JPH0388706A - Production of carbon material - Google Patents

Production of carbon material

Info

Publication number
JPH0388706A
JPH0388706A JP1225962A JP22596289A JPH0388706A JP H0388706 A JPH0388706 A JP H0388706A JP 1225962 A JP1225962 A JP 1225962A JP 22596289 A JP22596289 A JP 22596289A JP H0388706 A JPH0388706 A JP H0388706A
Authority
JP
Japan
Prior art keywords
carbon
raw material
fibers
fiber
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1225962A
Other languages
Japanese (ja)
Inventor
Yoshihiro Watanabe
美博 渡辺
Hideo Nozawa
野沢 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1225962A priority Critical patent/JPH0388706A/en
Publication of JPH0388706A publication Critical patent/JPH0388706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the carbon material having a high fracture toughness value by mixing org. fibers into a carbon raw material, crushing forming and calcining the mixture. CONSTITUTION:Org. short fibers are added to the carbon raw material, and the mixture is kneaded, crushed, formed and calcined or further graphitized, as required, to obtain the desired carbon material. The carbon raw material contains a two-component material consisting of a carbon aggregate such as pitch coke powder and a binder such as tar pitch, mesocarbon microbeads, crude coke, etc., and the carbon material is obtained by mixing, forming and calcining the raw material. Viscose rayon and pulp fibers are preferably used as the org. fiber since they are available at a low cost and the diameters and lengths of the fibers are uniform. The diameter of the single fiber is preferably controlled to <=20mu, and the length to <= several mm. The amt. of the org. fiber to be added is preferable adjusted to 10-30wt.% based on the main aggregate in the carbon raw material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は構造部材に用いられる炭素材の製造法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing carbon materials used for structural members.

(従来の技術) 高い破壊靭性値を要求される炭素材としては。(Conventional technology) As a carbon material that requires high fracture toughness.

炭素繊維を用いたC/Cコンポジットがある。C/Cコ
ンポジットは、フィラメントワインディング、織物、不
織布等の炭素繊維の基材に、有機物を含浸し炭化したL
  CVD法によシ熱分解炭素を沈着させる等して作ら
れる。
There is a C/C composite using carbon fiber. C/C composite is made by impregnating a carbon fiber base material such as filament winding, woven fabric, or non-woven fabric with organic matter and carbonizing it.
It is made by depositing pyrolytic carbon using the CVD method.

一方、ピッチコークス粉等の炭素骨材とタールピッチ等
の結合材とからなる二成分系炭素材原料に、炭素繊維の
短繊維を配合し、混線、成形、焼成あるいは更に黒鉛化
処理する炭素材もある。
On the other hand, short carbon fibers are blended into a two-component carbon material raw material consisting of a carbon aggregate such as pitch coke powder and a binder such as tar pitch, and the carbon material is mixed, formed, fired, or further graphitized. There is also.

(発明が解決しようとする課題) 炭素繊維の長繊維を使用するC/Cコンポジットは、繊
維の方向の靭性は極めて大きいが、繊維の の方向と直角の方向靭性は小さく、異方性が大き八 い。このため構造部材としては問題があυ、′また製造
工程が長く、高価となる欠点がある。
(Problems to be Solved by the Invention) C/C composites using long carbon fibers have extremely high toughness in the fiber direction, but have low toughness in the direction perpendicular to the fiber direction, and have large anisotropy. Eight. For this reason, it has problems as a structural member, and also has the drawback of being long and expensive.

一方、二成分系の炭素材原料に炭素繊維の短繊維を配合
し、混線、成形、焼成する方法は、ラバープレス成形法
を採用すれば異方性は改善されるが、成形直後の炭素繊
維のスプリングバックによりかさ密度が小さくなり、炭
素繊維による靭性の向上はなされない。
On the other hand, in the method of blending short carbon fibers into a two-component carbon material raw material, cross-firing, forming, and firing, the anisotropy can be improved if a rubber press molding method is adopted, but the carbon fibers immediately after forming The bulk density decreases due to springback, and the toughness is not improved by carbon fiber.

本発明は、構造部材として要求される高い破壊イaLを
75=91 靭性          炭素材の製造法を提供するこ
とを目的とする。
An object of the present invention is to provide a method for producing a carbon material having a high fracture aL of 75=91 toughness required as a structural member.

(11題を解決するための手段) 本発明は、炭素原料に有機繊維の短繊維を加え。(Means for solving 11 problems) In the present invention, short organic fibers are added to the carbon raw material.

混線、粉砕、成形及び焼成し、必要に応じて黒鉛化する
炭素材の製造法に関する。
This invention relates to a method for producing a carbon material by mixing, pulverizing, molding and firing, and graphitizing if necessary.

本発明において、炭素原料とは前述したピッチコークス
粉等の炭素骨材とタールピッチ等の結合材とからなる二
成分系炭素材原料のほか、メンカーボンマイクロビーズ
、生コークス等も含まれ。
In the present invention, the carbon raw material includes not only the above-mentioned two-component carbon material raw material consisting of a carbon aggregate such as pitch coke powder and a binder such as tar pitch, but also carbon microbeads, raw coke, and the like.

混合、成形及び焼成すれば炭素材料を得る己とができる
ものをいう。有機繊維はP A N 、  ビスコース
レーヨン、パルプ繊維、ピッチ系繊維等特に制限はない
が、安価で入手可能なこと、Ml、維径及び繊維長が揃
っていることなどから、ビスコースレーヨン、パルプ繊
維が好ましい。単繊維の径は20μm以下、繊維の長さ
は散開以下が好ましい。
A carbon material that can be obtained by mixing, molding, and firing. Organic fibers are not particularly limited, such as PAN, viscose rayon, pulp fiber, pitch fiber, etc., but viscose rayon, viscose rayon, Pulp fibers are preferred. The diameter of the single fibers is preferably 20 μm or less, and the length of the fibers is preferably not more than 20 μm.

また有機繊維の添加量は炭素原料中の主骨材に対して1
0〜30重量多とするのが好ましい。
In addition, the amount of organic fiber added is 1% to the main aggregate in the carbon raw material.
It is preferable to set it as 0-30 weight excess.

混合、粉砕、成形、焼成及び黒鉛化は公知の方法による
。成形はラバープレスを用いるのが好!しい。
Mixing, crushing, molding, firing and graphitization are carried out by known methods. It is best to use a rubber press for molding! Yes.

(作用) 有機繊維は炭素繊維よう軟かく、成形直後のスプリング
バックが小さい。
(Function) Organic fibers are soft like carbon fibers and have little springback immediately after molding.

(実施例) 次に本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

実施例1 バルブ繊維(山陽国策バルブ製、KCフロック。Example 1 Valve fiber (manufactured by Sanyo Kokusaku Valve, KC flock.

100メツシユ以下)10重量部7石油系ピッチp−ク
ス粉(平均粒径20μm)90重量部及びタールピッチ
(川崎製鉄製、軟化点130℃)70重量部をニーダ−
に入れ。200℃で混練した。
(100 mesh or less) 10 parts by weight 7 Petroleum pitch P-cus powder (average particle size 20 μm) 90 parts by weight and tar pitch (Kawasaki Steel, softening point 130°C) 70 parts by weight were kneaded.
put in. The mixture was kneaded at 200°C.

混線物を100メツンユ以下に粉砕して成形粉とし、ゴ
ム型に入れラバープレスでIt/any”の圧力で成形
後、窒素ガス雰囲気で1000℃筐で昇温1、焼成した
。次いで電気抵抗炉に入れ、2800℃で黒鉛化して1
010X10X20(aのブロックを得た。
The mixed wire was crushed to 100 mts or less to make a molding powder, put into a rubber mold, molded with a rubber press at a pressure of 1,000°C, and then fired at 1000°C in a nitrogen gas atmosphere in a box.Then, it was fired in an electric resistance furnace. and graphitized it at 2800℃.
010X10X20 (obtained a block.

実施例2 実施例1にかけるパルプ繊維をパルプフロックW−1(
山陽国策パルプ製、10Oメツシュ以下)とした以外は
実施例1と同様にして同じ寸法のブロックを得た。
Example 2 The pulp fibers applied in Example 1 were pulp flock W-1 (
A block of the same size was obtained in the same manner as in Example 1, except that the block was manufactured by Sanyo Kokusaku Pulp and had a mesh size of 100 or less.

実施例3 実施例1におけるパルプ繊維の代りにビスコースレーヨ
ン(][,16レーヨン製、レーコットY、12μmφ
x50mmlりを用いた以外は実施例1と同様にして同
じ寸法のブロックを得た。
Example 3 Instead of the pulp fiber in Example 1, viscose rayon (] [, 16 made of rayon, Raycot Y, 12 μmφ
A block of the same size was obtained in the same manner as in Example 1, except that 50 mm x 50 mm was used.

比較例1 実施例1におけるバルブ繊維の代りに炭素繊維のチョッ
プ(大阪ガス製、ドナカーボン)を用いた以外は実施例
1と同様にして実施例1と同じ寸法のブロックを得た。
Comparative Example 1 A block having the same dimensions as in Example 1 was obtained in the same manner as in Example 1, except that chopped carbon fiber (manufactured by Osaka Gas, Dona Carbon) was used instead of the valve fiber in Example 1.

比較例2 平均粒径20μmの石油系ピッチコークス粉の100重
量部とタールピッチ(川崎製鉄製、軟化点130℃)の
70!i部とをニーダーに入れ。
Comparative Example 2 100 parts by weight of petroleum pitch coke powder with an average particle size of 20 μm and 70 parts by weight of tar pitch (manufactured by Kawasaki Steel, softening point 130°C). Place part i into a kneader.

200℃で混練した。混練物を100メツシ江以下に粉
砕し、以下実施例1と同様にして成形、焼成及び黒鉛化
して、実施例1と同じ寸法のブロックを得た。
The mixture was kneaded at 200°C. The kneaded material was pulverized to 100 mesh particles or less, and then molded, fired, and graphitized in the same manner as in Example 1 to obtain a block with the same dimensions as in Example 1.

上記実施例及び比較例で得たブロックからテストピース
を作シ、物理特性を測定した。その結果を第1表に示す
。表中、破壊靭性値は5END試片で測定した。
Test pieces were made from the blocks obtained in the above Examples and Comparative Examples, and their physical properties were measured. The results are shown in Table 1. In the table, the fracture toughness values were measured using 5END specimens.

第1表より実施例の有機繊維配合黒鉛ブロックは、比較
例の炭素繊維入夛、又はコークス粉単味配合品より明ら
かに曲げ強度及び破壊靭性値が優れた値を示している。
Table 1 shows that the organic fiber-containing graphite blocks of the examples have clearly superior bending strength and fracture toughness values than the comparative examples containing carbon fiber or coke powder alone.

(発明の効果) 本発明によれば、成形時にスプリングバックを起すこと
がなく、破壊靭性値の高い炭素材が得られる。
(Effects of the Invention) According to the present invention, a carbon material that does not cause springback during molding and has a high fracture toughness value can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1、炭素原料に有機繊維の短繊維を加え、混練、粉砕、
成形及び焼成し、必要に応じて黒鉛化することを特徴と
する炭素材の製造法。
1. Add short organic fibers to the carbon raw material, knead, crush,
A method for producing a carbon material, which is characterized by forming and firing, and graphitizing if necessary.
JP1225962A 1989-08-31 1989-08-31 Production of carbon material Pending JPH0388706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1225962A JPH0388706A (en) 1989-08-31 1989-08-31 Production of carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1225962A JPH0388706A (en) 1989-08-31 1989-08-31 Production of carbon material

Publications (1)

Publication Number Publication Date
JPH0388706A true JPH0388706A (en) 1991-04-15

Family

ID=16837613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225962A Pending JPH0388706A (en) 1989-08-31 1989-08-31 Production of carbon material

Country Status (1)

Country Link
JP (1) JPH0388706A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101890A (en) * 2010-12-28 2011-06-22 成都丽雅纤维股份有限公司 Post dissolution process of viscose
US8206351B2 (en) 2004-03-05 2012-06-26 Panasonic Corporation Administration apparatus for medical use
CN116283333A (en) * 2023-05-18 2023-06-23 西南交通大学 Sulfonated graphene reinforced carbon-based composite material and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206351B2 (en) 2004-03-05 2012-06-26 Panasonic Corporation Administration apparatus for medical use
CN102101890A (en) * 2010-12-28 2011-06-22 成都丽雅纤维股份有限公司 Post dissolution process of viscose
CN116283333A (en) * 2023-05-18 2023-06-23 西南交通大学 Sulfonated graphene reinforced carbon-based composite material and preparation method and application thereof
CN116283333B (en) * 2023-05-18 2023-08-04 西南交通大学 Sulfonated graphene reinforced carbon-based composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CA2661927C (en) Low cte highly isotropic graphite
GB2053177A (en) Process for producing carbon-carbon fibre composites
CA2494161A1 (en) Process of making graphite articles
DE102013114628A1 (en) Process for producing near net shape shaped silicon carbide ceramics
US5698143A (en) Method for the preparation of silicon carbide-based composite ceramic body with fiber reinforcement
US3719452A (en) Carbonaceous material and method of preparation
DE19823507A1 (en) Process for the production of moldings based on carbon, carbides and / or carbonitrides
JPH0388706A (en) Production of carbon material
DE19823521C2 (en) Process for the production of carbon composite materials and / or carbon-containing, carbidic and / or carbonitridic materials
DE2714364A1 (en) Carbon fibre reinforced carbonaceous bodies - of improved density and strength
JPH05251088A (en) Manufacture of porous carbon electrode plate for fuel cell
JPS63280788A (en) Composition for gasket
US3993738A (en) High strength graphite and method for preparing same
JPH06183835A (en) Production of preform body for staple fiber-reinforced c/c composite and preform body production by the same method
JPH01188468A (en) Carbon fiber-reinforced carbon composite material and its production
JPS63280786A (en) Composition for gasket
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
JPH07100629B2 (en) Method for manufacturing carbon / carbon composite material
KR0143615B1 (en) A method for manufacturing c/c composites of high thermal conductivity
JPH0456789B2 (en)
JP3138939B2 (en) Method for producing carbon / carbon composite material
DE2166352A1 (en) Friction material - contg carbon-contg fibres
JP2855678B2 (en) Coke production method
JPH01126268A (en) Production of composite carbon fiber/carbon material