JPS63280788A - Composition for gasket - Google Patents

Composition for gasket

Info

Publication number
JPS63280788A
JPS63280788A JP11480487A JP11480487A JPS63280788A JP S63280788 A JPS63280788 A JP S63280788A JP 11480487 A JP11480487 A JP 11480487A JP 11480487 A JP11480487 A JP 11480487A JP S63280788 A JPS63280788 A JP S63280788A
Authority
JP
Japan
Prior art keywords
gasket
fibers
composition
carbon fiber
graphitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11480487A
Other languages
Japanese (ja)
Inventor
Katsuyuki Nakamura
克之 中村
Yukinari Komatsu
小松 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11480487A priority Critical patent/JPS63280788A/en
Publication of JPS63280788A publication Critical patent/JPS63280788A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled composition, containing graphitized carbon fibers, having acidic functional groups and prepared by a vapor growth method and having improved airtightness, heat, oil, antifreeze, chemical, solvent resistance, etc., and excellent mechanical strength, dispersibility and joining properties. CONSTITUTION:The aimed composition containing normally >=0.1wt.% (optimally 2-98wt.%) graphitized fibers, having preferably <=6.86 (optimally 6.78-6.72) lattice constant in structural analysis by X-ray diffractometry, obtained by a method for heat-treating carbon fibers prepared by a vapor growth method at >=1,500 deg.C (optimally at 2,100-3,000 deg.C) and oxidizing the heat-treated fibers with an oxidizing agent, etc., and having 3-500mu equiv/g (especially preferably 15-350mu equiv/g) acidic functional groups. Furthermore, the above-mentioned fibers preferably have fine fiber diameter and >=10 (optimally >=100) ratio of the fiber length/fiber diameter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気質性および耐熱性に優れたガスケット用組
成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a composition for gaskets having excellent temperament and heat resistance.

従来、ガスケットとしては各穐のものがあるが本発明は
、特に耐熱性を要求されるガスケット、例エバ、エンジ
ンのシリンダブロック上面とシリンダヘッド下面との間
に挟持し両面間の気密保持を図るためのシリンダへラド
ガスケット、あるいは、エンジンのエキシストマニホル
ド部分の気密を保持するガスケットなど、高温となる部
分に使用するガスケットの構成材料として用いるに適し
た組成物であって、例えば、金属板製の芯材の両面に積
層するなどして適用される。
Conventionally, there are gaskets of various types, but the present invention is a gasket that requires particularly heat resistance, such as an EVA gasket, which is sandwiched between the upper surface of an engine's cylinder block and the lower surface of the cylinder head to maintain airtightness between both surfaces. A composition suitable for use as a constituent material of gaskets used in high-temperature parts, such as cylinder head gaskets for gaskets, or gaskets that maintain airtightness in the exhaust manifold part of engines, such as gaskets made of metal plates. It is applied by laminating it on both sides of the core material.

(従来の技術) 従来、例えば、シリンダへラドガスケットは、少量のゴ
ムを結合剤として用い、これにアスベストを混練した組
成物を金属板製の芯材の両面に積層したものが使用され
ていた。しかし、ここで用いるアスベストは、その粉塵
が人体へ傷害を与える恐れが有ることから、他の材料へ
代替が必要に成ってきた。
(Prior art) Conventionally, for example, cylinder head gaskets were made by laminating a composition made by mixing asbestos into a small amount of rubber as a binder on both sides of a metal plate core material. . However, since the asbestos used here has the risk of causing injury to the human body, it has become necessary to use other materials instead.

(発明が解決しようとする問題点) このため、アスベストに代わる材料がね々検討されてい
る。
(Problems to be Solved by the Invention) For this reason, materials to replace asbestos have been extensively studied.

例えば、有機繊維を炭化して作る炭素繊維や、ピッチを
紡糸後炭化して作る炭素繊維を用いる試みである。しか
し、この方法ではシール性に乏しく実用化が困難であっ
た。
For example, attempts have been made to use carbon fibers made by carbonizing organic fibers or carbon fibers made by carbonizing pitch after spinning. However, this method has poor sealing properties and is difficult to put into practical use.

このため、粒状の膨張黒鉛を用いる方法が構案されてい
る。しかし、この方法ではコストが高いばかりでなく、
耐油性、耐不凍液性が乏しく、これに起因する使用時の
シール性の低下が認められ改善が必要であった。
For this reason, a method using granular expanded graphite has been proposed. However, this method is not only expensive, but also
It had poor oil resistance and antifreeze resistance, and a decrease in sealing performance during use due to this was observed, and improvements were needed.

このように、ガスケット性能のバランスがとれていて、
かつ性能の優れた組成物の開発が急がれている。
In this way, the gasket performance is well-balanced,
There is an urgent need to develop a composition with excellent performance.

(問題点を解決するための手段) 本発明者等は、これまで、新しい炭素材料として、気相
成長法炭素繊維の開発並びにこの素材の特性、反応性に
ついて基礎的研究を進めていたが、更に1本繊維の特異
な形態と化学的、熱的安定性に注目し各種の実用性試験
を行っていたところ、本繊維の構造や形状及び凝集性が
特異的に働き、他の物質との分散状態に因って、優れた
シール性があることを見出し、さらに検討の結果、本発
明に到達した。
(Means for Solving the Problems) The present inventors have been conducting basic research on the development of vapor-grown carbon fiber as a new carbon material and the characteristics and reactivity of this material. Furthermore, as we conducted various practical tests focusing on the unique morphology and chemical and thermal stability of this single fiber, we found that the structure, shape, and cohesiveness of this fiber work specifically, and that it is difficult to interact with other substances. It was discovered that it has excellent sealing properties depending on the state of dispersion, and as a result of further study, the present invention was arrived at.

すなわち、本発明は、酸性官能基を3〜500μeq/
g有する気相成長法炭素繊維の黒鉛化物を含有するガス
ケット組成物である。
That is, in the present invention, the acidic functional group is
This is a gasket composition containing a graphitized material of vapor-grown carbon fiber having the following properties.

本発明において、気相成長法炭素繊維の黒鉛化物とは、
炭化水素などの炭素源を触媒存在下に加熱し気相成長さ
せて作られる繊維状の炭素質物質すなわち気相成長法炭
素繊維に、黒鉛化熱処理を行って得られる黒鉛質の物質
であり、繊維状およびこれを粉砕したり切断したりした
種々の形態の黒鉛質物質であり、本発明でいう気相成長
法炭素繊維の黒鉛化物は、その繊維を電子顕微鏡で観察
すると、芯の部分と、これを取巻く、−見して、年輪状
の炭素層からなる特異な形状を有しており、本発明でい
う気相成長法炭素繊維の黒鉛化物は、この様な繊維状物
及びこれが粉砕、破砕、切断などの加工を受けたもので
ある。
In the present invention, the graphitized material of vapor grown carbon fiber is
It is a graphitic material obtained by heat-treating a fibrous carbonaceous material such as a hydrocarbon in the presence of a catalyst and growing it in a vapor phase. It is a graphitic material in various forms such as fibrous and crushed or cut forms, and when the graphitized material of vapor grown carbon fiber referred to in the present invention is observed with an electron microscope, it can be seen that the core part and , surrounding this, it has a unique shape consisting of a tree-ring-like carbon layer. , which has undergone processing such as crushing, cutting, etc.

本発明でいう気相成長法炭素繊維の黒鉛化物は、好まし
くは、直径が5μm以下、一般には、0.01〜4μm
、特に0.01〜2μm、更に好ましくは、0.01〜
0.5μmであり、繊維の長さは特に制限はない。一般
には、5000μm以下であるが、更に短かくても良く
、1000μmや100μm、あるいは10μmでも良
く、又、これを更忙短かく破砕や切断あるいは粉砕した
繊維状物、あるいは、粒状や不定形状の物も使用できる
The graphitized material of vapor grown carbon fiber as used in the present invention preferably has a diameter of 5 μm or less, generally 0.01 to 4 μm.
, especially 0.01 to 2 μm, more preferably 0.01 to 2 μm
The fiber length is 0.5 μm, and the length of the fiber is not particularly limited. In general, it is 5000 μm or less, but it may be even shorter, such as 1000 μm, 100 μm, or 10 μm. You can also use objects.

本発明において気相成長法炭素繊維の黒鉛化物は、炭素
の純度が高く、一般に、98.5%以上、%に99%以
上、最も好ましくは99.5%以上である。
In the present invention, the graphitized product of vapor grown carbon fiber has a high carbon purity, generally 98.5% or more, 99% or more, most preferably 99.5% or more.

また、本発明でいう気相成長法炭素繊維の黒鉛化物は黒
鉛性の高い物質であり、更に1その中でもxm解析によ
る構造解析において、その格子定数が6.88以下の範
囲のものであり、好ましくは、6.86以下、特に好ま
しくは、6.80へ6.70の範囲、最も好ましくは、
6.78〜6.72の範囲のものである。
In addition, the graphitized material of the vapor grown carbon fiber in the present invention is a highly graphitic substance, and furthermore, among them, in the structural analysis by xm analysis, the lattice constant is in the range of 6.88 or less, Preferably 6.86 or less, particularly preferably in the range 6.80 to 6.70, most preferably
It is in the range of 6.78 to 6.72.

本発明において気相成長法炭素繊維黒鉛化物は、酸性官
能基を3〜500μe q/g有していることも特徴で
あり、酸性官能基の量は好ましくは8〜450μeq/
g s特に15〜350μeq/gの範囲である。酸性
官能基の量がこの範囲であると、ガスケット組成物の作
成時にバインダーや他の成分例えば無機粉末や他の繊維
と混合1゛る段階で極めて作業性に優れるばかりでなく
、分散性も良く、更に、ガスケット性能も改善される。
In the present invention, the vapor grown carbon fiber graphitized material is also characterized in that it has acidic functional groups of 3 to 500 μeq/g, and the amount of acidic functional groups is preferably 8 to 450 μeq/g.
g s is particularly in the range of 15 to 350 μeq/g. If the amount of the acidic functional group is within this range, it not only provides excellent workability but also good dispersibility at the stage of mixing with the binder and other components such as inorganic powder and other fibers during the preparation of the gasket composition. Furthermore, gasket performance is also improved.

本発明における、酸性官能基を有する気相成長法炭素繊
維黒鉛化物の製造方法としては、気相成長法炭素繊維を
高温度に熱処理し、次いで、この気相成長法炭素繊維黒
鉛化物を酸素や硝酸などの酸化剤で酸化する方法が最も
一般的であり、酸化する方法の代わりにその他、プラズ
マ法、グラフト法等も用いられ得る。
In the present invention, the method for producing a graphitized vapor-grown carbon fiber having an acidic functional group includes heat-treating the vapor-grown carbon fiber at a high temperature, and then treating the graphitized vapor-grown carbon fiber with oxygen or The most common method is oxidation using an oxidizing agent such as nitric acid, and other methods such as a plasma method and a graft method may also be used instead of the oxidation method.

上記熱処理温度としては、1000℃以上、好ましくは
1700℃以上、特(,2000℃以上であり、最も好
ましい範囲は2100〜30oO℃の範囲である。
The heat treatment temperature is 1000°C or higher, preferably 1700°C or higher, particularly 2000°C or higher, and the most preferable range is 2100 to 300°C.

本発明において、酸性官能基を有する気相成長法炭素繊
維黒鉛化物を含有するガスケット組成物は、上記の気相
成長法炭素繊維黒鉛化物がガスケット組成物の構成成分
として存在している組成物であり、組成物中の気相成長
法炭素繊維の黒鉛化物の量は特に制限はない。一般には
、組成物の固体成分の中の0.1重量%以上存在してお
り、好ましくは0.2重量%以上、%に0.43[fi
%〜99.9重量%存在している組成物であり、最も好
ましくは、2重量%以上98重量%以下である。
In the present invention, a gasket composition containing a graphitized vapor-grown carbon fiber having an acidic functional group is a composition in which the graphitized vapor-grown carbon fiber described above is present as a constituent component of the gasket composition. There is no particular restriction on the amount of graphitized material of the vapor grown carbon fiber in the composition. Generally, it is present in an amount of 0.1% or more by weight of the solid components of the composition, preferably 0.2% or more, and 0.43[fi
% to 99.9% by weight of the composition, most preferably from 2% to 98% by weight.

本発明において、気相成長法炭素繊維の黒鉛化物の効果
は、ガスケット組成物の気密性向上、耐熱性の向上、耐
油性、耐不凍液性、耐薬品性、耐溶剤性等の向上にある
他、酸性官能基を有することにより組成物に使用するバ
インダーとの分散や接合にも優れ、更に、組成物の機械
的強度の改善効果もあり、これら、が複合的に相乗効果
として現れるところにある。
In the present invention, the effects of graphitized vapor grown carbon fibers include improvements in gasket composition airtightness, heat resistance, oil resistance, antifreeze resistance, chemical resistance, solvent resistance, etc. By having an acidic functional group, it has excellent dispersion and bonding with the binder used in the composition, and also has the effect of improving the mechanical strength of the composition, and these are combined to appear as a synergistic effect. .

この様な効果を最大に発揮させるには、気相成長法炭素
繊維の黒鉛化物が極めて微細な状態、かつ、繊維の形状
で用いられる場合に、その効果が著しく、好ましい。こ
の際、繊維の径が細いばかりでなく、繊維長さ/繊維の
径の比が、5以上、好ましくは10以上、特に20以上
、最も好ましくは80以上あることである。
In order to maximize such effects, it is preferable that the graphitized material of the vapor-grown carbon fiber is used in an extremely fine state and in the form of fibers, since the effects are remarkable. In this case, not only the diameter of the fibers is small, but also the ratio of fiber length/fiber diameter is 5 or more, preferably 10 or more, particularly 20 or more, and most preferably 80 or more.

本発明のガスケット組成物は、以上のように、酸性官能
基を有する気相成長法炭素繊維の黒鉛化物を含有してい
る事を特徴としているが、ガスケット組成物を構成する
物としては他に、バインダー・気相成長法炭素繊維黒鉛
化物以外の繊維、充填剤、その仙薬剤や株加剤等が必要
に厄じて選択され使用できる。
As described above, the gasket composition of the present invention is characterized by containing graphitized vapor-grown carbon fibers having acidic functional groups, but the gasket composition may also contain other substances. Fibers other than binders, vapor-grown carbon fiber graphitized materials, fillers, and their additives and additives can be selected and used as necessary.

特に、バインダーは本組成物にとって必要な成分であり
、その様なバインダーとしては、有機系の樹脂やゴムが
使用され、特にゴム類が好適に使用され、例えば、アク
リルゴム、スチレンブタジェンゴム、アクリロニトリル
ブタジェンゴム、クロロプレンゴム、フッ素ゴム、エビ
クロロヒドリンゴム、クロロスルホン化ポリエチレンゴ
ム、塩素化ポリエチレンゴム、エチレンプロピレンゴム
In particular, a binder is a necessary component for the present composition, and organic resins and rubbers are used as such binders, and rubbers are particularly preferably used, such as acrylic rubber, styrene-butadiene rubber, Acrylonitrile butadiene rubber, chloroprene rubber, fluorine rubber, shrimp chlorohydrin rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, ethylene propylene rubber.

エチレンプロピレンジエンゴム、シリコンゴムなどの合
成ゴム、および天然ゴムなどがあげられる。
Examples include synthetic rubbers such as ethylene propylene diene rubber and silicone rubber, and natural rubber.

バインダーは、本発明でいう気相成長法炭素繊維の黒鉛
化物を結合させるために、また、必要に応じて使用され
る気相成長法炭素繊維黒鉛化物以外の繊維や充填剤等を
も結合させるために必要な物であるが、過剰に使用する
とガスケットの耐熱性や応力緩和性を低下させるので、
結合効果とのバランスの中でその部用量を設定する。一
般には、気相成長法炭素繊維の黒鉛化物100重量部に
対し0.5へ10000重量部が好ましく、特に1〜1
000重量部が好ましく、最も好ましくは2〜SOO重
量部の範囲である。
The binder is used to bind the graphitized material of the vapor grown carbon fiber referred to in the present invention, and also binds fibers, fillers, etc. other than the graphitized material of the vapor grown carbon fiber, which are used as necessary. However, if used in excess, it will reduce the heat resistance and stress relaxation properties of the gasket.
The amount should be determined in balance with the binding effect. In general, it is preferably 0.5 to 10,000 parts by weight, particularly 1 to 1 to 100 parts by weight of graphitized material of vapor grown carbon fiber.
000 parts by weight is preferred, and most preferably in the range of 2 to SOO parts by weight.

気相成長法炭素繊維の黒鉛化物以外の繊維としては、有
機系及び無機系の各種繊維が使用できるが、好ましくは
耐熱性に優れた繊維であり、例えば、各種のセラミック
ファイバー、石英ガラスファイバー、ロックウール、ス
テンレスファイバー。
Various organic and inorganic fibers can be used as the fibers other than the graphitized material of the vapor grown carbon fiber, but fibers with excellent heat resistance are preferable, such as various ceramic fibers, quartz glass fibers, Rock wool, stainless fiber.

炭素繊維、アルミナファイバー、アルミナシリケートフ
ァイバー、その他アスベストなどの無機質の繊維性物質
、カイノール繊維、アラミド繊維。
Carbon fiber, alumina fiber, alumina silicate fiber, other inorganic fibrous substances such as asbestos, kynor fiber, aramid fiber.

ポリイミド繊維など有機質の繊維も使用できるが、耐熱
性や気密性、耐薬品性などの低下をひきおこす場合があ
り、これら繊維を使用する目的の範囲内で出来るだけ使
用量を減すこと、あるいは使用しないことを考慮する必
要がある。
Organic fibers such as polyimide fibers can also be used, but they may cause a decrease in heat resistance, airtightness, chemical resistance, etc. Therefore, it is recommended to reduce the amount used as much as possible within the purpose of using these fibers, or to avoid using them. You need to consider not doing so.

その他、充填剤や薬剤、添加剤としては、従来からガス
ケット用組成物に使用されてきた物を種々使用可能であ
る。例えば、クレー、メルク、水酸化カルシウム、硫酸
バリウムなどの充填剤、加硫剤、加硫助剤、加硫促進剤
、酸化防止剤、金属害防止剤9着色剤、界面活性剤など
の薬剤や添加剤などである。これ等は、その使用量が過
多であると、ガスケットの緒特性を低下する恐れがあり
、使用目的に応じその量を適正に制御する必要がある。
In addition, various fillers, chemicals, and additives that have been conventionally used in gasket compositions can be used. For example, fillers such as clay, Merck, calcium hydroxide, barium sulfate, vulcanizing agents, vulcanization aids, vulcanization accelerators, antioxidants, metal damage inhibitors, colorants, surfactants, and other agents. additives, etc. If these are used in excessive amounts, there is a risk of deteriorating the gasket's properties, so it is necessary to appropriately control the amount depending on the purpose of use.

(実施例) 以下、実施例によって、本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

実施例1 直径が0.05〜0.1μmの気相成長法炭素繊維(ト
リスアセチルアセトナト鉄とベンゼンヲ1’400℃の
加熱空間に導入し浮遊状態で合成した)を、2400℃
で熱処理を行い炭素含量99.9%、格子定数6.74
の黒鉛化物を得た。これを酸素0.5%含有ガスで酸化
し、酸性官能基の量が65μe q/gの気相成長法炭
素繊維黒鉛化物を得、これを若干破砕し、分散操作がし
やすく、かつ、電子顕微鏡観察で、繊維長が実質的に5
0μm以上の気相成長法炭素繊維の黒鉛化物を得た。こ
の100重量部および、アクリルブタジェンゴム15.
3重量部、ゴム用配合剤3.8重量部、メルク10.8
重量部、クレー5.9重量部をトルエンとともに混線し
て組成物を調製した。
Example 1 Vapor-grown carbon fibers with a diameter of 0.05 to 0.1 μm (trisacetylacetonate iron and benzene were introduced into a heating space of 1'400°C and synthesized in a floating state) were grown at 2400°C.
The carbon content was 99.9% and the lattice constant was 6.74.
A graphitized product was obtained. This was oxidized with a gas containing 0.5% oxygen to obtain a vapor-grown carbon fiber graphitized material with an acidic functional group content of 65 μe q/g. Microscopic observation shows that the fiber length is essentially 5.
A graphitized product of vapor grown carbon fiber with a size of 0 μm or more was obtained. 100 parts by weight of this and 15.0 parts by weight of acrylic butadiene rubber.
3 parts by weight, rubber compounding agent 3.8 parts by weight, Merck 10.8 parts by weight
A composition was prepared by mixing 5.9 parts by weight of clay with toluene.

この組成物を評価するためガスケットを作製した。すな
わち、上記組成物をフック付きの鉄板の両面に擦り込み
、次いでトルエンを除去し、これを150℃の加熱炉の
中で30分間加熱して加硫を行い、厚さ1.25mのガ
スケットを得た。
A gasket was produced to evaluate this composition. That is, the above composition was rubbed on both sides of an iron plate with hooks, then toluene was removed, and this was heated in a heating furnace at 150°C for 30 minutes to perform vulcanization, thereby obtaining a gasket with a thickness of 1.25 m. Ta.

この際、酸性官能基を有する気相成長法炭素繊維黒鉛化
物は、ゴム成分やゴム用配合剤、無機の粉末と良く分散
し極めて作業性に優れ良好なガスケットが作製出来た。
At this time, the vapor grown carbon fiber graphitized material having an acidic functional group was well dispersed with the rubber component, rubber compounding agent, and inorganic powder, and a good gasket with excellent workability was produced.

このガスケットについてASTM、F104タイプlの
試験法に従い常温における圧縮率、復元率、応力緩和率
、耐熱性、水シール性、耐油性、耐不凍液性を測定し、
ガスケットとしての実用性を評価した。その結果、本実
施例の組成物から作られたガスケットは優れた性能を有
し実用性が有ることが分った。
For this gasket, the compressibility, recovery rate, stress relaxation rate, heat resistance, water sealing property, oil resistance, and antifreeze resistance at room temperature were measured according to the ASTM F104 type 1 test method.
The practicality as a gasket was evaluated. As a result, it was found that the gasket made from the composition of this example had excellent performance and was practical.

なお、実用性の評価基準としては、応力緩和率20%以
下、加熱後の圧縮率が加熱前の圧縮率の50%以上、水
シール性が5気圧以上、耐油性は、油浸漬後の圧縮率が
浸漬前の2倍以下および復元率が25%以上、耐不凍液
性は、圧縮率が1.8倍以下、復元率が30%以上とし
た。
The evaluation criteria for practicality are as follows: stress relaxation rate is 20% or less, compression rate after heating is 50% or more of the compression rate before heating, water sealability is 5 atm or more, and oil resistance is determined by compression after immersion in oil. The compression ratio was set to be 2 times or less and the recovery rate was 25% or more, and the antifreeze resistance was set to 1.8 times or less and a recovery rate of 30% or more.

実施例2 繊維の直径が0.05〜0.2μmの気相成長法炭素繊
維を2500℃で熱処理を行い、格子定数6.73、炭
素含量99.9%の黒鉛化物を得、これを若干破砕し、
電子顕微鏡で観察して実質的に長さ20/am以上、か
つ分散性の良い気相成長法炭素繊維の黒鉛化物を得た。
Example 2 A vapor-grown carbon fiber having a fiber diameter of 0.05 to 0.2 μm was heat-treated at 2500°C to obtain a graphitized material with a lattice constant of 6.73 and a carbon content of 99.9%. Crush,
Observation with an electron microscope revealed a graphitized vapor grown carbon fiber having a length of substantially 20/am or more and good dispersibility.

これを酸素1%を有するガスで酸化し、酸性官能基量8
3μeq/gを有する気相成長法炭素繊維の黒鉛化物を
得、これを用い実施例1と同様にガスケット組成物を作
り、更に、ガスケットとして実用性能評価を行い評価基
準を満足する良好な結果を得た。
This was oxidized with a gas containing 1% oxygen, and the amount of acidic functional groups was 8
A graphitized material of vapor grown carbon fiber having a carbon fiber density of 3 μeq/g was obtained, a gasket composition was made using this in the same manner as in Example 1, and further, the practical performance as a gasket was evaluated and good results satisfying the evaluation criteria were obtained. Obtained.

実施例5 実施例3において、アスベスト20重量部の代わりにア
スベスト10重量部、膨張黒鉛粉末10重量部を用い、
実施例1と同様にガスケット組成物を調製しiKガスケ
ットとしての実用性の評価試験を行ったところ満足する
良好な結果を得た。
Example 5 In Example 3, 10 parts by weight of asbestos and 10 parts by weight of expanded graphite powder were used instead of 20 parts by weight of asbestos,
A gasket composition was prepared in the same manner as in Example 1, and a test to evaluate its practicality as an iK gasket was conducted, and satisfactory results were obtained.

実施例6 実施例5において、アクリルブタジェンゴムの代わりに
、アクリルゴムな用い、実施例1と同様にしてガスケッ
ト組成物を得た。この組成物について実施例1と同様の
方法を用いガスケットとしての実用性評価試験を行い満
足する良好な結果を得た。
Example 6 In Example 5, a gasket composition was obtained in the same manner as in Example 1 except that acrylic rubber was used instead of acrylic butadiene rubber. This composition was subjected to a practical evaluation test as a gasket using the same method as in Example 1, and satisfactory results were obtained.

実施例7 実施例1において、アクリルブタジェン、ゴムのラテッ
クスを用い、トルエンを用いず水分散系で混合分散を行
いガスケット組成物を得た。この組成物について実施例
1と同様の操作を用いてガスケットを作製した。
Example 7 In Example 1, a gasket composition was obtained by mixing and dispersing acrylic butadiene and rubber latex in an aqueous dispersion system without using toluene. A gasket was produced using this composition using the same procedure as in Example 1.

得られたガスケットは実施例1と同様の実用性評価試験
で評価基準を満足する良好な性能を示したO なお比較のため、酸性官能基を導入しない気相成長法炭
素繊維黒鉛化物についても同様の試験な行ったが、水中
に分散させK<<長時間を要し作業性に問題があった。
The obtained gasket showed good performance satisfying the evaluation criteria in the same practicality evaluation test as in Example 1.For comparison, the same was true for a vapor-grown carbon fiber graphitized material without introducing acidic functional groups. A test was conducted, but it required a long time to disperse it in water, which caused problems in workability.

比較例1 実施例1の試験において、気相成長法炭素繊維の黒鉛化
物の代わりに、ピッチ系炭素#R1tkC径14μm、
長さs am )を用い、組成物の調製、ガスケットと
しての評価について同様の試験を試みた。
Comparative Example 1 In the test of Example 1, pitch-based carbon #R1tkC with a diameter of 14 μm was used instead of the graphitized material of the vapor grown carbon fiber.
A similar test was attempted for preparing a composition and evaluating it as a gasket using the length s am ).

しかし、この場合にはガスケットとしての形状を取りに
くくかつ、水シール性、耐熱性、耐不凍液、性が悪く、
実用性が認められなかった。
However, in this case, it is difficult to form a gasket, and the water sealing properties, heat resistance, and antifreeze resistance are poor.
Practicality was not recognized.

比較例2 実施例2において、気相成長法炭素繊維の黒鉛化物80
重量部gよびアスベスト201盆部の代わりに、比較例
1のピッチ系炭素繊維25重量部、アスベスト75重量
部を用いピッチ系炭素繊維の量を減らして同様の試験を
行い、ガスケットを得た。しかし、このガスケットは水
シール性、耐油性、耐不凍液性が不十分で実用性に劣っ
ていた。
Comparative Example 2 In Example 2, graphitized vapor grown carbon fiber 80
A similar test was conducted using 25 parts by weight of pitch-based carbon fiber and 75 parts by weight of asbestos of Comparative Example 1 in place of the 201 parts by weight of asbestos g and 201 parts by weight, and reducing the amount of pitch-based carbon fiber to obtain a gasket. However, this gasket had insufficient water sealing properties, oil resistance, and antifreeze resistance, making it less practical.

比較例3 実施例1の試験において、気相成長法炭素繊維の黒鉛化
物100重量部の代わりに、アスベスト100重量部を
用い同様の試験を試みた。しかし、ガスケットとしての
性能のうちで水シール性が若干不十分であった。
Comparative Example 3 In the test of Example 1, a similar test was attempted using 100 parts by weight of asbestos instead of 100 parts by weight of the graphitized material of the vapor grown carbon fiber. However, among the performances as a gasket, water sealing properties were somewhat insufficient.

(発明の効果) 本発明のガスケット用組成物は、気密性、耐熱性、耐油
性、耐不凍液性、耐薬品性、耐溶剤性等に優れている他
更に、ガスケット組成物の作成時及びガスケット作成時
の作業性が良く、又、組成物の機械的強度でも良好であ
り、工業的に極めて有用である。
(Effects of the Invention) The gasket composition of the present invention has excellent airtightness, heat resistance, oil resistance, antifreeze resistance, chemical resistance, solvent resistance, etc. The workability during production is good, and the mechanical strength of the composition is also good, making it extremely useful industrially.

Claims (1)

【特許請求の範囲】[Claims] 酸性官能基を3〜500μeq/g有する気相成長法炭
素繊維の黒鉛化物を含有するガスケット用組成物
Gasket composition containing graphitized vapor grown carbon fiber having 3 to 500 μeq/g of acidic functional groups
JP11480487A 1987-05-13 1987-05-13 Composition for gasket Pending JPS63280788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11480487A JPS63280788A (en) 1987-05-13 1987-05-13 Composition for gasket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11480487A JPS63280788A (en) 1987-05-13 1987-05-13 Composition for gasket

Publications (1)

Publication Number Publication Date
JPS63280788A true JPS63280788A (en) 1988-11-17

Family

ID=14647107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11480487A Pending JPS63280788A (en) 1987-05-13 1987-05-13 Composition for gasket

Country Status (1)

Country Link
JP (1) JPS63280788A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273881A (en) * 1988-09-09 1990-03-13 Agency Of Ind Science & Technol Production of sealing material
WO2010005084A1 (en) * 2008-07-11 2010-01-14 日信工業株式会社 Sealing member for piping material having excellent chlorine resistance, method for producing sealing member for piping material having excellent chlorine resistance, sealing member for piping material having excellent oil resistance, and piping material
JP2010019380A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Sealing member for piping material excellent in oil-proofness, and piping material
JP2010018743A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Sealing member for piping material having excellent chlorine resistance, method for producing the same, and piping material
JP2010018744A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Carbon fiber composite material excellent in chlorine resistance and method for producing the same
WO2011077597A1 (en) * 2009-12-25 2011-06-30 日信工業株式会社 Sealing member
WO2011077595A1 (en) * 2009-12-25 2011-06-30 日信工業株式会社 Dynamic sealing member
WO2011077596A1 (en) * 2009-12-25 2011-06-30 日信工業株式会社 Sealing member
US8403332B2 (en) 2009-12-28 2013-03-26 Nissan Kogyo Co., Ltd Seal member
US8614273B2 (en) 2009-12-28 2013-12-24 Nissin Kogyo Co., Ltd. Seal member

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273881A (en) * 1988-09-09 1990-03-13 Agency Of Ind Science & Technol Production of sealing material
JPH0553190B2 (en) * 1988-09-09 1993-08-09 Kogyo Gijutsuin
WO2010005084A1 (en) * 2008-07-11 2010-01-14 日信工業株式会社 Sealing member for piping material having excellent chlorine resistance, method for producing sealing member for piping material having excellent chlorine resistance, sealing member for piping material having excellent oil resistance, and piping material
JP2010019380A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Sealing member for piping material excellent in oil-proofness, and piping material
JP2010018743A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Sealing member for piping material having excellent chlorine resistance, method for producing the same, and piping material
JP2010018744A (en) * 2008-07-11 2010-01-28 Nissin Kogyo Co Ltd Carbon fiber composite material excellent in chlorine resistance and method for producing the same
WO2011077597A1 (en) * 2009-12-25 2011-06-30 日信工業株式会社 Sealing member
WO2011077595A1 (en) * 2009-12-25 2011-06-30 日信工業株式会社 Dynamic sealing member
WO2011077596A1 (en) * 2009-12-25 2011-06-30 日信工業株式会社 Sealing member
JPWO2011077597A1 (en) * 2009-12-25 2013-05-02 日信工業株式会社 Seal member
JP5546556B2 (en) * 2009-12-25 2014-07-09 日信工業株式会社 Dynamic seal member
JP5592401B2 (en) * 2009-12-25 2014-09-17 日信工業株式会社 Seal member
JP5592400B2 (en) * 2009-12-25 2014-09-17 日信工業株式会社 Seal member
US8403332B2 (en) 2009-12-28 2013-03-26 Nissan Kogyo Co., Ltd Seal member
US8614273B2 (en) 2009-12-28 2013-12-24 Nissin Kogyo Co., Ltd. Seal member

Similar Documents

Publication Publication Date Title
Yakovlev et al. Cement based foam concrete reinforced by carbon nanotubes
JPS63280788A (en) Composition for gasket
JP2014185079A (en) Concrete matrix, concrete cement matrix and concrete containing organic fiber dispersed in premix
Kadhim et al. Mechanical behavior of fiber reinforced slag-based geopolymer mortars incorporating artificial lightweight aggregate exposed to elevated temperatures
Kroehong et al. Effect of oil palm fiber content on the physical and mechanical properties and microstructure of high-calcium fly ash geopolymer paste
Nasibulina et al. Carbon nanofiber/clinker hybrid material as a highly efficient modificator of mortar mechanical properties
Pachta et al. The role of flame retardants in cement mortars exposed at elevated temperatures
JPS63280786A (en) Composition for gasket
JPS63280789A (en) Composition for gasket
CN112707697A (en) Cement-based composite mortar doped with carbon-based material and preparation method thereof
AU732615B2 (en) Flexible graphite composite
JPS63280787A (en) Composition for gasket
JP2002509570A (en) Soft graphite composite
Mouissa et al. The effect of chemical treatment on the mechanical and thermal properties of composite materials based on clay reinforced with sawdust
CN113683354B (en) High-temperature-resistant strength decay inhibition oil well cement and preparation method and application thereof
CN109293302A (en) Briny environment high tenacity high-impermeable high durability concrete and preparation method thereof
JPS6372780A (en) Graphite sheet
Bhaskar et al. Quantification of self-healing in bacteria-based engineered cementitious composites
Duan et al. Effect of multi-walled carbon nanotubes on the vibration-reduction behavior of cement
JPH0559059B2 (en)
CN109735083A (en) A kind of high-temperature resistant, the fibre-reinforced halogen-free flame retardant PC/ABS alloy of SiC and preparation method thereof
JPH0430972B2 (en)
JPH0388706A (en) Production of carbon material
Amri et al. Physicomechanical properties of lightweight geopolymer mortar with integrated graphene nanosheets.
JPH02107690A (en) Composition for electrically conductive gasket