JPH0473804A - Tray for integrated circuit - Google Patents

Tray for integrated circuit

Info

Publication number
JPH0473804A
JPH0473804A JP18408690A JP18408690A JPH0473804A JP H0473804 A JPH0473804 A JP H0473804A JP 18408690 A JP18408690 A JP 18408690A JP 18408690 A JP18408690 A JP 18408690A JP H0473804 A JPH0473804 A JP H0473804A
Authority
JP
Japan
Prior art keywords
tray
resin
titanium oxide
carbon fiber
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18408690A
Other languages
Japanese (ja)
Other versions
JP2868295B2 (en
Inventor
Masaaki Mori
正明 毛利
Shigenori Hamaoka
浜岡 重則
Keiji Asai
啓二 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd, Inoue MTP KK, Inoac Corp filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP18408690A priority Critical patent/JP2868295B2/en
Publication of JPH0473804A publication Critical patent/JPH0473804A/en
Application granted granted Critical
Publication of JP2868295B2 publication Critical patent/JP2868295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve colorability and maintain necessary conductivity by using a mixture of a specific ratio of carbon fibers to a current carrying material coating titanium oxide as a conductive filler. CONSTITUTION:A tray for IC consists of a resin molding material having basic blending, in which 100 to 150 pts.wt. of a mixture having wt ratio of 5/5 to 8/2 of carbon fibers and current-carrying coating titanium oxide is added to a resin matrix of 100 pts.wt. of a mixture of diallyl phthalate resin and unsaturated polyester resin while having surface electric resistance of 10<3> to 10<8>OMEGA glass transition temperature not less than 150 deg.C and water absorption not exceeding 0.45%. Thereby, the tray for IC can be uniformly colored into optional colors excepting black by jointly using appropriate pigments while enabling the tray surface to be furnished with desired conductivity to be maintained for a long term.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路(以下ICと略記する)用トレーに係
り、さらに詳しくは吸水率、表面電気抵抗が小さ(、長
期保存性を有し、150°C以上のベーキングに使用可
能であり、かつ色別によりIC生産に於る品種管理を容
易化できる非黒色系IC用トレーに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a tray for integrated circuits (hereinafter abbreviated as IC), and more specifically, it relates to a tray for integrated circuits (hereinafter abbreviated as IC), and more specifically, a tray that has a low water absorption rate, a low surface electrical resistance (and has a long shelf life). The present invention relates to a non-black IC tray that can be used for baking at temperatures of 150° C. or higher, and that can facilitate product variety management in IC production by color classification.

〔従来の技術〕[Conventional technology]

従来より、ICの実装分野において表面実装化が進展し
、トレーによるIC供給が一般化している。すなわち、
ICのプリント基板への実装時にハンダ熱によるヒート
クラック(パフケージ割れ)を防止するために、IC製
造の最終工程でエポキシ樹脂封止材を加熱硬化する際に
、さらにはその後の梱包工程において、ICを保持する
ために例えば凹溝部からなる製品収容部を多数形成した
板状のトレーが使用される。
BACKGROUND ART Conventionally, surface mounting has progressed in the field of IC mounting, and IC feeding by trays has become common. That is,
In order to prevent heat cracks (puff cage cracks) caused by solder heat when mounting an IC on a printed circuit board, the IC is For example, a plate-shaped tray is used in which a large number of product accommodating portions each having a concave groove portion are formed.

最近、IC集積度の向上により表面の実装の際パッケー
ジ割れが多発し、その為にICの150°C以上の高温
での加熱硬化が常用されるようになっている。このよう
な条件下で実用できるIC用トレーとして、耐熱性、耐
衝撃性、さらに長期保存性に優れたトレーである熱硬化
性樹脂−カーボンブラック系配合のトレーを本出願人は
先に開示した(特願昭63−315071号明細書)。
Recently, as the degree of IC integration has increased, package cracks have frequently occurred during surface mounting, and for this reason, heat curing of ICs at high temperatures of 150° C. or higher has become commonplace. As an IC tray that can be put to practical use under such conditions, the applicant has previously disclosed a tray made of a thermosetting resin-carbon black composition that has excellent heat resistance, impact resistance, and long-term storage stability. (Specification of Japanese Patent Application No. 63-315071).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、ICの多様化により従来のカーボンブラ
ック系配合のみでは品種管理に困難をきたす様になって
きており、生産ラインサイドでは品種別にトレーの色状
を変更することにより、より効率的に生産管理を行なう
ことが望まれている。
However, due to the diversification of ICs, it has become difficult to manage product types using only conventional carbon black formulations, and by changing the color of trays for each product on the production line side, production management can be done more efficiently. It is hoped that this will be done.

そこで、多種の色状製品を任意に実現するために種々の
樹脂で下記の如き方法が検討されたが、それぞれ技術的
問題点があった。
Therefore, the following methods have been investigated using various resins in order to arbitrarily produce products with a wide variety of colors, but each method has had its own technical problems.

(1)従来のカーボン系フィラーの他に酸化チタン及び
顔料を配合して着色性を上げる方法。この場合、必要な
導電性を維持する為カーボンブラックを15部以上配合
する必要があり、その為酸化チタンの配合量はトレーを
白色化するために200部以上必要となる。それによっ
て樹脂分率が低くなり、成形材料として不適である。
(1) A method of increasing colorability by blending titanium oxide and pigments in addition to conventional carbon-based fillers. In this case, it is necessary to mix 15 parts or more of carbon black in order to maintain the necessary conductivity, and therefore 200 parts or more of titanium oxide is required to whiten the tray. As a result, the resin fraction becomes low, making it unsuitable as a molding material.

(2)非黒色フィラーとして鉄等の金属粉及び顔料を配
合する方法。これはトレー成形後、経時とともに配合し
た金属粉の表面が酸化されトレーの表面抵抗が高くなり
、使用不可となる。
(2) A method of blending metal powder such as iron and pigment as a non-black filler. After forming the tray, the surface of the mixed metal powder becomes oxidized over time, increasing the surface resistance of the tray and making it unusable.

(3)非黒色導電性フィラーとしてニッケル等の金属コ
ーティングマイカフィラー及び繊維を配合する方法。こ
れは、着色性はあるが、フィラー形状が大きいため必要
な導電性を維持するには樹脂100部に対し150部以
上の配合が必要となり、そのため、成形品表面のハダ荒
れが生じやすく外観不良となる。さらに金属コーティン
グの空気酸化のために表面抵抗が増大して絶縁化するた
め、使用に適さない。
(3) A method of blending metal-coated mica filler such as nickel and fiber as a non-black conductive filler. Although it has coloring properties, since the filler shape is large, it is necessary to mix 150 parts or more to 100 parts of resin to maintain the necessary conductivity, and as a result, the surface of the molded product tends to become rough and has a poor appearance. becomes. Furthermore, air oxidation of the metal coating increases surface resistance and leads to insulation, making it unsuitable for use.

(4)従来の黒色導電トレーに導電塗料を塗る方法。こ
の場合、塗料に耐熱性が要求されるため、色の種類が限
定される場合が多く、また■Cベーキング時に塗膜が剥
げ落ち周囲を汚染する等の理由により不適である。
(4) A method of applying conductive paint to a conventional black conductive tray. In this case, since the paint is required to have heat resistance, the types of colors are often limited, and it is also unsuitable because the paint film peels off during baking and contaminates the surrounding area.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記課題が導電性フィラーとしてカーボンフ
ァイバーと通電材コーティング酸化チタンの特定割合の
混合物を使用することにより解決されることを見い出し
、完成されたものである。
The present invention has been completed by discovering that the above-mentioned problem can be solved by using a mixture of carbon fiber and current-carrying material coating titanium oxide in a specific ratio as a conductive filler.

すなわち、本発明は、ジアリルフタレート樹脂と不飽和
ポリエステル樹脂の混合物100重量部の樹脂マトリッ
クスに対し、カーボンファイバーと通電材コーティング
酸化チタンの重量比が515〜8/2の混合物100〜
150重量部を添加したものを基本配合とする樹脂成形
材料よりなり、かつ表面電気抵抗103〜108Ω、ガ
ラス転移温度150゛C以上、吸水率0.45%以下で
ある集積回路用トレーにある。
That is, the present invention provides a resin matrix containing 100 parts by weight of a mixture of diallyl phthalate resin and unsaturated polyester resin, and 100 parts by weight of a mixture of carbon fiber and titanium oxide coated with an electrically conductive material in a weight ratio of 515 to 8/2.
The tray for integrated circuits is made of a resin molding material having a basic composition of 150 parts by weight, and has a surface electrical resistance of 103 to 108 Ω, a glass transition temperature of 150°C or more, and a water absorption rate of 0.45% or less.

本発明では耐熱性を維持するため、マトリックスとして
吸水率の低いジアリルフタレート樹脂と不飽和ポリエス
テル樹脂を用いる。ジアリルフタレート樹脂と不飽和ポ
リエステル樹脂は、反応系がラジカル付加重合であるた
め、反応過程において反応水、さらには、ICに使用さ
れている金属を腐食する硫化水素、アミン系ガス等の発
生が無いので好適である。また、ガラス転移温度が15
0℃以上である点も好適である。
In the present invention, in order to maintain heat resistance, a diallyl phthalate resin and an unsaturated polyester resin with low water absorption are used as a matrix. Diaryl phthalate resin and unsaturated polyester resin use a radical addition polymerization reaction system, so there is no generation of reaction water, hydrogen sulfide, amine gas, etc. that corrode the metals used in ICs during the reaction process. Therefore, it is suitable. In addition, the glass transition temperature is 15
It is also preferable that the temperature is 0°C or higher.

これらの樹脂の混合物を用いるのは、ジアリルフタレー
ト樹脂のみでは混練性が悪く成形材料を構成できず、さ
らに、不飽和ポリエステル樹脂のみではトレー成形体の
吸水率が0.45%以上となってしまうがこれらの混合
物とすることにより、混練りが可能で、トレー成形体の
吸水率を0.45%以下にすることができるからである
。加えて、これらの樹脂の混合比により、成形体の収縮
率を制御できることも好適な理由の一つである。好まし
い混合割合はジアリルフタレート/不飽和ポリエステル
の比が2/8〜8/2、特に4/6〜6/4である。
A mixture of these resins is used because diallyl phthalate resin alone has poor kneading properties and cannot form a molding material, and unsaturated polyester resin alone results in a tray molded product having a water absorption rate of 0.45% or more. This is because by using a mixture of these, kneading is possible and the water absorption rate of the tray molded product can be made 0.45% or less. In addition, one of the reasons why it is preferable is that the shrinkage rate of the molded article can be controlled by adjusting the mixing ratio of these resins. A preferred mixing ratio is a diallylphthalate/unsaturated polyester ratio of 2/8 to 8/2, particularly 4/6 to 6/4.

なお、ジアリルフタレート樹脂は、耐熱性を考慮すると
、ジアリルインフタレート樹脂が適しており、不飽和ポ
リエステル樹脂は、低い吸水性及び150℃以上の耐熱
性を持つ水添ビスフェノール系不飽和ポリエステル樹脂
が適している。
In addition, considering heat resistance, diallyl phthalate resin is suitable for diallyl phthalate resin, and hydrogenated bisphenol-based unsaturated polyester resin, which has low water absorption and heat resistance of 150°C or higher, is suitable for unsaturated polyester resin. ing.

本発明に使用されるカーボンファイバーは、吸水率の点
から黒鉛グレードのカーボンファイバーが適しており、
炭素グレードのカーボンファイバーは吸水率が10%近
(となるためトレー全体の吸水率の増加を促すため、好
ましくない。またカー1mm以下となると、小さすぎる
ので、導電性を上げる為には大量の配合を必要とするた
め、外観が黒化する現象が生ずる。従って、最適なもの
は、平均直径1〜20趨、平均長さ0.1〜1.0論の
カーボンファイバーである。
Graphite grade carbon fiber is suitable for the carbon fiber used in the present invention in terms of water absorption.
Carbon grade carbon fiber has a water absorption rate of nearly 10% (which is undesirable because it promotes an increase in the water absorption rate of the entire tray. Also, if the carbon fiber is less than 1 mm, it is too small, so a large amount of carbon fiber is used to increase conductivity. Since it requires blending, the phenomenon of blackening of the appearance occurs.Therefore, the optimum material is carbon fiber with an average diameter of 1 to 20 mm and an average length of 0.1 to 1.0 mm.

本発明においてカーボンファイバーと併用する通電材コ
ーティング酸化チタンは、白色性の高い酸化チタンの表
面に通電材をコーティングして、微小白色通電性フィラ
ーとしたものである。この通電材コーティング酸化チタ
ンは、その粒子構造からカーボンファイバーと協働して
トレーに所望の導電性と着色性と成形性を付与する。そ
の作用機構は十分に解明されたわけではないが、本発明
のトレーでは、第1図に示した如く、樹脂マトリックス
1中に導電性を持つカーボンファイバー2を成形体表面
へ析出しない程度の配合比で配合しながら、そのカーボ
ンファイバー間を通電材コーティング酸化チタンの微小
導電性フィラー3がつないでいる構造が形成され、これ
によって所望の導電性、成形性、着色性が実現されるも
のと考えられる。
The current-carrying material-coated titanium oxide used in combination with carbon fiber in the present invention is obtained by coating the surface of highly white titanium oxide with a current-carrying material to form a minute white current-carrying filler. Due to its particle structure, this titanium oxide coating as a conductive material works together with carbon fibers to impart desired conductivity, colorability, and moldability to the tray. Although its mechanism of action has not been fully elucidated, in the tray of the present invention, as shown in FIG. While compounding, a structure is formed in which the carbon fibers are connected with the micro conductive filler 3 made of titanium oxide coated with a conductive material, and it is thought that this achieves the desired conductivity, moldability, and colorability. .

コーティング通電材としてはニッケル、金、銀、ヨウ化
スズ、酸化亜鉛、酸化スズなどが使用できるが、中でも
光透過性が高く、かつ劣化性の少ない酸化スズが好まし
い。コーティングは無電解メツキ、化学蒸着法(CVD
) 、物理蒸着法(PVD)等によって行なうことがで
きる。また、酸化スズコーティング層に微量の酸化アン
チモンをドープすることも有効である。通電材コーティ
ングの厚さは酸化チタン粒子に通電性を与えればよく、
また光透過性を失なわないために10!趨以下がよく、
特に0.2〜0.41程度が望ましい。また、通電材コ
ーティング酸化チタンの寸法は平均粒径0.5 n以下
であることが望ましい。これより大きくなると、第1図
に示した如き構造が十分に得られず、ばらつきが生じ、
−導電性が悪くなる。
As the coating conductive material, nickel, gold, silver, tin iodide, zinc oxide, tin oxide, etc. can be used, but among them, tin oxide is preferred because it has high light transmittance and is less susceptible to deterioration. Coating is done by electroless plating or chemical vapor deposition (CVD).
), physical vapor deposition (PVD), etc. It is also effective to dope a small amount of antimony oxide into the tin oxide coating layer. The thickness of the current-carrying material coating can be adjusted as long as it gives electrical conductivity to the titanium oxide particles.
Also, 10 points to ensure that the light transmittance is not lost! Below the trend is better;
In particular, about 0.2 to 0.41 is desirable. Further, it is desirable that the size of the titanium oxide coated with the current-carrying material is an average particle size of 0.5 nm or less. If it is larger than this, the structure shown in Figure 1 cannot be obtained sufficiently, and variations will occur.
-Poor conductivity.

カーボンファイバーと通電材コーティング酸化チタンの
混合比率は、第1図の構造を実現し、所期の特性を得る
ために、カーボンファイバー/フィラー515〜8/2
の範囲内とする必要がある。
In order to achieve the structure shown in Figure 1 and obtain the desired characteristics, the mixing ratio of carbon fiber and titanium oxide coated with the electrically conductive material was 515 to 8/2 (carbon fiber/filler).
Must be within the range.

単純にカーボンファイバーだけを配合した場合で表面抵
抗108Ωを達成するには、マトリックス樹脂100部
に対して200部以上を配合する必要があり、樹脂マト
リックス量が少なくなり、樹脂の隠蔽力が不足し、トレ
ー成形体表面が黒色化する。
In order to achieve a surface resistance of 108 Ω by simply blending carbon fiber alone, it is necessary to blend 200 parts or more to 100 parts of matrix resin, which reduces the amount of resin matrix and the hiding power of the resin is insufficient. , the surface of the molded tray becomes black.

一方、酸化スズコーティング酸化チタン単品では、表面
抵抗10”Ω以下とするためには樹脂100部に対し、
150部以上を配合する必要があり、この場合、トレー
成形体の吸水率が0.45%以上となり寸法が安定的に
維持できない。
On the other hand, for tin oxide coated titanium oxide alone, in order to have a surface resistance of 10"Ω or less,
It is necessary to mix 150 parts or more, and in this case, the water absorption rate of the tray molded body becomes 0.45% or more, making it impossible to maintain stable dimensions.

また、マトリックスに対するこれら導電性フィラーの配
合割合は、ジアリルフタレート樹脂と不飽和ポリエステ
ル樹脂の合計量100重量部に対して、カーボンファイ
バーと通電材コーティング酸化スズの合計量が100〜
150重量部とする。この配合割合で、第1図に示す構
造が実現できると思われ、かつ表面電気抵抗103〜1
0”Ωを達成できる。この配合比率をはずすと、100
〜150部では、表面電気抵抗10’Ω以下が達成でき
ず、10”Ω以下とするようにその配合量を増やしても
トレー外観の黒色化あるいは0.45%超の吸水率を与
える結果をもたらす。
In addition, the blending ratio of these conductive fillers to the matrix is such that the total amount of carbon fiber and the conductive material coating tin oxide is 100 to 100 parts by weight, per 100 parts by weight of the diallyl phthalate resin and the unsaturated polyester resin.
The amount is 150 parts by weight. With this blending ratio, it seems that the structure shown in Figure 1 can be realized, and the surface electrical resistance is 103 to 1.
0”Ω can be achieved. If this mixing ratio is removed, 100Ω can be achieved.
~150 parts, it is not possible to achieve a surface electrical resistance of 10'Ω or less, and even if the amount is increased to 10"Ω or less, the tray appearance becomes black or the water absorption rate exceeds 0.45%. bring.

以上の基本配合に加え、必要に応じて充填材としてガラ
ス繊維、ウィスカー等の繊維質及び水酸化アルミニウム
マイカ粉、炭酸カルシウム粉末等の低吸水性のフィラー
を添加することができる。
In addition to the above basic formulation, fibrous materials such as glass fibers and whiskers, and low water absorption fillers such as aluminum hydroxide mica powder and calcium carbonate powder can be added as fillers, if necessary.

さらに、着色顔料、硬化触媒、離型剤、等も適宜添加し
てもよい。
Furthermore, coloring pigments, curing catalysts, mold release agents, etc. may be added as appropriate.

樹脂成形材料の配合及びトレーの成形は慣用の手法によ
って行なうことができる。
The blending of the resin molding material and the molding of the tray can be carried out by conventional methods.

〔作 用〕[For production]

以上説明したごと(、本発明に係る非黒色系集積回路用
トレーは、通電材コーティング酸化チタンと黒色以外の
適当な顔料の併用により、任意の色に均一に着色される
ため、従来のような該トレーに塗布されていた導電性塗
料等の剥離による周囲の汚染等の問題が解決され、IC
生産に於る品種管理を従来に増して、安定して能率よ(
行うことができる。
As explained above, the tray for non-black integrated circuits according to the present invention can be uniformly colored in any color by using a combination of titanium oxide coated with a current-carrying material and a suitable pigment other than black. Problems such as contamination of the surrounding area due to peeling off of the conductive paint applied to the tray have been resolved, and the IC
Increase variety control in production to improve stability and efficiency (
It can be carried out.

また、カーボンファイバーと通電材コーティング酸化チ
タンの併用により所望の導電性が長期にわたって保持さ
れ、かつ、耐熱性も優れたものとなっている。
In addition, the combination of carbon fiber and titanium oxide coating as a conductive material maintains the desired electrical conductivity over a long period of time, and also provides excellent heat resistance.

〔実施例〕〔Example〕

以下実施例に基づき本発明を説明する。 The present invention will be explained below based on Examples.

尚、フェノール樹脂成形材料の物性及び耐熱IC)レー
成形品の特性は次に示す方法に従って測定した。
The physical properties of the phenolic resin molding material and the properties of the heat-resistant IC)ray molded product were measured according to the following methods.

(1)シャルピー衝撃強度、比重、吸水率JIS K−
6911に準する。
(1) Charpy impact strength, specific gravity, water absorption JIS K-
Conforms to 6911.

(2)ガラス転移温度(Tg) 熱分析装置(島津製作所製)を使用して伸び率(%)、
温度(”C)の相関図を作成し、グラフ上からガラス転
移温度(”C)を求めた。
(2) Glass transition temperature (Tg) Elongation rate (%) using a thermal analyzer (manufactured by Shimadzu Corporation)
A correlation diagram of temperature ("C) was created, and the glass transition temperature ("C) was determined from the graph.

(測定条件) 試験片  5φ×10mの丸棒昇温速度
 5°C/麟in 測定温度 室温〜200°C (3)反り量、寸法、表面抵抗値 (トレー製作直後、150℃×6時間後 1時間室温放
置後、25°C×相対湿度60%×6ケ月放置後)金型
温度160°C1成形圧力2oo)cgr/c+4、硬
化時間2分でフンプレッション成形により第2図に示し
たトレーを成形し、その後180℃にて2時間治具申に
てひずみ取りを行ない冷却した後及び150℃、6時間
加熱後室温にて1時間放置した後さらに25°C1相対
湿度60%にて6ケ月放置した後の反りをハイドゲージ
(ミツトヨ製)、寸法をデジタルノギス(ミツトヨ製)
にて測定した。
(Measurement conditions) Test piece: 5φ x 10m round bar Heating rate: 5°C/in Measurement temperature: Room temperature to 200°C (3) Amount of warpage, dimensions, surface resistance (immediately after tray production, 150°C x 6 hours later) After being left at room temperature for 1 hour, after being left at 25°C x 60% relative humidity for 6 months) mold temperature 160°C 1 molding pressure 2oo) cgr/c+4, curing time 2 minutes, the tray shown in Figure 2 was formed by pressure molding. After molding, strain was removed using a jig at 180℃ for 2 hours, cooled, heated at 150℃ for 6 hours, left at room temperature for 1 hour, and then kept at 25℃, relative humidity 60% for 6 months. After leaving it for a while, check the warpage with a hide gauge (manufactured by Mitutoyo) and measure the dimensions with a digital caliper (manufactured by Mitutoyo).
Measured at

反りは、トレーを定盤上に置き、第3図に示す9点を測
定し、その高さの最大値より最小値を引くことによりそ
の値を反り量とした。寸法は、トレー製作直後を基とし
、その後の変化量をトレー製作直後寸法との比にして、
寸法変化率として求めた。また、表面抵抗値は、テスタ
ー(B1電機製)を使用し、特定箇所を選定し、電極間
距離を10mと定めて測定を行なった。
Warpage was determined by placing the tray on a surface plate, measuring the nine points shown in FIG. 3, and subtracting the minimum value from the maximum height to determine the amount of warpage. The dimensions are based on the dimensions immediately after the tray was manufactured, and the amount of change after that is compared to the dimensions immediately after the tray was manufactured.
It was determined as a dimensional change rate. Further, the surface resistance value was measured using a tester (manufactured by B1 Denki) by selecting a specific location and setting the distance between the electrodes as 10 m.

(4)充てん性 (3)に示した条件で成形後のトレー小リプの突起先端
部の形状を10倍拡大鏡により目視にて観測し、その部
分の未完てん、変形、カケ、折れ、ヒビの有無を確認し
た。
(4) Fillability Under the conditions shown in (3), visually observe the shape of the tip of the protrusion of the small tray lip after molding using a 10x magnifying glass, and check for incomplete filling, deformation, chipping, bending, or cracking in that part. The presence or absence of was confirmed.

(5)着色性 (3)に示した条件で成形後のトレー全面における色調
を目視により観察し、色ムラ、無機フィラーの表面への
析出の有無を確認した。
(5) Colorability Under the conditions shown in (3), the color tone on the entire surface of the tray after molding was visually observed to check for color unevenness and the presence or absence of precipitation of inorganic filler on the surface.

ピッチ系黒鉛グレートカーボンファイバー(呉羽化学製
)60〃 酸化スズコーティング酸化チタン (三菱金属製)60〃 カーボンファイバー(日本電気化学製)50  □重質
炭酸カルシウム (充圧カルシウム製)50〃 無機顔料             15〃上記配合物
に加え、硬化触媒どして過酸化ベンゾイル5部、離型剤
としてステアリン酸6部を添加し、溶剤とともにヘンシ
ェルミキサーにて均一分散混合し、熱ロール上(80/
60°C)で5〜7分間混線を行ないシート状にて取り
出した。このシート状材料を適切な大きさに粉砕し、成
形材料を得た。得られた成形材料の円板フローは110
m /mであった。この成形材料を用いて金型温度16
0°C1成形圧力200kgf/ciJ硬化時間2〜3
分の条件でコンブレッジタン成形を行ない試験用テスト
ピースを作成し、シャルピー衝撃強さ、比重、吸水率の
各物性を測定した。また、その成形材料をコンブレッシ
ゴン金型によって200kgf/d、160”Cで2分
間成形硬化させ、その後180”Cで2時間治具中にて
加熱してひずみ取りを行ない、第2図に示した形状を有
した黄色のIC用トレーを作製した。そしてこのIC用
トレーの物性を調べた。
Pitch-based graphite grade carbon fiber (manufactured by Kureha Chemical) 60〃 Tin oxide coated titanium oxide (manufactured by Mitsubishi Metals) 60〃 Carbon fiber (manufactured by Nihon Denki Kagaku) 50 □ Heavy calcium carbonate (manufactured by charged calcium) 50〃 Inorganic pigment 15 〃In addition to the above formulation, 5 parts of benzoyl peroxide as a curing catalyst and 6 parts of stearic acid as a mold release agent were added, and the mixture was uniformly dispersed and mixed with a solvent in a Henschel mixer.
60°C) for 5 to 7 minutes, and then taken out in a sheet form. This sheet material was pulverized to an appropriate size to obtain a molding material. The disc flow of the obtained molding material was 110
m/m. Using this molding material, the mold temperature was 16
0°C1 molding pressure 200kgf/ciJ curing time 2~3
A test piece was prepared by performing combination tongue molding under the following conditions, and its physical properties such as Charpy impact strength, specific gravity, and water absorption were measured. In addition, the molding material was molded and cured using a combressigon mold at 200 kgf/d at 160"C for 2 minutes, and then heated in a jig at 180"C for 2 hours to remove strain, as shown in Figure 2. A yellow IC tray with a shape was produced. Then, the physical properties of this IC tray were investigated.

1m二旦 実施例2〜8についても各々、表1に示した配合物に加
え、硬化触媒として、過酸化ベンゾイル5部、離型剤と
してステアリン酸6部を加え混練り、粉砕後コンプレッ
ション金型にて200kgf/d?、160℃で2分間
成形硬化し、その後180’Cで2時間治具中にてひず
み取りを行ない第2図に示す形状を有した黄色及び赤色
のトレーを作製した。
For each of Examples 2 to 8, 5 parts of benzoyl peroxide as a curing catalyst and 6 parts of stearic acid as a mold release agent were added to the formulation shown in Table 1, kneaded, and crushed into a compression mold. 200kgf/d? After molding and curing at 160° C. for 2 minutes, strain relief was performed in a jig at 180° C. for 2 hours to produce yellow and red trays having the shapes shown in FIG.

その諸物性についても表2に示した。Its physical properties are also shown in Table 2.

いずれの例においても、耐熱トレーの基本物性であるガ
ラス転移温度150℃以上、表面抵抗1oeΩ以下、吸
水率0.45%以下を満足し、150℃、6時間の加熱
後及び25℃相対湿度60%条件下での6ケ月間の放置
後の表面電気抵抗の上昇も、反り量、寸法の変化もほと
んどないことが確認された。また、着色も良好であると
いう結果が得られた。
In either example, the basic physical properties of a heat-resistant tray, such as glass transition temperature of 150°C or higher, surface resistance of 1 oeΩ or lower, and water absorption of 0.45% or lower, were satisfied, and after heating at 150°C for 6 hours and at 25°C with a relative humidity of 60°C. It was confirmed that there was no increase in surface electrical resistance, and almost no change in the amount of warpage or dimensions after being left for 6 months under the % condition. In addition, good coloring was also obtained.

1較■上 表3の比較例1に示した配°合物に、硬化触媒として過
酸化ベンゾイル5部及び離型剤6部を添加し、その後実
施例1と同様な手法にて第2図に示すトレーを製作した
1 Comparison ■ 5 parts of benzoyl peroxide as a curing catalyst and 6 parts of a mold release agent were added to the formulation shown in Comparative Example 1 in Table 3 above, and then the composition shown in Figure 2 was prepared in the same manner as in Example 1. The tray shown in was manufactured.

その諸物性は表4に示したが、カーボンブラックを導電
性フィラーとして配合したため、トレーが灰黒色化し、
良好な着色を得ることができなかった。
Its physical properties are shown in Table 4, but since carbon black was blended as a conductive filler, the tray turned gray and black.
Good coloring could not be obtained.

北較fl! 表3の比較例2に示した配合物を用いて、比較例1と同
様な方法で第2図に示すトレーを製作した。
Northern comparison fl! Using the formulation shown in Comparative Example 2 in Table 3, the tray shown in FIG. 2 was manufactured in the same manner as in Comparative Example 1.

その結果、諸物性表4に見られるように、カーボンファ
イバーに炭素グレードカーボンファイバーを用いたため
、トレーの吸水率が161%となり、そのため、25°
C1相対湿度60%で6ケ月放置によって寸法が0.2
0%伸び、反り量が1.1■増大し、経時変化が太きく
IC)レーに不適であるという結果であった。
As a result, as shown in Physical Properties Table 4, since carbon grade carbon fiber was used as the carbon fiber, the water absorption rate of the tray was 161%, and therefore, the water absorption rate was 161%.
C1 Dimensions decreased by 0.2 after being left at 60% relative humidity for 6 months.
The results were that the elongation was 0%, the amount of warpage increased by 1.1 cm, and the change over time was large, making it unsuitable for IC).

工較■主 表3の比較例3に示した配合物を用いて比較例1と同様
な方法で第2図に示すトレーを製作した。
Engineering Comparison ■ A tray shown in FIG. 2 was manufactured in the same manner as in Comparative Example 1 using the formulation shown in Comparative Example 3 in Main Table 3.

その結果表4に示される諸物性を得た。カーボンファイ
バーに繊維長3■の黒鉛グレードカーボンファイバーを
用いたため、樹脂マトリックスの隠蔽力が不足し、トレ
ー表面にカーボンファイバーが析出して着色性が不良と
いう結果を得な。さらに、カーボンファイバーの長繊維
の影響によって小リブ5の充てんが不完全となり、IC
)レーとして使用不能という結果となった。
As a result, various physical properties shown in Table 4 were obtained. Since graphite grade carbon fiber with a fiber length of 3 mm was used as the carbon fiber, the hiding power of the resin matrix was insufficient, and the carbon fibers precipitated on the tray surface, resulting in poor coloring properties. Furthermore, due to the long fibers of carbon fiber, the filling of the small ribs 5 becomes incomplete, and the IC
) The result was that it could not be used as a relay.

4L較j1工 表3の比較例4に示した配合物を用いて比較例1と同様
な方法で第2図に示すトレーを製作した。
A tray shown in FIG. 2 was manufactured in the same manner as in Comparative Example 1 using the formulation shown in Comparative Example 4 in Table 3.

その結果、表4の諸物性に見られるように、酸化スズコ
ーティング酸化チタンを樹脂100重量部に対し、25
0部用いているため、トレーの吸水率が0.6%となり
、25℃、相対湿度60%の条件下で6ケ月間放置する
と、寸法が(k16%伸び、反り量が1. O■増加し
、経時変化が大空くなるという結果となり、IC)レー
として不適であることが確認された。さらに、シャルピ
ー衝撃強m:b<t、skgf−cm/c4となり、ト
レーがもろくなり、゛トレー材質として強度的に適さな
いという結果も得られた。
As a result, as shown in the physical properties in Table 4, 25 parts of titanium oxide coated with tin oxide was added to 100 parts by weight of resin.
Since 0 parts are used, the water absorption rate of the tray is 0.6%, and if left for 6 months at 25℃ and 60% relative humidity, the dimensions will increase by 16% and the amount of warping will increase by 1. However, the change over time resulted in a large void, and it was confirmed that it was unsuitable as an IC). Furthermore, the Charpy impact strength m: b<t, skgf-cm/c4, the tray became brittle, and the result was that it was not suitable as a tray material in terms of strength.

北殿史1 表3の比較例5に示した配合物を用いて比較例りと同岬
な方法で第2図に示すトレーを製作した。
Hokudenshi 1 Using the formulation shown in Comparative Example 5 in Table 3, the tray shown in FIG. 2 was manufactured by the same method as in the comparative example.

その結果、表4の諸物性に見られるように、黒鉛グレー
ド力=、ボンファイバーを樹脂100重量部に対し、2
20部配合しているため、樹脂の隠蔽ヵが不足し、トレ
ーの表面にカーボンファイバーが析出し、着色性が悪い
という結果となった。さらに、カーボンファイバー量が
多いため、小リプの充てんが不完全となり、IC)レー
として使用不能という結果を得た。
As a result, as seen in the physical properties in Table 4, graphite grade strength = 2
Since 20 parts of the resin was mixed, the hiding power of the resin was insufficient, and carbon fibers were deposited on the surface of the tray, resulting in poor coloring properties. Furthermore, due to the large amount of carbon fiber, the filling of the small lip was incomplete, and the result was that it could not be used as an IC).

瓦較■旦 表3の比較例6に示した配合物を用いて比較例1と同様
な方法で第2図に示すトレーを製作した。
A tray shown in FIG. 2 was manufactured in the same manner as in Comparative Example 1 using the formulation shown in Comparative Example 6 in Table 3.

その結果、表4に示す諸物性を得たが、導電性フィラー
の樹脂100重量部に対する配合が、80重量部のため
表面電気抵抗が103Ω以上となり、IC)レーとして
使用できないという結果であった。
As a result, the various physical properties shown in Table 4 were obtained, but since the conductive filler was mixed in an amount of 80 parts by weight with respect to 100 parts by weight of the resin, the surface electrical resistance was 103 Ω or more, and the result was that it could not be used as an IC). .

此f 表3の比較例7に示した配合物を用いて比較例1と同様
な方法で第2図に示すトレーを製作した。
The tray shown in FIG. 2 was manufactured in the same manner as in Comparative Example 1 using the formulation shown in Comparative Example 7 in Table 3.

その結果、表4の諸物性に見られるように、導電性フィ
ラーとして、鉄粉を用いているため、経時変化により鉄
粉の表面が酸化し、25°C1相対湿度60%の条件下
で6ケ月後にはトレー表面の導電性が失われ、 使用不可能となった。
As a result, as seen in the physical properties in Table 4, since iron powder was used as the conductive filler, the surface of the iron powder oxidized over time, and the After several months, the tray surface lost its conductivity and became unusable.

〔発明の効果〕〔Effect of the invention〕

カーボンファイバーと通電材コーティング酸化チタンと
を組合せることにより、以下の勤深がもたらされる。
The combination of carbon fiber and current-carrying material coated titanium oxide provides the following depth:

通電材コーティング酸化チタンは、カーボンファイバー
の黒色味を隠蔽する作用があるため、適当な顔料を併用
することにより、均一に、黒以外の任意の色に着色する
ことを可能にしている。
The titanium oxide coating has the effect of hiding the black color of carbon fibers, so by using an appropriate pigment in combination, it is possible to uniformly color the carbon fiber in any color other than black.

また、カーボンファイバーと通電材コーティング酸化チ
タンとが互に連結構造を形成すると思われトレー表面に
所望の導電性を付与させるとともに、それを長期に保持
させる。
Furthermore, it is thought that the carbon fibers and the titanium oxide coated with the electrically conductive material form a mutually connected structure, which imparts desired electrical conductivity to the tray surface and maintains it for a long period of time.

さらに、カーボンファイバー単独では、材料中の偏析に
より、材料の充填性等の成形性が良くないが、微粒子形
状の通電材コーティング酸化チタンが、カーボンファイ
バーの分散性を向上させ、成形時の加熱流動時に、偏析
を防止するため、充填性を向上させる。
Furthermore, carbon fiber alone does not have good moldability such as filling properties due to segregation in the material, but titanium oxide coated with a current-carrying material in the form of fine particles improves the dispersibility of carbon fiber and improves the heat flow during molding. Sometimes, packing properties are improved to prevent segregation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のIC用トレーのマトリックス中の組織
概念図、第2図はIC用トレーの模式図、第3図はトレ
ーの反り量測定点を示す平面図である。 1・・・樹脂マトリックス、 2・・・カーボンブラック、 3・・・微小導電フィラー
FIG. 1 is a conceptual diagram of the structure in the matrix of the IC tray of the present invention, FIG. 2 is a schematic diagram of the IC tray, and FIG. 3 is a plan view showing the points at which the amount of warpage of the tray is measured. 1...Resin matrix, 2...Carbon black, 3...Minute conductive filler

Claims (1)

【特許請求の範囲】 1、ジアリルフタレート樹脂と不飽和ポリエステル樹脂
の混合物100重量部の樹脂マトリックスに対し、カー
ボンファイバーと通電材コーティング酸化チタンの重量
比が5/5〜8/2の混合物100〜150重量部を添
加したものを基本配合とする樹脂成形材料よりなり、か
つ表面電気抵抗10^3〜10^8Ω、ガラス転移温度
150℃以上、吸水率0.45%以下である集積回路用
トレー。 2、前記ジアリルフタレート樹脂がジアリルイソフタレ
ート樹脂である請求項1記載の集積回路用トレー。 3、前記不飽和ポリエステル樹脂が水添ビスフェノール
系不飽和ポリエステル樹脂である請求項1または2記載
の集積回路用トレー。 4、前記カーボンファイバーが繊維径1〜20μm、長
さ0.1〜1.0mmを分布の中心とする黒鉛化カーボ
ンファイバーである請求項1、2または3記載の集積回
路用トレー。 5、前記通電材コーティング酸化チタンが粒子径1.0
μm以下の酸化錫コーティング酸化チタンである請求項
1〜4のいずれか1項に記載の集積回路用トレー。
[Claims] 1. A mixture of carbon fiber and titanium oxide coated with an electrically conductive material in a weight ratio of 5/5 to 8/2 to 100 parts by weight of a resin matrix of a mixture of diallyl phthalate resin and unsaturated polyester resin. A tray for integrated circuits made of a resin molding material having a basic composition of 150 parts by weight, and having a surface electrical resistance of 10^3 to 10^8 Ω, a glass transition temperature of 150°C or more, and a water absorption rate of 0.45% or less. . 2. The integrated circuit tray according to claim 1, wherein the diallyl phthalate resin is diallyl isophthalate resin. 3. The integrated circuit tray according to claim 1 or 2, wherein the unsaturated polyester resin is a hydrogenated bisphenol-based unsaturated polyester resin. 4. The tray for an integrated circuit according to claim 1, 2 or 3, wherein the carbon fiber is a graphitized carbon fiber having a fiber diameter of 1 to 20 μm and a length of 0.1 to 1.0 mm as a center of distribution. 5. The titanium oxide coated with the electrically conductive material has a particle size of 1.0.
The tray for an integrated circuit according to any one of claims 1 to 4, wherein the tray is made of titanium oxide coated with tin oxide having a particle diameter of less than .mu.m.
JP18408690A 1990-07-13 1990-07-13 Integrated circuit tray Expired - Lifetime JP2868295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18408690A JP2868295B2 (en) 1990-07-13 1990-07-13 Integrated circuit tray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18408690A JP2868295B2 (en) 1990-07-13 1990-07-13 Integrated circuit tray

Publications (2)

Publication Number Publication Date
JPH0473804A true JPH0473804A (en) 1992-03-09
JP2868295B2 JP2868295B2 (en) 1999-03-10

Family

ID=16147155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18408690A Expired - Lifetime JP2868295B2 (en) 1990-07-13 1990-07-13 Integrated circuit tray

Country Status (1)

Country Link
JP (1) JP2868295B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260017A (en) * 1993-03-04 1994-09-16 Otsuka Chem Co Ltd Conductive thermoplastic resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260017A (en) * 1993-03-04 1994-09-16 Otsuka Chem Co Ltd Conductive thermoplastic resin composition

Also Published As

Publication number Publication date
JP2868295B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US5750249A (en) Galvanically compatible conductive filler and methods of making same
US5045141A (en) Method of making solderable printed circuits formed without plating
US7585434B2 (en) Carbonaceous material for forming electrically conductive material and use thereof
US5399432A (en) Galvanically compatible conductive filler and methods of making same
KR100258498B1 (en) Liquid crystal polester resin composition and molded article
Genetti et al. Polymer matrix composites: Conductivity enhancement through polypyrrole coating of nickel flake
GB2115396A (en) Mica conductive flakes
Tian et al. Rapid electrothermal response and excellent flame retardancy of ethylene‐vinyl acetate electrothermal film
JPS6320270B2 (en)
JPS60258902A (en) Method of producing polymer positive temperature coefficientresistor
WO2002082592A1 (en) Ic socket
JPH0473804A (en) Tray for integrated circuit
KR100532032B1 (en) Process for the preparation of nano-composite material
EP3752555B1 (en) Thermoconductive filler particles and polymer compositions containing them
KR101778011B1 (en) Method for manufacturing exothermic ink composition and exothermic ink composition manufactured by using the same and method for manufacturing exothermic apparatus using exothermic ink composition
JP2012513655A (en) Titanium composite electrode and manufacturing method thereof
CN109233405A (en) A kind of antistatic powder coating and preparation method thereof
KR950012656B1 (en) Electric conductive resin product for shielding electromagnetic wave
JP2000290514A (en) Conductive resin composition and manufacture thereof
CN113736112A (en) Preparation method of ZnO pressure-sensitive microsphere-epoxy resin composite material reinforced by polymer fiber cloth
JP4333358B2 (en) Carbon paste
KR20100086854A (en) Polymer composite and making method of the same
JPH0649269A (en) Flaky ag-pd alloy filler material having electrical conductivity and product containing the filler
JPH05226092A (en) Electrostatic diffusion resin complex
JPH03285301A (en) Carbon paste composite for resistor