable Electric Co., Ltd. (72) Inventor Haruhito Noro 2-11-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(イ)Nb系金属シート上にAl系金属層
およびNb系金属層を交互に多層に形成して複合シート
を作成する工程と、 (ロ)この複合シートをCu系金属ロッド上に巻き付
け、これをCu系金属パイプ中に挿入して単芯構造のビ
レットを形成する工程と、 (ハ)この単芯構造のビレットに減面加工を施して単芯
線を製造する工程と、 (ニ)この単芯線の多数本をCu系金属パイプ中に収容
して多芯ビレットを形成する工程と、 (ホ)この多芯ビレットに減面加工を施して多芯線を製
造する工程と、 (ヘ)この多芯線にNb3 Al生成の熱処理を施す工程
とからなることを特徴とするNb3 Al多芯超電導線の
製造方法。
1. A step of (a) forming a composite sheet by alternately forming a plurality of Al-based metal layers and Nb-based metal layers on a Nb-based metal sheet, and (b) forming the composite sheet with a Cu-based metal rod. A step of winding it around and inserting it into a Cu-based metal pipe to form a single core structure billet; and (c) a step of subjecting this single core structure billet to surface reduction processing to produce a single core wire, (D) A step of accommodating a large number of the single-core wires in a Cu-based metal pipe to form a multi-core billet, and (e) a step of manufacturing a multi-core wire by subjecting the multi-core billet to surface-reduction processing. (f) a method of manufacturing a Nb 3 Al multi-filamentary superconducting wire, characterized by comprising a step of performing heat treatment of the Nb 3 Al produced the multifilamentary wire.
【請求項2】Nb系金属シート上のAl系金属層および
Nb系金属層は、イオンプレーティング法により形成さ
れた蒸着層よりなる請求項1記載のNb3 Al多芯超電
導線の製造方法。
2. The method for producing an Nb 3 Al multicore superconducting wire according to claim 1, wherein the Al-based metal layer and the Nb-based metal layer on the Nb-based metal sheet are vapor-deposited layers formed by an ion plating method.
【請求項3】Nb系金属層に対するAl系金属層の厚さ
は略1:3である請求項1記載のNb3 Al多芯超電導
線の製造方法。
3. The method for producing an Nb 3 Al multifilamentary superconducting wire according to claim 1, wherein the thickness of the Al-based metal layer with respect to the Nb-based metal layer is approximately 1: 3.
JP5044954A 1993-03-05 1993-03-05 Manufacture of nb3al multi-core superconducting wire Pending JPH06260040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5044954A JPH06260040A (en) 1993-03-05 1993-03-05 Manufacture of nb3al multi-core superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5044954A JPH06260040A (en) 1993-03-05 1993-03-05 Manufacture of nb3al multi-core superconducting wire

Publications (1)

Publication Number Publication Date
JPH06260040A true JPH06260040A (en) 1994-09-16

Family

ID=12705885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5044954A Pending JPH06260040A (en) 1993-03-05 1993-03-05 Manufacture of nb3al multi-core superconducting wire

Country Status (1)

Country Link
JP (1) JPH06260040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047156A1 (en) * 1997-04-14 1998-10-22 Sumitomo Electric Industries, Ltd. Wire for compound superconducting cables and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047156A1 (en) * 1997-04-14 1998-10-22 Sumitomo Electric Industries, Ltd. Wire for compound superconducting cables and method of producing the same

Similar Documents

Publication Publication Date Title
US4842704A (en) Magnetron deposition of ceramic oxide-superconductor thin films
EP0338619B1 (en) High-flux neutron source with long life target
US4960753A (en) Magnetron deposition of ceramic oxide-superconductor thin films
US3763552A (en) Method of fabricating a twisted composite superconductor
EP0357824A1 (en) A sheet plasma sputtering method and an apparatus for carrying out the method
US3205413A (en) Thin film superconducting solenoids
JP2693255B2 (en) Nb (Bottom 3) Method and apparatus for manufacturing Al-based superconducting wire
JPH06260040A (en) Manufacture of nb3al multi-core superconducting wire
JPH06260041A (en) Manufacture of nb3al multi-core superconducting wire
US3616530A (en) Method of fabricating a superconducting composite
JP3629527B2 (en) Manufacturing method of Nb3Al compound-based superconducting wire and superconducting wire obtained by the method
EP0617473B1 (en) Method of fabricating an oxide superconductor
JPH09120719A (en) Oxide type superconductor
JP4423708B2 (en) Oxide superconducting wire and method for producing oxide superconducting multicore wire
US4089990A (en) Battery plate and method of making
CN2053796U (en) Wide-beam cold-cathode ionization source
JPH08106827A (en) Manufacture of superconductive wire
JP3182048B2 (en) Superconducting wire manufacturing equipment
JPH07105751A (en) Stabilizing material compound type superconductor and its manufacture
Babertsyan et al. Ion current from a Penning-discharge ion source
JPH11185544A (en) Evaporating method and evaporating device for orientation-controlled polycrystalline thin film
JP3169278B2 (en) Thin film forming method and thin film forming apparatus
JP3152689B2 (en) Superconducting material
JPS62150786A (en) Manufacture of nbn superconductive film
JPS6320461A (en) Thin film forming device