JPH02105886A - Conductive gasket composition - Google Patents

Conductive gasket composition

Info

Publication number
JPH02105886A
JPH02105886A JP25723888A JP25723888A JPH02105886A JP H02105886 A JPH02105886 A JP H02105886A JP 25723888 A JP25723888 A JP 25723888A JP 25723888 A JP25723888 A JP 25723888A JP H02105886 A JPH02105886 A JP H02105886A
Authority
JP
Japan
Prior art keywords
carbon fiber
composition
grown carbon
vapor
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25723888A
Other languages
Japanese (ja)
Inventor
Masamitsu Iwakiri
岩切 正充
Taichi Imanishi
今西 太一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP25723888A priority Critical patent/JPH02105886A/en
Publication of JPH02105886A publication Critical patent/JPH02105886A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition which is excellent in airtightness and heat resistance, is an elastic body, has a high compressibility and good sealing properties, can shield electromagnetic waves and can prevent the buildup of static electricity by mixing a rubber with a graphitization product of a vapor growth process carbon fiber. CONSTITUTION:A synthetic rubber and/or a natural rubber is mixed with 1-99 pts.wt., per pt.wt. former, graphitization product of a vapor growth process carbon fiber (which has a diameter <=5mum, desirably 0.01-0.5mum and a length which is not particularly limited but is usually <=5000mum, or a product formed by breaking, cutting or grinding said fiber, wherein the purity of carbon is desirably at least 99.5%, the degree of graphitization is height and a lattice constant is 6.78-6.72) to obtain a conductive gasket composition which can seal the bonding faces of a box, a pipe or the like for housing an electronic device therein. This composition is excellent in airtightness and heat resistance, is an elastic body, and has a sufficient conductivity, a high compressibility and good sealing properties.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気密性および耐熱性に優れ、電磁波を、遮断
し静電気の帯電を防止するガスケットに係シ、弾性体で
あシ充分な導電性を有しかつ圧縮率の高い密封性の良好
な導電性ガスケット組成物に関するのである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a gasket that has excellent airtightness and heat resistance, blocks electromagnetic waves, and prevents static electricity. The present invention relates to an electrically conductive gasket composition having good sealing properties and high compressibility.

(従来の技術) 電子機器は極めて精密なため、外部から侵入する放射性
電磁波ノイズによって誤作動と重大な障害を簡単に引き
起す。これを防止するためにノイズフィルターを設けた
シ、筐体に電磁波シールド性の強い鋼板などの金属材料
を用いて電磁波障害を防いでいる。また、同様な障害を
起す静電気に対しては筐体あるいはその周辺部材に導電
性を付与される複合材や、導電性塗料の塗布またはアー
ス接地等の方法で帯電を防止していた。
(Prior Art) Since electronic devices are extremely precise, radiated electromagnetic noise entering from the outside can easily cause malfunctions and serious damage. To prevent this, a noise filter is installed and the housing is made of metal material such as steel plate with strong electromagnetic shielding properties to prevent electromagnetic interference. In addition, static electricity, which causes similar problems, has been prevented by methods such as using composite materials that give conductivity to the housing or surrounding parts, applying conductive paint, or grounding.

ここで用いられる筐体の接合面には、導電性のある充填
材、金属粉、金属繊維、金属フレーク、カーゼンブラッ
ク等を合成ザムに配合混合してガスケットを形成してい
た。
On the joint surface of the casing used here, a gasket was formed by mixing a conductive filler, metal powder, metal fiber, metal flake, Kazen black, etc. with synthetic sam.

(発明が解決しようとする問題点) しかし、前記のように合成ビムおよび天然ビムと導電性
充填材等からなる導電性ガスケットは、導電性には優れ
るがゴム自体が非圧縮性のため装着時の締め付け・で過
多の変形や横流れを起し十分な密封を果さないばかシか
材質老化が早期に発生し長期間の使用に耐えない重大な
欠点があった。
(Problems to be Solved by the Invention) However, as mentioned above, conductive gaskets made of synthetic and natural beams and conductive fillers have excellent conductivity, but the rubber itself is incompressible, so when installed, This has serious drawbacks, such as excessive deformation and lateral flow caused by tightening and failure to achieve a sufficient seal, and premature aging of the material, making it unsustainable for long-term use.

この欠点を回避するために発泡などさせたガスケツート
が開発されているが、この種のガスケットでも圧縮永久
歪は大きくかつ、圧縮回復性に乏しく満足出来る耐久性
が得られていない。
In order to avoid this drawback, foamed gaskets have been developed, but even this type of gasket has large compression set and poor compression recovery properties, so that satisfactory durability has not been achieved.

本発明は、か\る欠点を解消し導電性及び放射性電磁波
シールド性、圧縮性、形態安定性、材質老化防止性に優
れた導電性ガスケット組成物を提供するものである。
The present invention eliminates these drawbacks and provides a conductive gasket composition that has excellent conductivity, radiation shielding properties, compressibility, morphological stability, and material antiaging properties.

(問題点を解決する為の手段) 本発明者等は、これまで、新しい炭素材料として、気相
成長法炭素繊維黒鉛化物の開発並びにこの素材の特性、
反応性について基礎的研究を進めていたが、更に、本繊
維の特異な形態と化学的、熱的安定性に注目し各種の実
用性試験を行っていたところ、本繊維の構造や形状及び
凝集性が特異的に働き、他の物質との分散状態によって
、優れたシール性があることを見出し、さらに検討の結
果、本発明に到達した。
(Means for solving the problem) The present inventors have developed a vapor-grown carbon fiber graphitized material as a new carbon material, and the characteristics of this material.
While conducting basic research on reactivity, they also conducted various practical tests focusing on the unique morphology and chemical and thermal stability of this fiber. It was discovered that the properties act specifically and that excellent sealing properties can be achieved depending on the state of dispersion with other substances, and as a result of further study, the present invention was arrived at.

本発明は、電子機器を内装する筐体あるいは管体等の接
合面の密封をなす導電性ガスケット組成物であって、合
成ゴム、および天然ゴムに気相成長法炭素繊維の黒鉛化
物を1〜99%重量比配合混合して形成した導電性ガス
ケット組成物である。
The present invention is a conductive gasket composition for sealing the bonding surface of a housing or a tube body, etc. that houses an electronic device, and the composition is composed of synthetic rubber and natural rubber mixed with graphitized vapor-grown carbon fiber. This is a conductive gasket composition formed by mixing in a weight ratio of 99%.

導電性ガスケット組成物を得るものである。A conductive gasket composition is obtained.

本発明において、気相成長法炭素繊維の黒鉛化物とは、
炭化水素などの炭素源を触媒存在下に加熱し気相成長さ
せて作られる繊維状の炭素質物質すなわち気相成長法炭
素繊維に、黒鉛化熱処理を行って得られる黒鉛質の物質
であシ、繊維状およびこれを粉砕したシ切断したりした
種々の形態の黒鉛質物質であシ、本発明の気相成長法炭
素繊維の黒鉛化物は、その繊維を電子顕微鏡で観察する
と、芯の部分と、これを取巻く、−見して、年輪状の炭
素層からなる特異な形状を有しており、本発明の気相成
長法炭素繊維の黒鉛化物は、この様な繊維状物及びこれ
が粉砕、破砕、切断などの加工を受けたものである。
In the present invention, the graphitized material of vapor grown carbon fiber is
It is a graphitic material obtained by heat-treating a fibrous carbonaceous material such as a hydrocarbon in the presence of a catalyst and growing it in a vapor phase, that is, a vapor-grown carbon fiber. The graphitized material of the vapor-grown carbon fiber of the present invention can be found in various forms such as fibrous, crushed or cut, and when the fiber is observed with an electron microscope, the core part is The graphitized material of the vapor grown carbon fiber of the present invention has a unique shape consisting of a tree-ring-like carbon layer surrounding it. , which has undergone processing such as crushing, cutting, etc.

本発明の気相成長法炭素繊維の黒鉛化物は、好ましくは
、直径が5μm以下、一般には0.01〜4μm1特に
0.01〜2μm1更に好ましくは0.01〜1μm1
最も好ましくは0.01〜0.5μmであシ、繊維の長
さは特に制限はない。一般には、  5oooμm以下
であるが、更に短くても良<、1oooμmや100μ
m1あるいは1.0μmでも良く、又、これを更に短く
破砕や切断あるいは粉砕した繊維状物、あるいは、粒状
や不定形状の物も使用できる。
The graphitized vapor grown carbon fiber of the present invention preferably has a diameter of 5 μm or less, generally 0.01 to 4 μm, particularly 0.01 to 2 μm, and more preferably 0.01 to 1 μm.
The fiber length is most preferably 0.01 to 0.5 μm, and there is no particular restriction on the length of the fiber. Generally, it is 500 μm or less, but it may be shorter than 100 μm or 100 μm.
It may be m1 or 1.0 μm, and fibrous materials obtained by crushing, cutting, or pulverizing this into shorter lengths, or granular or irregularly shaped materials can also be used.

本発明の気相成長法炭素繊維の黒鉛化物は、炭素の純度
が高く、一般に98.5%以上、特に99%以上、最も
好ましくは99.5%以上である。
The graphitized vapor grown carbon fiber of the present invention has a high carbon purity, generally 98.5% or more, particularly 99% or more, and most preferably 99.5% or more.

また1本発明の気相成長法炭素繊維の黒鉛化物は黒鉛性
の高い物質でアシ、更に、その中でもX線解析による構
造解析において、その格子定数が6.88以下の範囲の
ものであシ、好ましくは6.86以下、特に好ましくは
6.80〜6.70の範囲、最も好ましくは6.78〜
6.72の範囲のものである。
In addition, the graphitized material of the vapor grown carbon fiber of the present invention is a highly graphitic material, and furthermore, in the structural analysis by X-ray analysis, the graphitized material has a lattice constant of 6.88 or less. , preferably 6.86 or less, particularly preferably in the range of 6.80 to 6.70, most preferably 6.78 to
It is in the range of 6.72.

本発明の気相成長法炭素繊維の黒鉛化物は気相成長法炭
素繊維を高温度において熱処理する事によシ得られるが
、熱処理温度としては1500℃以上、好ましくは17
00℃以上、特に2000℃以上であ)、最も好ましい
範囲は2100〜3000℃の範囲である。
The graphitized product of the vapor grown carbon fiber of the present invention can be obtained by heat treating the vapor grown carbon fiber at a high temperature, and the heat treatment temperature is 1500°C or higher, preferably 17°C.
00°C or higher, particularly 2000°C or higher), and the most preferred range is 2100 to 3000°C.

本発明において、気相成長法炭素繊維の黒鉛化物を含有
したガスケット組成物は、上記の気相成長法炭素繊維の
黒鉛化物が導電性ガスケット組成物の構成成分として存
在している組成物でアシ、組成物中の気相成長法炭素繊
維の黒鉛化物の量は、組成物の固体成分の中に1〜99
重量%存在している。よシ好ましくは3.0〜99.0
重量%存在している組成物であシ、最も好ましくは4.
0〜98重量%である。
In the present invention, the gasket composition containing the graphitized material of the vapor grown carbon fiber is a composition in which the graphitized material of the vapor grown carbon fiber is present as a component of the conductive gasket composition. , the amount of graphitized material of the vapor grown carbon fiber in the composition ranges from 1 to 99% in the solid components of the composition.
% by weight. Preferably 3.0 to 99.0
% by weight of the composition, most preferably 4.
It is 0 to 98% by weight.

本発明において、気相成長法炭素繊維の黒鉛化物の効果
は、導電性ガスケット組成物の気密性向上、耐熱性の向
上、耐油性、耐不凍液性、耐薬品性、耐溶剤性等の向上
にある他、組成物に使用するdインダーとの分散や接合
にも優れ、更に、組成物の機械的強度の改善効果もあシ
、これらが複合的に相乗効果として現れるところにある
In the present invention, the effect of graphitized vapor grown carbon fiber is to improve the airtightness, heat resistance, oil resistance, antifreeze resistance, chemical resistance, solvent resistance, etc. of the conductive gasket composition. In addition, it is excellent in dispersion and bonding with the d-inder used in the composition, and furthermore, it has the effect of improving the mechanical strength of the composition, and these are combined to appear as a synergistic effect.

この様な効果を最大に発揮させるには、気相成長法炭素
繊維の黒鉛化物が極めて微細な状態、かつ、繊維の形状
で用いられる場合に、その効果が著しく、好ましい。こ
の際、繊維の径が細いばかシでなく、繊維長さ/繊維の
径の比が、5以上、好ましくは10以上、特に20以上
、最も好ましくは80以上あることである。
In order to maximize such effects, it is preferable that the graphitized material of the vapor-grown carbon fiber is used in an extremely fine state and in the form of fibers, since the effects are remarkable. In this case, the diameter of the fibers is not small, and the ratio of fiber length/fiber diameter is 5 or more, preferably 10 or more, particularly 20 or more, and most preferably 80 or more.

本発明のガスケット組成物は、以上のように、気相成長
法炭素繊維の黒鉛化物を含有している事を特徴としてい
るが、導電性ガスケット組成物を構成する物としては他
に、・々イングー、気相成長法炭素繊維黒鉛化物以外の
繊維、充填剤、その仙薬剤や添加剤等が必要に応じて選
択され使用できる。
As mentioned above, the gasket composition of the present invention is characterized by containing a graphitized material of vapor grown carbon fiber, but the conductive gasket composition also includes: Fibers other than graphitized carbon fibers, fillers, agents and additives thereof, etc. can be selected and used as required.

特に、ノ々インダーは本組成物の目的の範囲内で使用す
る、その様なノ々イングーとしては、有機系の樹脂やゴ
ムが使用され、特にシム類が好適に使用され、例えば、
アクリルゴム、スチレンブタジェンゴム、アクリロニト
リルブタジェンゴム、クロロプレンゴム、フッ素ヒム、
エビクロロヒトリンゴム、クロロスルホン化ポリエチレ
ンゴム、塩素化ポリエチレンゴム、エチレンプロピレン
ゴム、エチレンゾロピレンジエンゴム、シリコンゴムな
どの合成ゴム、および天然ゴムなどがあげられる。
In particular, the Nono inder is used within the scope of the purpose of the present composition. Organic resins and rubbers are used, and shims are particularly preferably used, for example,
Acrylic rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, chloroprene rubber, fluorine rubber,
Synthetic rubbers such as shrimp chlorophyllin rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, ethylene propylene rubber, ethylenezolopylene diene rubber, and silicone rubber, and natural rubber can be mentioned.

ノ々インダーは、気相成長法炭素繊維の黒鉛化物を結合
させるために、また、必要に応じて使用される気相成長
法炭素繊維黒鉛化物以外の繊維や充填剤等をも結合させ
るために必要な物゛であるが、過剰に使用するとガスケ
ットの耐熱性や応力緩和性を低下させるので、結合効果
とのバランスの中でその使用量を設定する。一般には、
気相成長法炭素繊維の黒鉛化物100重量部に対し1.
0〜1000重量部が好ましく、特に4.0〜900重
量部が好ましく、最も好ましくは5〜500重量部の範
囲である。
Nono Inder is used to bond graphitized vapor grown carbon fibers, and also to bond fibers and fillers other than graphitized vapor grown carbon fibers, which are used as needed. Although it is a necessary material, if used in excess, it will reduce the heat resistance and stress relaxation properties of the gasket, so the amount used should be determined in balance with the bonding effect. In general,
1. per 100 parts by weight of graphitized material of vapor grown carbon fiber.
The range is preferably from 0 to 1000 parts by weight, particularly preferably from 4.0 to 900 parts by weight, and most preferably from 5 to 500 parts by weight.

気相成長法炭素繊維の黒鉛化物以外の繊維としては、有
機系及び無機系の各種繊維が使用できるが、好ましくは
耐熱性に優れた繊維であシ、例えば、各種のセラミクフ
ァイ/々−1石英ガラスファイノ々−ロックウール、ス
テンレスファイノ々−炭素繊維、アルミナファイバー 
アルミナシリケートファイノセー、その他アスベストな
どの無機質の繊維性物質、カイノール繊維、アラミド繊
維、ポリイミド繊維など有機質の繊維も使用できるが、
耐熱性や気密性、耐薬品性などの低下をひきおこす場合
がちり、これら繊維を使用する目的の範囲内で出来るだ
け使用量を減すこと、あるいは使用しないことを考慮す
る必要がある。
Various organic and inorganic fibers can be used as the vapor-grown carbon fibers other than graphitized fibers, but fibers with excellent heat resistance are preferable, such as various ceramic fibers/1-1 quartz. Glass fins - rock wool, stainless steel fins - carbon fiber, alumina fiber
Alumina silicate finose, other inorganic fibrous materials such as asbestos, and organic fibers such as kynor fiber, aramid fiber, and polyimide fiber can also be used.
If dust causes a decrease in heat resistance, airtightness, chemical resistance, etc., it is necessary to consider reducing the amount used or not using these fibers as much as possible within the purpose of using them.

その他、充填剤や薬剤、添加剤としては、従来からガス
ケット用組成物に使用されてきた物を種々使用可能であ
る。その使用量が過多であると、ガスケットの緒特性を
低下する恐れがあシ、使用目的〈応じその量を適正に制
御する必要がある。
In addition, various fillers, chemicals, and additives that have been conventionally used in gasket compositions can be used. If the amount used is excessive, there is a risk of degrading the gasket's properties, so the amount must be appropriately controlled depending on the purpose of use.

こ\で用いられる、気相成長法炭素繊維の黒鉛化物は形
態上十分な圧縮性と強い圧縮回復性を有する。また金属
類の粉体、繊維、フレークを配合せずとも気相成長法炭
素繊維の黒鉛化物のみで圧縮性、気密性、耐老化防止、
腐蝕性が改善される。
The graphitized vapor-grown carbon fiber used here has sufficient compressibility and strong compression recovery in terms of morphology. In addition, without adding metal powders, fibers, or flakes, the graphitized vapor-grown carbon fiber alone provides compressibility, airtightness, anti-aging properties, and
Corrosivity is improved.

気相成長法炭素繊維の黒鉛化物の強い圧縮回復性はガス
ケット全体の圧縮性を高め優れた密封効果を発揮する。
The strong compressive recovery properties of graphitized vapor-grown carbon fibers increase the compressibility of the entire gasket and provide an excellent sealing effect.

勿論、該導電性ガスケット組成物は内含する、気相成長
法炭素繊維黒鉛化物によって密封する筐体等に所望の導
電をなさしめるものであシ、その作用をもって電磁波あ
るいは静電気の遮断をする。
Of course, the conductive gasket composition is intended to provide the desired electrical conductivity to the casing sealed by the vapor-grown carbon fiber graphitized material contained therein, and has the effect of blocking electromagnetic waves or static electricity.

すなわち、静電気の帯電防止をなすためには、前記導電
性を付与する気相成長法炭素繊維の黒鉛化物及び充填材
と合成ゴムまたは天然ゴムとの配合量を調整して、その
体積固有抵抗値を101〜10嘗Ω・譚の範囲になるよ
うに配合すればよく、電磁波障害を防止するには、前記
調整によってその体積固有抵抗値を10′″″3〜10
2Ω・αに設定することによシ求められる条件に合った
好ましい電磁波遮断効果が得られる。
That is, in order to prevent static electricity, the volume resistivity value is adjusted by adjusting the blending amount of the graphitized material and filler of the vapor-grown carbon fiber that imparts conductivity and the synthetic rubber or natural rubber. It is sufficient to mix the resistivity so that it is in the range of 101 to 10 Ω・tan, and in order to prevent electromagnetic interference, the volume resistivity can be adjusted to 10'''3 to 10 Ω.
By setting it to 2Ω·α, a preferable electromagnetic wave shielding effect that meets the required conditions can be obtained.

(実施例) 以下、本発明を実施例によシ説明する。(Example) The present invention will be explained below using examples.

実施例1 直径が0.05〜0.1μmの気相成長法炭素繊維(ト
リスアセチルアセトナト鉄とベンゼンを1400 ’C
の加熱空間に導入し浮遊状態で合成した)を2400℃
で熱処理を行い炭素含有量99%、格子定数6.74の
黒鉛化物を得、これを若干破砕し、分散操作がし易く、
かつ、電子顕微鏡で観察し、繊維長が実質的に5.0μ
m以上の気相成長法炭素繊維の黒鉛化物を得た。この気
相成長法炭素繊維の黒鉛化物を次に示す配合量で、電磁
障害防止用導電性ガスケラト組成物を作成し評価した。
Example 1 Vapor grown carbon fiber with a diameter of 0.05 to 0.1 μm (trisacetylacetonate iron and benzene were grown at 1400'C)
) was synthesized in a floating state at 2400°C.
A graphitized product with a carbon content of 99% and a lattice constant of 6.74 was obtained by heat treatment, which was slightly crushed to facilitate dispersion.
And, when observed with an electron microscope, the fiber length is substantially 5.0μ.
A graphitized product of vapor-grown carbon fiber having a size of 50 m or more was obtained. A conductive gas kerato composition for preventing electromagnetic interference was prepared and evaluated using the graphitized material of the vapor-grown carbon fiber in the following proportions.

く配合量〉 NBRポリマー ステアリン酸 亜鉛華 OP 00t f f 0f 気相成長法炭素繊維の黒鉛化物   1002上記の配
合組成物をガスケット形状に形成し、得られた物性を次
に示す。
Blend Amount> NBR Polymer Zinc Stearate OP 00t f f 0f Graphitized product of vapor grown carbon fiber 1002 The above blended composition was formed into a gasket shape, and the obtained physical properties are shown below.

体積固有抵抗値    2.3X10−2Ω・m硬度 
   80”JIS 引張シ強度      211Ky10n2伸度   
 160% 圧縮率         32% 回復率         91% 実施例2 使用した気相成長法炭素繊維の黒鉛化物は実施例1と同
じものを用い配合量を次に示す配合量で電磁波障害防止
用導電性ガスケット組成物を作成し評価した。
Volume resistivity value 2.3X10-2Ω・m Hardness
80” JIS tensile strength 211Ky10n2 elongation
160% Compression rate 32% Recovery rate 91% Example 2 The graphitized material of the vapor grown carbon fiber used was the same as in Example 1, and the blending amount was as shown below to form a conductive gasket composition for preventing electromagnetic interference. Created and evaluated objects.

く配合量〉 NB几ポリマー             100?ス
テアリン酸           1を亜鉛華    
           3fDOP         
       10 f促進剤           
    2f気相成長法炭素繊維の黒鉛化物    7
f上記の配合組成物をガスケット形状に形成し、得られ
た物性を次に示す。
Blend amount> NB Polymer 100? Stearic acid 1 to zinc white
3fDOP
10 f accelerator
2f vapor phase grown carbon fiber graphitized product 7
f The above blended composition was formed into a gasket shape, and the obtained physical properties are shown below.

体積固有抵抗値    1.6X10’Ω・ω硬度  
  88°JIS 引張シ強度      230 K9/、、Z伸度  
  142% 圧縮率         29% 回復率         88% 実施例から気相成長法炭素繊維の黒鉛化物を用いる導電
性ガスケット組成物は、一般にシールドが難しいとされ
ている低周波側での磁界波の反射を効果的になさしめる
など複雑な導電性要求状況に対しても充分に対応を可能
とし広い分野のシールド材として提供することが出来た
Volume resistivity value 1.6X10'Ω・ω hardness
88°JIS tensile strength 230 K9/, Z elongation
142% Compression rate 29% Recovery rate 88% From the examples, the conductive gasket composition using the graphitized material of vapor-grown carbon fiber is effective in reflecting magnetic field waves on the low frequency side, which is generally considered difficult to shield. The material can be used as a shielding material in a wide range of fields, and can be used to meet complex conductivity requirements such as electrical conductivity.

(発明の効果) 本発明の導電性ガスケット組成物は、導電性、電磁波シ
ールド性、気密性、耐熱性、耐油性、耐不凍液性、耐薬
品性、耐溶剤性、老化腐蝕性等に優れている他、更に組
成物の機械的な強度でも良好であシ、本発明は導電性に
優れると共に相反する作用である圧縮性も良好なガスケ
ット組成物であり完壁に電磁波シールドし、さらに静電
気の帯電防止と強い圧縮回復特性で長期間密封するとと
の出来る理想的な導電性ガスケット組成物であシ工業的
、特に電子機器に極めて有用である。
(Effects of the Invention) The conductive gasket composition of the present invention has excellent conductivity, electromagnetic shielding properties, airtightness, heat resistance, oil resistance, antifreeze resistance, chemical resistance, solvent resistance, aging corrosion resistance, etc. In addition, the composition has good mechanical strength, and the present invention is a gasket composition that has excellent electrical conductivity and good compressibility, which is a contradictory effect, and completely shields electromagnetic waves. It is an ideal conductive gasket composition that can provide long-term sealing due to its antistatic properties and strong compression recovery properties, and is extremely useful in industrial applications, particularly in electronic equipment.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 電子機器を内装する筐体あるいは管体等の接合面の密封
をなす導電性ガスケット組成物であつて、合成ゴムおよ
び天然ゴムに気相成長法炭素繊維の黒鉛化物を1〜99
%重量比配合混合して形成した導電性ガスケット組成物
A conductive gasket composition for sealing the joint surfaces of a housing or a tube body, etc., in which an electronic device is installed, which is made by adding graphitized vapor-grown carbon fiber to synthetic rubber or natural rubber from 1 to 99%.
Conductive gasket composition formed by mixing % weight ratio
JP25723888A 1988-10-14 1988-10-14 Conductive gasket composition Pending JPH02105886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25723888A JPH02105886A (en) 1988-10-14 1988-10-14 Conductive gasket composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25723888A JPH02105886A (en) 1988-10-14 1988-10-14 Conductive gasket composition

Publications (1)

Publication Number Publication Date
JPH02105886A true JPH02105886A (en) 1990-04-18

Family

ID=17303606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25723888A Pending JPH02105886A (en) 1988-10-14 1988-10-14 Conductive gasket composition

Country Status (1)

Country Link
JP (1) JPH02105886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124990A (en) * 1988-11-02 1990-05-14 Kitagawa Kogyo Kk Sealant composition having carbon fiber incorporated therein
JPH06260017A (en) * 1993-03-04 1994-09-16 Otsuka Chem Co Ltd Conductive thermoplastic resin composition
JP2008143963A (en) * 2006-12-07 2008-06-26 Nissin Kogyo Co Ltd Carbon fiber composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124990A (en) * 1988-11-02 1990-05-14 Kitagawa Kogyo Kk Sealant composition having carbon fiber incorporated therein
JPH06260017A (en) * 1993-03-04 1994-09-16 Otsuka Chem Co Ltd Conductive thermoplastic resin composition
JP2008143963A (en) * 2006-12-07 2008-06-26 Nissin Kogyo Co Ltd Carbon fiber composite material

Similar Documents

Publication Publication Date Title
Liu et al. Effects of 2D boron nitride (BN) nanoplates filler on the thermal, electrical, mechanical and dielectric properties of high temperature vulcanized silicone rubber for composite insulators
Das et al. Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers
US7550529B2 (en) Expanded graphite and products produced therefrom
Das et al. Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber‐filled composites based on rubber and rubber blends
Guan et al. Cement based electromagnetic shielding and absorbing building materials
US5503717A (en) Method of manufacturing flexible graphite
US20170158936A1 (en) Thermal Interface Material with Mixed Aspect Ratio Particle Dispersions
Jeddi et al. Investigation of microstructure, electrical behavior, and EMI shielding effectiveness of silicone rubber/carbon black/nanographite hybrid composites
Deng et al. Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior
WO2009158045A1 (en) Emi shielding materials
Mihut et al. Electromagnetic interference shielding effectiveness of nanoreinforced polymer composites deposited with conductive metallic thin films
Parvathi et al. Compliant materials based on nickel oxide/chlorinated natural rubber nanocomposites
JPH02105886A (en) Conductive gasket composition
JPH02105885A (en) Conductive gasket composition
Devendra et al. Thermal stability and electromagnetic interference of epoxy-graphene/hybrid composite materials
Jusoh et al. Electromagnetic shielding effectiveness of gypsum-magnetite composite at X-band frequency
JPH02107689A (en) Electrically conductive gasket composition
JPS63280788A (en) Composition for gasket
JPH02107690A (en) Composition for electrically conductive gasket
Ma et al. The processability, electrical and mechanical properties of EMI shielding ABS composites
Mathew et al. Plasma polymerization surface modification of carbon black and its effect in elastomers
JPH02298531A (en) Pressure-sensitive conductive rubber material
KR101216050B1 (en) EPDM for Nuclear Power Plant with Hard Clay for Improvement of Resistant Radiation, and Mixing Method thereof
JPS63280786A (en) Composition for gasket
Sambyal et al. Designing of MWCNT/Ferrofluid/Flyash multiphase composite as safeguard for electromagnetic radiation