JPH06260017A - Conductive thermoplastic resin composition - Google Patents

Conductive thermoplastic resin composition

Info

Publication number
JPH06260017A
JPH06260017A JP5070985A JP7098593A JPH06260017A JP H06260017 A JPH06260017 A JP H06260017A JP 5070985 A JP5070985 A JP 5070985A JP 7098593 A JP7098593 A JP 7098593A JP H06260017 A JPH06260017 A JP H06260017A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
conductive
ultra
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5070985A
Other languages
Japanese (ja)
Inventor
Akira Tabuchi
明 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Otsuka Chemical Co Ltd
Tanaka Kikinzoku Kogyo KK
Original Assignee
Koa Oil Co Ltd
Otsuka Chemical Co Ltd
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd, Otsuka Chemical Co Ltd, Tanaka Kikinzoku Kogyo KK filed Critical Koa Oil Co Ltd
Priority to JP5070985A priority Critical patent/JPH06260017A/en
Publication of JPH06260017A publication Critical patent/JPH06260017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain excellent mechanical nature and a smooth surface by combining a specific quantity of ultra-fine carbon fibers having the specific fiber diameter and fiber length into a conductive or semiconductive thermoplastic resin composition. CONSTITUTION:Pitch-like ultra-fine carbon fibers of 5-50wt.% having the average fiber diameter of 0.5-3.0mum and the average fiber length of 3-20mm are combined into a conductive or semiconductive thermoplastic resin composition. A gentle kneading means is preferable for the method to combine the ultra-fine fibers into the thermoplastic resin, e.g. the ultra-fine carbon fibers are combined into the thermoplastic resin melted by an extruding machine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的強度その他の機
械的諸物性に優れた導電性熱可塑性樹脂組成物に関す
る。更に詳しくは、本発明は電気部品及び電子機器分野
に利用される安定した導電性あるいは半導電性を有する
熱可塑性樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive thermoplastic resin composition having excellent mechanical strength and other mechanical properties. More particularly, the present invention relates to a stable electrically conductive or semi-conductive thermoplastic resin composition used in the fields of electric parts and electronic equipment.

【0002】[0002]

【従来の技術】近年、技術の高度化及び精密化に伴つ
て、各種の機器及びその構成部品に対して材質や構造面
からその軽薄短小化を求める声が活発化しており、その
傾向は特に電子材料及び電子機器の両分野において著し
い。そして、昨日まで金属で作られていた部品や部材が
今日はプラスチツクで置換されるという現象が急激に進
行しつつある。しかし、反面において、従来の金属製部
品や部材では問題にならなかつた機械強度その他の機械
的諸物性、帯電防止性能及び導電性能等の諸問題が顕在
化し、各分野においてこれらの問題を解決するための研
究が進められつつある。
2. Description of the Related Art In recent years, along with the sophistication and precision of technology, there has been an increasing demand for various devices and their constituent parts to be light, thin, short and small in terms of material and structure, and this tendency is particularly remarkable. It is remarkable in both electronic materials and electronic devices. Then, a phenomenon in which parts and members made of metal until yesterday are replaced by plastic today is rapidly progressing. However, on the other hand, various problems such as mechanical strength and other mechanical properties, antistatic performance and conductive performance, which have not been problems with conventional metal parts and members, have become apparent, and these problems are solved in each field. Research is underway.

【0003】ところで、ヤング率の低さその他のプラス
チツクの宿命とも言うべき機械強度の低さを改善するた
めには、繊維状補強剤をプラスチツクに配合することが
有力な解決手段の一つである。
By the way, in order to improve the low Young's modulus and other mechanical strength which should be called the fate of plastics, compounding a fibrous reinforcing agent into the plastics is one of the most effective solutions. .

【0004】一方、帯電防止性能を付与する方法として
は、多価アルコールや多価アルコールの脂肪酸エステ
ル、ポリアルキレングリコール、アルキルアミンなどの
親水基を有する化合物を添加する方法がある。しかしな
がら、この親水性物質を添加する方法では、樹脂成形品
の表面抵抗は精々1011Ω程度までしか低下せず、しかも
環境湿度により著しく抵抗値が変化する欠点がある。
On the other hand, as a method of imparting antistatic performance, there is a method of adding a compound having a hydrophilic group such as polyhydric alcohol, fatty acid ester of polyhydric alcohol, polyalkylene glycol or alkylamine. However, this method of adding a hydrophilic substance has a drawback that the surface resistance of the resin molded product is reduced to about 10 11 Ω at the most and the resistance value remarkably changes depending on the environmental humidity.

【0005】また他の方法として、導電性カーボンブラ
ツクを樹脂中に配合する方法もある。しかし周知のよう
に、導電性カーボンブラツクは、非常に高価で、取り扱
いに際し飛散しやすいため、作業場を汚染し易いという
欠点がある。しかも本品単独にて樹脂組成物に導電性を
付与するには、少なくとも10重量%程度の添加が必要で
ある。しかるに、7重量%以上の導電性カーボンブラツ
クの配合は対象成形品の機械強度を著しく低下させるか
ら、その適用範囲は自ずと比較的狭い範囲内に限定され
ているというのが実情であるが、特に導電性カーボンブ
ラツクの単独添加により導電性を付与した樹脂組成物に
おける最大の欠点は、再現性のある固有抵抗値を樹脂組
成物に付与しにくい点である。これを更に詳しく言え
ば、導電性カーボンブラツクを7重量%未満の割合で添
加、配合された樹脂組成物では、熱可塑性樹脂本来の高
い電気抵抗値を示すのに対し、前者を10重量%以上の割
合で添加された樹脂組成物では、逆に導電性カーボンブ
ラツク固有の低い抵抗値を示すようになり、7〜10重量
%の中間領域では、抵抗値は導電性カーボンブラツク添
加量の増加に応じて極めて微妙に変化する。従つて、樹
脂固有抵抗値と、導電性カーボンブラツク固有の抵抗値
との間の中間的な設計抵抗値を自由に、しかも安定して
付与することは甚だ困難である。即ち、導電性カーボン
ブラツク配合量の僅かな変化により、配合物或いはそれ
による成形品の電気特性が絶縁領域から低抵抗領域へ急
激に変化するため、所望の半導電性を一定に付与するの
は至難である。加えて、非配合樹脂の熱安定性が悪化す
る他、成形時に起こる熱分解のため、得られた成形物の
外観が著しく変化し、かつ成形品の耐衝撃強度、曲げ強
度が著しく低下するなどの多くの欠点を生じる。
As another method, there is a method in which a conductive carbon black is blended in a resin. However, as is well known, the conductive carbon black is very expensive and is easily scattered during handling, so that it has a drawback of easily contaminating the workplace. Moreover, in order to impart conductivity to the resin composition with this product alone, it is necessary to add at least about 10% by weight. However, since the compounding of 7% by weight or more of the conductive carbon black significantly reduces the mechanical strength of the target molded product, the application range is naturally limited to a relatively narrow range. The biggest drawback of the resin composition to which the conductivity is imparted by adding the conductive carbon black alone is that it is difficult to impart a reproducible specific resistance value to the resin composition. More specifically, in the resin composition in which the conductive carbon black is added in a proportion of less than 7% by weight, the thermoplastic resin exhibits a high electric resistance value, whereas the former is 10% by weight or more. On the contrary, in the resin composition added in the ratio of, the low resistance value peculiar to the conductive carbon black comes to be exhibited, and the resistance value increases in the addition amount of the conductive carbon black in the intermediate region of 7 to 10% by weight. It changes very subtly. Therefore, it is very difficult to freely and stably give an intermediate design resistance value between the resin specific resistance value and the resistance value specific to the conductive carbon black. That is, a slight change in the conductive carbon black compounding amount causes a rapid change in the electrical characteristics of the compounded product or a molded product thereof from the insulating region to the low resistance region. It is extremely difficult. In addition, the thermal stability of the non-blended resin deteriorates, and the thermal decomposition that occurs during molding significantly changes the appearance of the resulting molded product, and the impact resistance and flexural strength of the molded product significantly decrease. Results in many drawbacks.

【0006】さらに別の方法として、通常の太さの炭素
繊維を配合する方法もあるが、成形品の表面平滑性を害
する傾向があり、その上、導電性能においても部分的な
バラツキが出やすいという欠点を有している。
[0006] As another method, there is a method of blending carbon fibers of ordinary thickness, but this tends to impair the surface smoothness of the molded product, and moreover, the conductive performance tends to be partially varied. It has the drawback of

【0007】一般にピツチ系炭素繊維は、高品位炭素繊
維(HP品)と汎用炭素繊維(GP品)に大別される。
HP品は、光学的異方性の紡糸ピツチを紡糸することに
より、ピツチを構成する多環芳香族からなる液晶分子を
繊維軸に平行に配列させ、これを不融化、炭化・黒鉛化
することにより黒鉛結晶が成長し、高強度で高弾性率の
炭素繊維を製造するものである。一方、GP品は光学的
に等方向なピツチを紡糸し、焼成することによつて非晶
質な等方性組織からなり、低強度ではあるが安価な炭素
繊維を製造するものである。これらの炭素繊維は、HP
品が主として溶融紡糸により製造され、GP品は遠心紡
糸法で製造されるが、その繊維径は10〜18μmであり、
5μm以下のような細い繊維は製造することができな
い。
Pitch-based carbon fibers are generally classified into high-grade carbon fibers (HP products) and general-purpose carbon fibers (GP products).
The HP product is obtained by spinning the optically anisotropic spinning pits so that the liquid crystal molecules composed of polycyclic aromatics that make up the pits are aligned parallel to the fiber axis, and infusibilized, carbonized or graphitized. By this, graphite crystals grow to produce carbon fiber having high strength and high elastic modulus. On the other hand, the GP product is made by spinning an optically isotropic pitch and firing it to produce an inexpensive carbon fiber having an amorphous isotropic structure and having low strength. These carbon fibers are HP
The product is mainly produced by melt spinning, and the GP product is produced by the centrifugal spinning method, but the fiber diameter is 10 to 18 μm,
Fibers as thin as 5 μm or less cannot be produced.

【0008】その理由として溶融紡糸ではピツチをノズ
ルから吐き出し、それを高速で回転するボビンに巻取る
ことで繊維の微細化が行われる。しかし、紡糸されたピ
ツチ糸自体の強度は約0.4kgf/mm2と極めて弱いもので
あり、しかも、フイラメント一本当たりの強さは径が細
くなるにつれてさらに弱くなる。一方、紡糸時の張力
は、繊維径が細くなるにつれて、即ち巻取り速度が速く
なるにつれて増加するので、ついには張力がピツチ糸の
強度を上回つて糸切れがおこり、紡糸ができなくなる。
The reason for this is that in melt spinning, the pitch is discharged from a nozzle and wound on a bobbin which rotates at a high speed, whereby the fibers are made fine. However, the strength of the spun pitch yarn itself is extremely weak at about 0.4 kgf / mm 2 , and the strength per filament becomes even weaker as the diameter becomes smaller. On the other hand, the tension during spinning increases as the fiber diameter becomes smaller, that is, as the winding speed increases, so that the tension eventually exceeds the strength of the pitch yarn, and yarn breakage occurs, making spinning impossible.

【0009】一方、遠心紡糸法では高速で回転するノズ
ルからピツチを吐き出し、遠心力でこれを吹き飛ばすこ
とで微細化が行われるが、細い繊維はそれ自身の質量が
小さいため、慣性力がかかりにくく、微細化の程度には
自ずから限界が生じてくる。
On the other hand, in the centrifugal spinning method, the pitch is discharged from a nozzle that rotates at a high speed and blown off by a centrifugal force to make the fiber fine. However, since the fine fiber has a small mass of itself, it is difficult to apply inertial force. However, the degree of miniaturization naturally comes to a limit.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、実用
上充分な機械強度その他の機械的物性(以下「機械的物
性」という)を有すると共に、平滑な表面を保持し、し
かも任意の導電性を安定して発現する成形物を与える熱
可塑性樹脂組成物を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to have practically sufficient mechanical strength and other mechanical properties (hereinafter referred to as "mechanical properties"), maintain a smooth surface, and have arbitrary conductivity. It is intended to provide a thermoplastic resin composition that gives a molded product that exhibits stable properties.

【0011】[0011]

【課題を解決するための手段】本発明は平均繊維径 0.5
〜3.0μm、平均繊維長 3〜20mmの極細炭素繊維が5〜5
0重量%配合されていることを特徴とする安定した導電
性又は半導電性を備える熱可塑性樹脂組成物に係る。
The present invention has an average fiber diameter of 0.5.
〜3.0μm, average fiber length 3 ~ 20mm extra fine carbon fiber 5 ~ 5
The present invention relates to a thermoplastic resin composition having stable conductivity or semiconductivity, which is characterized by being blended in an amount of 0% by weight.

【0012】本発明者の得た新規な知見によれば、本発
明により半導電領域で、バラツキのない安定した電気抵
抗値を容易に再現しうるという事実が見出された。換言
すれば、本発明により、絶縁域から低抵抗域までの間の
任意の導電性を確実に再現することができる。
According to the novel knowledge obtained by the present inventor, it has been found that the present invention makes it possible to easily reproduce a stable and stable electric resistance value in the semiconductive region. In other words, according to the present invention, it is possible to reliably reproduce arbitrary conductivity from the insulating region to the low resistance region.

【0013】本発明に使用される極細炭素繊維は、紡糸
ピツチを特定の条件下に特殊なノズルから吐出しなが
ら、極めて高速の気流で微細化することにより製造され
るもので、従来の紡糸技術では製造できなかつた、平均
繊維径 0.5〜3.0μm、平均繊維長 3〜20mmという極め
て細い炭素繊維が得られることに特徴がある。このよう
にして紡糸された極細のピツチ糸は、酸化性ガス中で軽
度に酸化することで不融化され、ついで不活性ガス雰囲
気中で炭化することで炭素繊維となる。紡糸ピツチとし
ては前述の等方性ピツチ、異方性ピツチのどちらも紡糸
が可能である。
The ultrafine carbon fiber used in the present invention is manufactured by refining a spinning pitch from a special nozzle under a specific condition with an extremely high speed air flow, and the conventional spinning technique is used. Is characterized in that extremely fine carbon fibers having an average fiber diameter of 0.5 to 3.0 μm and an average fiber length of 3 to 20 mm, which could not be produced, can be obtained. The ultra fine pitch yarn spun in this manner is made infusible by being slightly oxidized in an oxidizing gas, and is then carbonized in an inert gas atmosphere to be a carbon fiber. As the spinning pitch, both the isotropic pitch and the anisotropic pitch described above can be spun.

【0014】上記極細炭素繊維は、通常、無処理状態の
ままでも使用できるが、熱可塑性樹脂との界面接着性を
より良好にするため、シランカツプリング剤、チタネー
トカツプリング剤など目的に応じた表面処理剤を使用し
た方が一般に良い結果が得られる。
The above-mentioned ultrafine carbon fibers can be usually used in an untreated state, but in order to improve the interfacial adhesion with the thermoplastic resin, a silane coupling agent, a titanate coupling agent, etc. may be used depending on the purpose. The use of surface treatments generally gives better results.

【0015】以上の極細炭素繊維の配合量は、補強効
果、特に剛性、耐クリープ性及び熱変形温度の向上並び
に限界PV値の向上、さらには寸法精度の向上などか
ら、組成物中5〜50重量%の範囲で配合されるのが好ま
しい。前記配合量が5重量%未満では、成形品の機械的
強度を充分に向上させることができない。一方、50重量
%を越えて使用しても、該限界量を越える量に見合う程
の機械的強度の向上効果を認めにくく、かつ組成物の造
粒化も難しくなる傾向にある。
The amount of the above ultrafine carbon fiber blended is 5 to 50 in the composition because of its reinforcing effect, especially improvement in rigidity, creep resistance and heat distortion temperature, improvement in critical PV value, and improvement in dimensional accuracy. It is preferably blended in the range of% by weight. If the blending amount is less than 5% by weight, the mechanical strength of the molded product cannot be sufficiently improved. On the other hand, even if it is used in an amount exceeding 50% by weight, it is difficult to recognize the effect of improving the mechanical strength commensurate with the amount exceeding the limit amount, and it becomes difficult to granulate the composition.

【0016】本発明において熱可塑性樹脂は、ポリエチ
レン、ポリプロピレン、ポリ塩化ビニル樹脂等の汎用熱
可塑性プラスチツク以外に、ポリアミド、熱可塑性ポリ
エステル、ポリアセタール、ポリフエニレンサルフアイ
ド、ポリサルフオン、ポリエーテルイミド、ポリエーテ
ルエーテルケトン等のエンジニアリングプラスチツクの
全てを含む。
In the present invention, the thermoplastic resin includes, in addition to general-purpose thermoplastics such as polyethylene, polypropylene and polyvinyl chloride resin, polyamide, thermoplastic polyester, polyacetal, polyphenylene sulfide, polysulfone, polyetherimide, polyether. Includes all engineering plastics such as etherketone.

【0017】熱可塑性樹脂に極細炭素繊維を配合する方
法自体は任意であつて、二者をブレンドする方法は、押
出機を用いて、熔融した熱可塑性樹脂に混入する方法の
ような公知の方法を自由に採用することができる。しか
しながら、極細炭素繊維の切断防止あるいは抑制するに
は、緩和な混練手段、例えば押出機を用いて、熔融した
熱可塑性樹脂中に極細炭素繊維を配合する手段が好まし
い。
The method of blending the ultrafine carbon fiber into the thermoplastic resin is arbitrary, and the method of blending the two is a known method such as a method of mixing the molten thermoplastic resin with an extruder. Can be freely adopted. However, in order to prevent or suppress the cutting of the ultrafine carbon fibers, a gentle kneading means, for example, a means of blending the ultrafine carbon fibers into the molten thermoplastic resin by using an extruder is preferable.

【0018】本発明の樹脂組成物には、さらに所望によ
り、それ自体公知の熱安定剤、光安定剤、酸化防止剤、
滑剤、難燃化剤、色素もしくは顔料等を必要に応じて、
かつ本発明の効果を失わせない範囲で任意に添加するこ
とができる。通常の太さの炭素繊維、カーボンブラツク
等の導電材料と併用することにより経済的な複合材料を
製造するのに有効である。
If desired, the resin composition of the present invention may further contain a known heat stabilizer, light stabilizer, antioxidant,
Lubricants, flame retardants, dyes or pigments, etc., if necessary,
Moreover, it can be optionally added within a range in which the effects of the present invention are not lost. It is effective for producing an economical composite material when used in combination with a conductive material such as carbon fiber or carbon black having a normal thickness.

【0019】[0019]

【実施例】以下、実施例を挙げて説明するが、何ら発明
思想の限定を意味するものではなくこれに限定されるも
のではない。
EXAMPLES The present invention will be described below with reference to examples, but it does not imply any limitation of the inventive idea and is not limited thereto.

【0020】実施例1 ノーブレンH501〔三井東圧化学(株)、ポリプロピレ
ン〕、平均繊維径 1.5μm、平均繊維長 8mmの本発明で
いう、極細炭素繊維を表1に示す配合組成として、220
℃に設定した45mmφ二軸押出機にて、溶融したノーブレ
ンH501に上記の極細炭素繊維を途中投入混入し、押
出し造粒化した。その後、下記条件下で、射出成形を行
い物性測定用テストピースを作成した。
Example 1 Noblene H501 [Mitsui Toatsu Chemicals, polypropylene], an ultrafine carbon fiber of the present invention having an average fiber diameter of 1.5 μm and an average fiber length of 8 mm is 220
Using a 45 mmφ twin-screw extruder set at 0 ° C., the above ultrafine carbon fiber was charged into the molten Noblene H501 halfway into the mixture, and extrusion granulated. Then, injection molding was performed under the following conditions to prepare a test piece for measuring physical properties.

【0021】シリンダー温度:210℃ 射出圧力 :500kgf/cm2 射出時間 :15秒 金型温度 :60℃ 得られた各テストピースについて、電気的性質と機械的
強度を測定した。その結果を表1に示す。
Cylinder temperature: 210 ° C. Injection pressure: 500 kgf / cm 2 Injection time: 15 seconds Mold temperature: 60 ° C. The electrical properties and mechanical strength of each of the obtained test pieces were measured. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】〔電気物性及び機械的物性測定条件〕 表面抵抗値:JIS K 6911 導電性バラツキ:○……1×10-1.0〜1×10+1.0Ω/□
の範囲内 帯電減衰時間測定:Electro−teck Systems, Inc 製 スタテイツク デイケイ メーター 406C型 曲げ強度:ASTM D790
[Conditions for measuring electrical and mechanical properties] Surface resistance value: JIS K 6911 Conductivity variation: ○ …… 1 × 10 −1.0 to 1 × 10 +1.0 Ω / □
In the range of electrostatic charge decay time measurement: Electro-teck Systems, Inc. made Static Day Meter 406C type Bending strength: ASTM D790

【0024】実施例2 ジユラコンM90−02〔ポリプラスチツク(株)製、
ポリアセタール樹脂〕、極細炭素繊維(平均繊維径 1.0
μm、平均繊維長 10mm)を表2に示す配合組成として20
0℃に設定した45mmφの2軸押出機にて溶融したジユラ
コンM90−02に混入し、押出し造粒した。その後下
記条件で射出成形し、物性測定用テストピースを作成し
た。
Example 2 Diuracon M90-02 [manufactured by Polyplastics Co., Ltd.,
Polyacetal resin], ultrafine carbon fiber (average fiber diameter 1.0
20 μm, average fiber length 10 mm) as the composition shown in Table 2
The mixture was mixed with Diuracon M90-02 melted by a 45 mmφ twin-screw extruder set at 0 ° C., and extrusion granulated. Then, injection molding was performed under the following conditions to prepare a test piece for measuring physical properties.

【0025】シリンダー温度:200℃ 射出圧力 :1000kgf/cm2 射出時間 :30秒 金型温度 :80℃ 続いて電気的性質と機械的強度を測定した。その結果を
表2に示す。
Cylinder temperature: 200 ° C. Injection pressure: 1000 kgf / cm 2 Injection time: 30 seconds Mold temperature: 80 ° C. Subsequently, electrical properties and mechanical strength were measured. The results are shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】曲げ弾性率 :ASTM D790 熱たわみ温度:ASTM D648Flexural Modulus: ASTM D790 Heat Deflection Temperature: ASTM D648

【0028】実施例3 RENY 6000〔三菱瓦斯化学(株)、ナイロンMXD
6〕、極細炭素繊維(平均繊維径 2.0μm、平均繊維長
15mm)、ケツチエンブラツクEC〔ライオンアクゾ
(株)製〕を表3に示す配合組成として270℃に設定し
た45mmφの2軸押出機にて熔融したRENY 6000に上
記材料を混入し、押出し造粒した。その後下記条件で射
出成形し、物性測定用テストピースを作成した。
Example 3 RENY 6000 [Mitsubishi Gas Chemical Co., Ltd., Nylon MXD
6], extra fine carbon fiber (average fiber diameter 2.0 μm, average fiber length
15 mm), and KETSCHENBLACK EC [manufactured by Lion Akzo Co., Ltd.] are mixed into the RENY 6000 melted by a 45 mmφ twin-screw extruder set at 270 ° C. as a compounding composition shown in Table 3 and extruded and granulated. did. Then, injection molding was performed under the following conditions to prepare a test piece for measuring physical properties.

【0029】シリンダー温度:285℃ 射出圧力 :1000kgf/cm2 射出時間 :20秒 金型温度 :120℃ 得られた各テストピースについて、電気的性質と機械的
強度を測定した。その結果を表3に示す。
Cylinder temperature: 285 ° C. Injection pressure: 1000 kgf / cm 2 Injection time: 20 seconds Mold temperature: 120 ° C. The electrical properties and mechanical strength of each of the obtained test pieces were measured. The results are shown in Table 3.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】本発明によれば、成形品の機械的物性が
高く、また寸法精度にも優れ、しかも絶縁域から導電域
までの任意の導電性を再現しうる樹脂組成物を容易に得
ることができる。特に、本発明の導電性熱可塑性樹脂組
成物は、体積固有抵抗値で1014〜1010Ω・cmの帯電防止
材料、1010〜104Ω・cmの半導電性材料及び104〜100Ω
・cmの導電性成形材料を提供できるので、電子部品の梱
包、収納材料、複写機、プリンター等のOA機器の機構
部品やハウジングなどに好適な樹脂材料を提供すること
ができる。
EFFECTS OF THE INVENTION According to the present invention, a resin composition having high mechanical properties of a molded article and excellent dimensional accuracy and capable of reproducing arbitrary conductivity from the insulating region to the conductive region can be easily obtained. be able to. In particular, the conductive thermoplastic resin composition of the present invention has a volume resistivity of 10 14 to 10 10 Ωcm antistatic material, 10 10 to 10 4 Ωcm semiconductive material and 10 4 to 10 4 0 Ω
-Since it is possible to provide a cm conductive molding material, it is possible to provide a resin material suitable for packing and housing materials for electronic parts, mechanical parts and housings of office automation equipment such as copying machines and printers.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均繊維径 0.5〜3.0μm、平均繊維長
3〜20mmの極細炭素繊維が5〜50重量%配合されている
ことを特徴とする安定した導電性又は半導電性を備える
熱可塑性樹脂組成物。
1. An average fiber diameter of 0.5 to 3.0 μm and an average fiber length
A thermoplastic resin composition having stable conductivity or semiconductivity, characterized in that an ultrafine carbon fiber of 3 to 20 mm is blended in an amount of 5 to 50% by weight.
【請求項2】 極細炭素繊維がピツチ系よりなる請求項
1の熱可塑性樹脂組成物。
2. The thermoplastic resin composition according to claim 1, wherein the ultrafine carbon fiber is a pitch type.
JP5070985A 1993-03-04 1993-03-04 Conductive thermoplastic resin composition Pending JPH06260017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5070985A JPH06260017A (en) 1993-03-04 1993-03-04 Conductive thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5070985A JPH06260017A (en) 1993-03-04 1993-03-04 Conductive thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH06260017A true JPH06260017A (en) 1994-09-16

Family

ID=13447338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5070985A Pending JPH06260017A (en) 1993-03-04 1993-03-04 Conductive thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH06260017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371197A (en) * 2001-04-09 2002-12-26 Ube Ind Ltd Conductive resin composition and method for manufacturing the same
WO2003054639A1 (en) * 2001-12-21 2003-07-03 Kitagawa Industries Co., Ltd. Alarm electronic timepiece and conductive spring
JP2006152023A (en) * 2004-11-25 2006-06-15 Toho Tenax Co Ltd Manufacturing method of carbon fiber resin composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189142A (en) * 1983-04-12 1984-10-26 Ube Ind Ltd Electrically conductive thermoplastic resin composition
JPS60202154A (en) * 1984-03-27 1985-10-12 Asahi Chem Ind Co Ltd Injection-molded thermoplastic resin product
JPS62215635A (en) * 1986-03-17 1987-09-22 Kanebo Ltd Molded article of electrically conductive resin
JPH02105886A (en) * 1988-10-14 1990-04-18 Asahi Chem Ind Co Ltd Conductive gasket composition
JPH02160308A (en) * 1988-12-12 1990-06-20 Kitagawa Kogyo Kk Conductive mechanism element
JPH02228340A (en) * 1989-03-01 1990-09-11 Asahi Chem Ind Co Ltd Pressure-sensitive conductive rubber composition
JPH02298531A (en) * 1989-05-15 1990-12-10 Asahi Chem Ind Co Ltd Pressure-sensitive conductive rubber material
JPH03283308A (en) * 1990-03-30 1991-12-13 Achilles Corp Conductive laminated sheet
JPH0473804A (en) * 1990-07-13 1992-03-09 Inoac Corp Tray for integrated circuit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189142A (en) * 1983-04-12 1984-10-26 Ube Ind Ltd Electrically conductive thermoplastic resin composition
JPS60202154A (en) * 1984-03-27 1985-10-12 Asahi Chem Ind Co Ltd Injection-molded thermoplastic resin product
JPS62215635A (en) * 1986-03-17 1987-09-22 Kanebo Ltd Molded article of electrically conductive resin
JPH02105886A (en) * 1988-10-14 1990-04-18 Asahi Chem Ind Co Ltd Conductive gasket composition
JPH02160308A (en) * 1988-12-12 1990-06-20 Kitagawa Kogyo Kk Conductive mechanism element
JPH02228340A (en) * 1989-03-01 1990-09-11 Asahi Chem Ind Co Ltd Pressure-sensitive conductive rubber composition
JPH02298531A (en) * 1989-05-15 1990-12-10 Asahi Chem Ind Co Ltd Pressure-sensitive conductive rubber material
JPH03283308A (en) * 1990-03-30 1991-12-13 Achilles Corp Conductive laminated sheet
JPH0473804A (en) * 1990-07-13 1992-03-09 Inoac Corp Tray for integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371197A (en) * 2001-04-09 2002-12-26 Ube Ind Ltd Conductive resin composition and method for manufacturing the same
WO2003054639A1 (en) * 2001-12-21 2003-07-03 Kitagawa Industries Co., Ltd. Alarm electronic timepiece and conductive spring
JP2006152023A (en) * 2004-11-25 2006-06-15 Toho Tenax Co Ltd Manufacturing method of carbon fiber resin composition

Similar Documents

Publication Publication Date Title
JP2610671B2 (en) Fiber reinforced thermoplastic resin composition
KR920010613B1 (en) Reinforced molding resin composition
KR950015027B1 (en) Static dissipative resin composition
US4713283A (en) Reinforced composite structures
US5428100A (en) Liquid crystal polyester resin composition and molded article
US5321071A (en) Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition
EP1842879A1 (en) Polyamide resin composition and conductive shaft-shaped molded article
FR2596567A1 (en) ELECTROCONDUCTIVE COMPOSITION BASED ON A POLYAMID RESIN
EP0337487A1 (en) Electroconductive polymer composition
KR101192372B1 (en) Fiber glass reinforced thermoplastic resin composition
JPH06260017A (en) Conductive thermoplastic resin composition
US4579902A (en) Permanently antistatic thermoplastic molding composition
JPH0583044B2 (en)
JPH0379663A (en) Polyamide resin composition
JP3493710B2 (en) Carbon fiber reinforced resin composite material
CN117320871A (en) Glass reinforced resin molded article
JPH0468348B2 (en)
JP2008001848A (en) Liquid crystalline resin composition
JPH1180517A (en) Resin composition
JPH05226092A (en) Electrostatic diffusion resin complex
JPH0449873B2 (en)
KR930008196B1 (en) Polyphenylene sulfide resin composition
JP2757454B2 (en) Short carbon fiber aggregate and fiber-reinforced thermoplastic resin composition obtained by blending the same
JP2887345B2 (en) Thermoplastic resin composition
KR890004009B1 (en) Conductive polyester resin composition