DE102013114628A1 - Process for producing near net shape shaped silicon carbide ceramics - Google Patents

Process for producing near net shape shaped silicon carbide ceramics Download PDF

Info

Publication number
DE102013114628A1
DE102013114628A1 DE102013114628.7A DE102013114628A DE102013114628A1 DE 102013114628 A1 DE102013114628 A1 DE 102013114628A1 DE 102013114628 A DE102013114628 A DE 102013114628A DE 102013114628 A1 DE102013114628 A1 DE 102013114628A1
Authority
DE
Germany
Prior art keywords
carbon
volume
added
silicon
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102013114628.7A
Other languages
German (de)
Other versions
DE102013114628A8 (en
DE102013114628B4 (en
Inventor
Prof. Dr. Gadow Rainer
Dr. Kern Frank
Frank Sommer
Steffen Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Universitaet Stuttgart
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Universitaet Stuttgart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV, Universitaet Stuttgart filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority to DE102013114628.7A priority Critical patent/DE102013114628B4/en
Publication of DE102013114628A1 publication Critical patent/DE102013114628A1/en
Publication of DE102013114628A8 publication Critical patent/DE102013114628A8/en
Application granted granted Critical
Publication of DE102013114628B4 publication Critical patent/DE102013114628B4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

Es wird ein Verfahren zum Herstellen von Siliziumcarbid-Keramiken mittels Flüssig- oder Gasphasensilizierung mit den folgenden Schritten angegeben: (a) Herstellen einer Mischung aus thermoplastischem Bindemittel und einem sinterfähigen Kohlenstoffprecursor; (b) Formung der Mischung zu einem Grünling mittels eines endkonturnahen Formgebungsverfahrens, vorzugsweise mittels Extrudieren oder Spritzgießen; (c) Pyrolisieren des Grünlings zur Herstellung eines porösen Halbzeugs; (d) Infiltrieren des porösen Halbzeugs mit Silizium durch Flüssig- oder Gasphaseninfiltration.A method is disclosed for producing silicon carbide ceramics by liquid or gas phase siliciding, comprising the steps of: (a) preparing a mixture of thermoplastic binder and a sinterable carbon precursor; (b) shaping the mixture into a green compact by means of a near-net shape shaping process, preferably by means of extrusion or injection molding; (c) pyrolyzing the green compact to produce a porous semi-finished product; (d) infiltrating the porous semi-finished product with silicon by liquid or gas phase infiltration.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Siliciumcarbid-Keramiken mittels Flüssig- oder Gasphasensilizierung, bei dem zunächst eine Mischung aus einem Kohlenstoffprecursor und einem Bindemittel hergestellt wird, dann die Mischung zu einem Grünling geformt wird, der anschließend pyrolisiert wird und dann mit Silizium infiltriert wird.  The invention relates to a method for producing silicon carbide ceramics by means of liquid or gas phase siliciding, in which a mixture of a carbon precursor and a binder is first prepared, then the mixture is formed into a green compact, which is subsequently pyrolyzed and then infiltrated with silicon ,

Ein derartiges Verfahren ist aus der EP 1 795 513 A1 bekannt. Such a method is known from EP 1 795 513 A1 known.

Hiernach wird zunächst ein Grünling aus Kohlenstoffpulver einheitlicher Siebfraktion, etwa Holzkohle- oder Pflanzenkohlepulver, mit einem verkokbaren Binder, zum Beispiel Phenolharz, Pech oder Teer, versetzt, dann einer Wärmebehandlung bei einer Temperatur zwischen 40 und 200 °C zum Austreiben flüchtiger Bestandteile unterzogen, dann pyrolisiert, um einen porösen Kohlekörper herzustellen und schließlich mit Silizium infiltriert, etwa durch Gasphaseninfiltration. Hierbei soll aus einem Holzkohlemehl und Binder enthaltenden Gemisch ein Grünling mit endkonturnahen Abmessungen durch Pressen, Extrudieren, Spritzgießen oder eines anderen Formgebungsverfahrens hergestellt werden. Der Binder liegt entweder in fester Form, das heißt als Pulver, oder als Flüssigkeit vor. Als Binder sind Phenol-Formaldehydharze mit hoher Kohlenstoffausbeute, karbonisierbare Harze, wie zum Beispiel Furanharze, also thermodure Harze, offenbart. Das beim Formgebungsprozess angewendete Temperaturprogramm wird auf das Schmelz- und Aushärtungsverhalten des Binders abgestimmt. Zunächst erfolgt eine langsame Aufheizung auf eine für das Aushärten des Binderharzes ausreichende Temperatur und dann eine längere Haltezeit bei dieser Temperatur.  Thereafter, first a green compact of carbon powder of uniform sieve fraction, such as charcoal or biochar powder, with a cokbaren binder, for example phenolic resin, pitch or tar, added, then subjected to a heat treatment at a temperature between 40 and 200 ° C for driving off volatiles, then pyrolyzed to produce a porous carbon body and finally infiltrated with silicon, such as by gas phase infiltration. Here, from a charcoal flour and binder-containing mixture, a green compact with near-net shape dimensions by pressing, extrusion, injection molding or other shaping process to be produced. The binder is either in solid form, that is as a powder, or as a liquid. As binders, phenol-formaldehyde resins having a high carbon yield, carbonizable resins, such as, for example, furan resins, ie, thermo-type resins, are disclosed. The temperature program used during the molding process is adapted to the melting and curing behavior of the binder. First, a slow heating to a sufficient for the curing of the binder resin temperature and then a longer hold time at this temperature.

Aus der EP 1 657 227 A1 ist ein weiteres Verfahren zur Herstellung von Siliziumkarbid-Keramiken bekannt, bei dem zunächst aus einem Ausgangsmaterial, welches zellulosehaltiges Pulver umfasst, unter Zugabe von Bindemittel in Form, etwa von pulverförmigem aushärtbarem Phenolharz, ein Precursor mit gradiertem Phasenverteilungsprofil hergestellt wird, der anschließend durch Pyrolyse in eine offenporigen Kohlestoffkörper umgewandelt wird, der schließlich siliziert wird. From the EP 1 657 227 A1 Another method for the production of silicon carbide ceramics is known in which first of a starting material comprising cellulosic powder, with the addition of binder in the form of powdered thermosetting phenolic resin, a precursor is prepared with graded phase distribution profile, which is then by pyrolysis in an open-pored carbon body is converted, which is finally siliconized.

Aus der EP 2 053 029 A1 ist ein weiteres Verfahren zur Herstellung von Siliziumkarbid-Keramiken bekannt, bei dem zunächst aus einem Ausgangsmaterial, das aktivierten Kohlenstoff, ein aushärtbares Bindemittel und Kohlenstofffasern umfasst, eine Mischung hergestellt wird. Diese wird in einer Pressform verpresst und das Bindemittel ausgehärtet. Anschließend erfolgt eine Flüssigsilizierung. From the EP 2 053 029 A1 For example, another method for producing silicon carbide ceramics is known in which a mixture is first prepared from a starting material comprising activated carbon, a curable binder and carbon fibers. This is pressed in a mold and cured the binder. This is followed by liquid siliciding.

Bei der Formgebung derartiger Bauteile nach den vorstehend erwähnten Verfahren ist die notwendige langsame Aufheizung auf eine Temperatur zum Aushärten des verwendeten Binders nachteilig. Auch ist es schwierig, tatsächlich geeignete Mischungen herzustellen, die sich etwa durch Extrudieren gut endkonturnah formen lassen.  In the molding of such components by the above-mentioned methods, the necessary slow heating to a temperature for curing the binder used is disadvantageous. Also, it is difficult to actually produce suitable mixtures that can be shaped well near net shape by extrusion.

Kommerziell erhältliche Siliziumcarbid-Bauteile (auch C-SiSiC-Bauteile genannt) werden bislang hauptsächlich durch unterschiedliche Sinterverfahren hergestellt, wie etwa durch druckloses Sintern (SSiC), druckunterstütztes Sintern (HPSiC) oder Flüssigphasensintern (LPSiC). Bei all diesen Verfahren sind SiC-Pulver mit stark kovalenten SI-C-Bindungen und Sinterhilfen, wie etwa Kohlenstoff oder Borkarbid, als Rohstoffe erforderlich. Sintertemperaturen für SiC, das pulvertechnologisch hergestellt wird, liegen im Bereich von über 1800 bis etwa 2300 °C. Eine derartige Herstellung ist somit sehr aufwändig.  Commercially available silicon carbide components (also called C-SiSiC components) have hitherto been produced mainly by different sintering methods, such as pressureless sintering (SSiC), pressure assisted sintering (HPSiC), or liquid phase sintering (LPSiC). All of these methods require SiC powders with strong covalent SI-C bonds and sintering aids, such as carbon or boron carbide, as raw materials. Sintering temperatures for SiC produced by powder technology range from over 1800 to about 2300 ° C. Such a production is thus very complicated.

Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Herstellen von Siliziumcarbid-Keramiken zu offenbaren, das eine Herstellung von hochwertigen Bauteilen aus Siliziumcarbid auf möglichst einfache Weise unter Verwendung eines endkonturnahen Formgebungsverfahrens ermöglicht. Vorzugsweise soll dabei auch eine Herstellung von Bauteilen mit relativ komplexer Geometrie ermöglicht werden.  Against this background, the invention has for its object to disclose a method for producing silicon carbide ceramics, which enables a production of high-quality components of silicon carbide in the simplest possible way using a near-net shape shaping process. Preferably, it should also be possible to produce components with a relatively complex geometry.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zum Herstellen von Siliziumcarbid-Keramiken mittels Flüssig- oder Gasphasensilizierung mit den folgenden Schritten gelöst:

  • (a) Herstellen einer Mischung aus thermoplastischem Bindemittel und einem sinterfähigen Kohlenstoffprecursor;
  • (b) Formen der Mischung zu einem Grünling mittels eines endkonturnahen Formgebungsverfahrens;
  • (c) Pyrolisieren des Grünlings zur Herstellung eines porösen Halbzeugs;
  • (d) Infiltrieren des porösen Halbzeugs mit Silizium durch Flüssig- oder Gasphaseninfiltration.
This object is achieved according to the invention by a method for producing silicon carbide ceramics by means of liquid or gas phase siliciding with the following steps:
  • (a) preparing a mixture of thermoplastic binder and a sinterable carbon precursor;
  • (b) shaping the mixture into a green compact by a near-net shape molding process;
  • (c) pyrolyzing the green compact to produce a porous semi-finished product;
  • (d) infiltrating the porous semi-finished product with silicon by liquid or gas phase infiltration.

Die Aufgabe der Erfindung wird auf diese Weise vollkommen gelöst.  The object of the invention is completely solved in this way.

Erfindungsgemäß wird als Binder ein thermoplastisches Bindemittel verwendet. Dies erlaubt ein schnelles Aufheizen auf die Verarbeitungstemperatur bei der Formgebung, ohne dass auf eine Aushärtung des Binders Rücksicht genommen werden muss. Die Verarbeitung wird auf diese Weise deutlich vereinfacht. According to the invention, a thermoplastic binder is used as the binder. This allows for rapid heating up to the processing temperature during molding, without having to consider hardening of the binder. The processing is significantly simplified in this way.

Während bei dem vorbekannten Verfahren thermodure Bindemittel, wie etwa Phenolharze, durch thermisches Vernetzen zu Polymatrixverbundwerkstoffen (PMC) umgesetzt werden und nachfolgend pyrolisiert und siliziert werden, die Freiheitsgrade in der Formgebung von Bauteilen hinsichtlich Geometrie und Größe verfahrensbedingt sehr begrenzt sind, erlaubt erfindungsgemäß die Verwendung eines thermoplastischen Bindemittels erhebliche Freiheitsgrade bei der endkonturnahen Formgebung. Es lässt sich sowohl ein Extrudieren als auch ein Spritzgießen von komplizierten Formen ermöglichen.  While thermodur binders, such as phenolic resins, are thermally crosslinked into polymatrix composites (PMC) and subsequently pyrolyzed and siliconized, the degrees of freedom of shape of components are inherently very limited in geometry and size, allowing the use of the present invention thermoplastic binder considerable degrees of freedom in the near-net shape shaping. It can be both an extrusion and injection molding of complicated shapes allow.

Unter einem thermoplastischen Bindemittel wird im Rahmen dieser Anmeldung ein Bindemittel verstanden, das sich in einem bestimmten Temperaturbereich verformen lässt („thermo“-„plastisch“). Der Vorgang ist im Gegensatz zum thermoduren Material reversibel, d.h. er kann durch Abkühlung und Wiedererwärmung beliebig oft wiederholt werden. Dagegen härten Thermodure oder Duroplaste irreversibel aus, was durch eine dreidimensionale Vernetzung bewirkt wirkt.  In the context of this application, a thermoplastic binder is understood as meaning a binder which can be deformed in a specific temperature range ("thermo" - "plastic"). The process is reversible, in contrast to the thermodurable material, i. it can be repeated as often as required by cooling and reheating. In contrast, thermo-thermosets or thermosets cure irreversibly, which has a three-dimensional cross-linking effect.

Als thermoplastisches Bindemittel wird beispielsweise ein Bindemittel verwendet, das aus der Gruppe ausgewählt wird, die aus Bindemitteln auf Basis von Polyethylen, Polypropylen, Polyethylencopolymeren, Polypropylencopolymeren, Polystyrol, Polyethyl-Wachsen, Esterwachsen, natürlichen Wachsen, Polyethylenglycol, Styrolacrylnitril, Acrylester-Copolymeren, Paraffinwachsen, Fischer-Tropsch-Wachsen und Vinylacetatcopolymeren besteht.  As the thermoplastic binder, for example, a binder selected from the group consisting of binders based on polyethylene, polypropylene, polyethylene copolymers, polypropylene copolymers, polystyrene, polyethylene waxes, ester waxes, natural waxes, polyethylene glycol, styrene acrylonitrile, acrylic ester copolymers, paraffin waxes is used , Fischer-Tropsch waxes and vinyl acetate copolymers.

Alternativ können auch thermoplastische Bindemittel auf Polyacetalbasis eingesetzt werden, die sich thermisch oxidativ oder katalytisch im Säuredampf entbindern lassen.  Alternatively, it is also possible to use thermoplastic polyacetal-based binders which can be debindered thermally oxidatively or catalytically in the acidic vapor.

In bevorzugter Weiterbildung der Erfindung wird der Mischung zusätzlich mindestens ein Füllstoff zugesetzt.  In a preferred embodiment of the invention, the mixture is additionally added at least one filler.

Hierdurch lassen sich die Eigenschaften der hergestellten Keramik in gezielter Weise beeinflussen.  This makes it possible to influence the properties of the ceramic produced in a targeted manner.

Die Pyrolyse wird in bevorzugter Weiterbildung der Erfindung unter Sauerstoffausschluss bei Temperaturen oberhalb von 500 °C bis zu maximal 1700 °C durchgeführt.  The pyrolysis is carried out in a preferred embodiment of the invention with exclusion of oxygen at temperatures above 500 ° C up to a maximum of 1700 ° C.

Vorzugsweise wird zur Pyrolyse zunächst mit einer niedrigen Heizrate von vorzugsweise 10 K/h bis 30 K/h auf eine Temperatur oberhalb von 500 °C, vorzugsweise etwa 800 bis 1000 °C aufgeheizt, und dann mit einer höheren Heizrate von vorzugsweise 50 bis 150 K/h auf eine Temperatur von mindestens 1500 °C, vorzugsweise 1600 bis 1700 °C, insbesondere 1650 °C aufgeheizt.  Preferably, the pyrolysis is first heated at a low heating rate of preferably 10 K / h to 30 K / h to a temperature above 500 ° C, preferably about 800 to 1000 ° C, and then with a higher heating rate of preferably 50 to 150 K. / h to a temperature of at least 1500 ° C, preferably 1600 to 1700 ° C, in particular 1650 ° C heated.

Auf diese Weise lässt sich eine gute Prozessführung gewährleisten.  This ensures good process control.

Gemäß einer weiteren Ausgestaltung der Erfindung wird nach dem Schritt (b) zunächst eine Entbinderung zur Entfernung des thermoplastischen Binders durchgeführt. Dies geschieht vorzugsweise in einem Bad aus Wasser oder organischen Lösungsmitteln bei einer gegenüber Raumtemperatur erhöhten Temperatur, weiter bevorzugt in einem Wasserbad bei 30 bis 40 °C. According to a further embodiment of the invention, debinding is first carried out after step (b) to remove the thermoplastic binder. This is preferably done in a bath of water or organic solvents at a temperature elevated from room temperature, more preferably in a water bath at 30 to 40 ° C.

Dies setzt voraus, dass der thermoplastische Binder entsprechend in Wasser bzw. organischen Lösungsmitteln löslich ist. Alternativ können auch thermoplastische Bindemittel auf Polyacetalbasis eingesetzt werden, die sich thermisch oxidativ oder katalytisch im Säuredampf entbindern lassen.  This assumes that the thermoplastic binder is correspondingly soluble in water or organic solvents. Alternatively, it is also possible to use thermoplastic polyacetal-based binders which can be debindered thermally oxidatively or catalytically in the acidic vapor.

Gemäß einer alternativen Ausführung der Erfindung wird eine Entbinderung zur Entfernung des thermoplastischen Binders simultan mit der Pyrolyse im Schritt (c) durchgeführt.  According to an alternative embodiment of the invention, debinding to remove the thermoplastic binder is carried out simultaneously with the pyrolysis in step (c).

Mit beiden Verfahrensvarianten lassen sich geeignete poröse Halbzeuge herstellen, die für die nachfolgende Silizierung geeignet sind.  With both variants of the method, it is possible to produce suitable porous semi-finished products which are suitable for the subsequent siliciding.

Da der thermoplastische Binder bei der eigentlichen Pyrolyse selbst keine Rolle mehr spielt, da dieser entweder zuvor in einem Entbinderungsschritt entfernt wurde oder zu Beginn der Pyrolyse thermisch ausgetrieben wird, wird der sinterförmige Kohlenstoffprecursor zugegeben. Dieser ermöglicht es, strukturfeste, hochporöse Halbzeuge bei der Pyrolyse zu erhalten.  Since the thermoplastic binder itself does not play any role in the actual pyrolysis itself, since it has either been previously removed in a debindering step or is thermally driven off at the beginning of the pyrolysis, the sintered carbon precursor is added. This makes it possible to obtain structurally solid, highly porous semi-finished products during pyrolysis.

Hierbei kann dieser etwa aus der Gruppe ausgewählt sein, die aus Petrolpechen, Steinkohleteerpechen, synthetischen Pechen, Polyaromatenmesophasenpechen (PAM-Pechen) und Mischungen hieraus besteht. This may be selected from the group consisting of petrol, coal tar, synthetic pitch, polyaromatic mesophase pitch (PAM pitch) and mixtures thereof.

Es hat sich gezeigt, dass die Verwendung von derartigen Kohlenstoffprecursoren besonders geeignet ist, um einen ausreichend stabilen hochporösen Precursor (Halbzeug) aus Kohlenstoff zur nachfolgenden Silizierung zu erhalten. Ein besonderer Vorteil besteht in der hohen Kohlenstoff-Ausbeute dieser Materialien und in der Ausprägung einer graphitähnlichen Kristallstruktur.  It has been found that the use of such carbon precursors is particularly suitable for obtaining a sufficiently stable highly porous carbon precursor for subsequent silicization. A particular advantage is the high carbon yield of these materials and in the expression of a graphite-like crystal structure.

In weiter bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens wird der Mischung zusätzlich ein Füllstoff in Form eines technischen Kohlenstoffes zugesetzt.  In a further preferred embodiment of the method according to the invention, a filler in the form of a technical carbon is additionally added to the mixture.

Hierbei kann dieser etwa aus der Gruppe ausgewählt sein, die aus Koksen, Naturgraphit, synthetischem Graphit, Rußen, Aktivkohle, Kohlenstofffasern, CNTs, Graphen, SiC und Mischungen hiervon besteht.  This may be selected from the group consisting of cokes, natural graphite, synthetic graphite, carbon blacks, activated carbon, carbon fibers, CNTs, graphene, SiC and mixtures thereof.

Die Eigenschaften der so hergestellten Keramik lassen sich auf diese Weise in weiten Grenzen gezielt beeinflussen. Die Festigkeit des porösen Kohlenstoff-Halbzeugs nach der Pyrolyse und die spätere Aufnahmefähigkeit bei der Silizierung kann vorteilhaft beeinflusst werden.  The properties of the ceramic thus produced can be selectively influenced in this way within wide limits. The strength of the porous carbon semi-finished product after the pyrolysis and the later absorption capacity in the silicification can be advantageously influenced.

Die Kohlenstoffprecursoren und/oder Füllstoffe werden bevorzugt zumindest teilweise in Pulverform zugegeben.  The carbon precursors and / or fillers are preferably added at least partially in powder form.

Hierbei können diese etwa aus der Gruppe ausgewählt werden, die aus verkokter Cellulose, verkokten Polysacchariden, PAM-Pechen, gemahlenem Petrolkoks, Pechkoks, Graphen, Naturgraphit, synthetischem Graphit, Ruß, Flammruß, Gasruß und Mischungen hiervon besteht.  These may be selected from, for example, the group consisting of coked cellulose, coked polysaccharides, PAM pitches, ground petroleum coke, pitch coke, graphene, natural graphite, synthetic graphite, carbon black, flame black, gas black, and mixtures thereof.

Daneben können die Kohlenstoffprecursoren und/oder Füllstoffe zumindest teilweise in Faserform zugegeben werden.  In addition, the carbon precursors and / or fillers may be added at least partially in fibrous form.

Hierdurch kann die Festigkeit der hergestellten Keramiken in gezielter Weise beeinflusst werden.  As a result, the strength of the ceramics produced can be influenced in a targeted manner.

Die faserförmigen Kohlenstoffprecursoren und/oder Füllstoffe können bevorzugt aus der Gruppe ausgewählt werden, die aus C-Fasern auf Rayon-Basis, PAM-Basis, Pechbasis, Kohlenstoffnanoröhren, Graphen, SiC-Fasern und Mischungen hiervon besteht. Vorzugsweise handelt es sich hierbei um Kurzfasern.  The fibrous carbon precursors and / or fillers may preferably be selected from the group consisting of rayon-based, PAM-based, pitch-based, carbon nanotubes, graphene, SiC fibers, and mixtures thereof. Preferably, these are short fibers.

Gemäß einer weiteren Ausgestaltung der Erfindung werden 10 bis 30 Vol.-%, vorzugsweise 15 bis 20 Vol.-%, an sinterfähigem Kohlenstoffprecursor zugegeben.  According to a further embodiment of the invention, 10 to 30% by volume, preferably 15 to 20% by volume, of sinterable carbon precursor are added.

Werden zusätzlich faserförmige Füllstoffe verwendet, so beträgt deren Anteil an den insgesamt zugegebenen Füllstoffen vorzugsweise 10 bis 40 Vol.-%, weiter bevorzugt 15 bis 25 Vol.-%.  If fibrous fillers are additionally used, their proportion of the total fillers added is preferably 10 to 40% by volume, more preferably 15 to 25% by volume.

Gemäß einer weiter bevorzugten Ausführung der Erfindung beträgt der Anteil des thermoplastischen Binders an der Mischung mindestens 35 Vol.-%, vorzugsweise mindestens 40 Vol.-%, weiter bevorzugt mindestens 45 Vol.-%. Der Maximalanteil des thermoplastischen Binders an der Mischung beträgt vorzugsweise höchstens 65 Vol. %, weiter bevorzugt höchstens 55 Vol. %.  According to a further preferred embodiment of the invention, the proportion of the thermoplastic binder in the mixture is at least 35% by volume, preferably at least 40% by volume, more preferably at least 45% by volume. The maximum proportion of the thermoplastic binder in the mixture is preferably at most 65% by volume, more preferably at most 55% by volume.

Es hat sich gezeigt, dass mit derartigen Mischungsverhältnissen die Erzeugung von hochwertigen C-SiSiC-Keramiken möglich ist, wobei deren Eigenschaften in weiten Grenzen durch die verwendeten Mischungsverhältnisse und Rohstoffe beeinflusst werden können.  It has been found that the production of high-quality C-SiSiC ceramics is possible with such mixing ratios, the properties of which can be influenced within wide limits by the mixing ratios and raw materials used.

Indem ein Volumenanteil von mindestens 35 Vol. %, oder sogar mindestens 40 oder 45 Vol. % des thermoplastischen Binders an der Mischung verwendet wird, lässt sich eine besonders gut extrudierbare Mischung erzeugen. Soll eine Herstellung nicht durch Extrudieren sondern durch Spritzgießen erfolgen, so wird bevorzugt der Anteil des thermoplastischen Binders noch höher gewählt, bis zu etwa 55 oder 65 Vol. %.  By using a volume fraction of at least 35% by volume, or even at least 40 or 45% by volume of the thermoplastic binder in the mixture, it is possible to produce a particularly readily extrudable mixture. If production is to be effected not by extrusion but by injection molding, the proportion of the thermoplastic binder is preferably chosen to be even higher, up to about 55 or 65% by volume.

Bevorzugt wird im Schritt (d) die Siliziuminfiltration als Flüssigphaseninfiltration (LSI) durchgeführt, was oberhalb der Schmelztemperatur von Silizium, also oberhalb von etwa 1414 °C, erfolgt.  The silicon infiltration is preferably carried out in step (d) as liquid phase infiltration (LSI), which takes place above the melting temperature of silicon, ie above about 1414 ° C.

Dies kann drucklos über Kapillarkräfte erfolgen.  This can be done without pressure via capillary forces.

Bevorzugt wird die Flüssigphasen-infiltration jedoch unter reduziertem Druck durchgeführt. Preferably, however, the liquid phase infiltration is carried out under reduced pressure.

Dies erfolgt vorzugsweise bei einer Temperatur von 1450 bis 1750 °C, vorzugsweise von 1550 bis 1700 °C, weiter bevorzugt bei 1600 bis 1700 °C, besonders bevorzugt bei etwa 1650 °C.  This is preferably carried out at a temperature of 1450 to 1750 ° C, preferably from 1550 to 1700 ° C, more preferably at 1600 to 1700 ° C, more preferably at about 1650 ° C.

Auf die Silizierungstemperatur kann bevorzugt mit einer hohen Heizrate aufgeheizt werden, etwa mit 50 bis 200 K/h, vorzugsweise mit 100 bis 160 K/h, besonders bevorzugt mit etwa 130 K/h. Nach Erreichen der Maximaltemperatur wird diese bevorzugt mindestens zehn Minuten gehalten, vorzugsweise 20 bis 60 Minuten.  The siliciding temperature can preferably be heated at a high heating rate, for example at 50 to 200 K / h, preferably at 100 to 160 K / h, particularly preferably at about 130 K / h. After reaching the maximum temperature, this is preferably maintained for at least ten minutes, preferably 20 to 60 minutes.

Wie vorstehend bereits erwähnt, erfolgt die Formgebung im Schritt (b) vorzugsweise durch Extrudieren oder Spritzgießen.  As already mentioned above, the shaping in step (b) is preferably carried out by extrusion or injection molding.

Das Extrudieren erfolgt vorzugsweise bei erhöhter Temperatur in einem Bereich von 100 bis 200 °C, vorzugsweise im Bereich von 120 bis 160 °C, besonders bevorzugt bei etwa 140 °C.  The extrusion is preferably carried out at elevated temperature in a range of 100 to 200 ° C, preferably in the range of 120 to 160 ° C, more preferably at about 140 ° C.

Alternativ zur Formgebung durch Extrudieren oder Spritzgießen ist grundsätzlich auch eine Formgebung durch Warmpressen mit einem Druck von weniger als 10 MPa denkbar. Allerdings weist eine Formgebung durch Extrudieren oder Spritzgießen im Vergleich hierzu deutliche Vorteile auf.  As an alternative to shaping by extrusion or injection molding, shaping by hot pressing with a pressure of less than 10 MPa is also conceivable. However, molding by extrusion or injection molding has distinct advantages compared to this.

Gemäß einem weiteren Merkmal der Erfindung wird der Grünling nach dem Schritt (b) und/oder das poröse Halbzeug nach dem Schritt (c) in einem Zwischenbearbeitungsschritt vor der nachfolgenden Sizilierung mit einem spangebenden Verfahren bearbeitet, insbesondere durch Schleifen, Fräsen, Bohren.  According to a further feature of the invention, the green compact after step (b) and / or the porous semi-finished product after step (c) are processed in a intermediate processing step before the subsequent sizing with a cutting process, in particular by grinding, milling, drilling.

Der Grünling bzw. das poröse Halbzeug weist eine ausreichend hohe Festigkeit auf, um eine derartige Zwischenbearbeitung mit einfachen Werkzeugen zu ermöglichen. Auf diese Weise kann der Bearbeitungsaufwand, der nach der Silizierung getrieben werden muss, um die Endkontur zu erhalten, deutlich reduziert werden.  The green body or the porous semi-finished product has a sufficiently high strength to allow such intermediate machining with simple tools. In this way, the processing costs that must be driven after the siliconization in order to obtain the final contour can be significantly reduced.

Durch reaktive Kohlenstofffüllmaterialien mit hoher spezifischer Oberfläche und einer geeigneten Menge von Silizium lässt sich der Reaktionsmechanismus zwischen den reaktiven Elementen und der SiC-Ausbeute nach der Flüssigphaseninfiltration steuern.  Through high surface area reactive carbon fillers and a suitable amount of silicon, the reaction mechanism between the reactive elements and the SiC yield after liquid phase infiltration can be controlled.

Die Porositätsbildung während des Entbinderungsschrittes und die Kohlenstoffumsetzung und die Morphologie der resultierenden Kohlenstoffmatrix bestimmen den Infiltrationsgrad des porösen Kohlenstoff-Halbzeugs.  The porosity formation during the debinding step and the carbon conversion and morphology of the resulting carbon matrix determine the degree of infiltration of the porous carbon semi-finished product.

Durch die Mischungsverhältnisse der verschiedenen Ausgangsmaterialien, durch den Anteil des thermoplastischen Binders und durch die Art der verwendeten Materialien lassen sich mit dem erfindungsgemäßen Verfahren maßgeschneiderte C-SiSiC-Keramiken herstellen, die auf den gewünschten Anwendungsfall abgestimmt werden können.  By the mixing ratios of the different starting materials, by the proportion of the thermoplastic binder and by the nature of the materials used can be produced with the inventive method tailored C-SiSiC ceramics, which can be tailored to the desired application.

Ein hoher Restkohlenstoffanteil nach der Silizierung kann vorteilhaft etwa für gute tribologische Eigenschaften und gegebenenfalls Eigenschmierfähigkeit verwendet werden.  A high residual carbon content after the siliconization can advantageously be used, for example, for good tribological properties and, if appropriate, intrinsic lubricity.

Bauteile ohne oder mit geringem Silizium- und Kohlenstoffüberschuss dagegen sind für maximale Härte und Festigkeit ausgelegt.  By contrast, components with little or no silicon and carbon surplus are designed for maximum hardness and strength.

Auf diese Weise wird die Herstellung keramischer Verbundwerkstoffe mit speziellen funktionalen Eigenschaften, wie zum Beispiel hoher Wärmeleitfähigkeit, geringer Wärmedehnung, sowie hoher Härte und Elastizitätsmodul, sowie Kombinationen davon ermöglicht.  In this way, the production of ceramic composite materials with special functional properties, such as high thermal conductivity, low thermal expansion, and high hardness and modulus of elasticity, and combinations thereof is made possible.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale der Erfindung nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der Erfindung zu verlassen.  It is understood that the features of the invention mentioned above and those yet to be explained below can be used not only in the particular combination indicated, but also in other combinations or in isolation, without departing from the scope of the invention.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnung. Es zeigen:  Further features and advantages of the invention will become apparent from the following description of preferred embodiments with reference to the drawings. Show it:

1 den grundsätzlichen Verfahrensablauf bei der Herstellung von Siliziumcarbid-Keramiken nach dem erfindungsgemäßen Verfahren; 1 the basic procedure in the production of silicon carbide ceramics according to the inventive method;

2 eine thermogravimetrische Analyse der verwendeten Rohstoffkomponenten (thermoplastischer Binder, Kohlenstofffüller und Stabilisierungselemente) unter Stickstoffatmosphäre (Temperaturbereich 20 bis 1500 °C, Heizrate 10 K/min); 2 a thermogravimetric analysis of the raw material components used (thermoplastic binder, carbon filler and stabilizing elements) under nitrogen atmosphere (temperature range 20 to 1500 ° C, heating rate 10 K / min);

3 eine thermogravimetrische Analyse der hergestellten Mischungen im Grünzustand nach einer Extrudierung mit vorheriger Entbinderung und ohne vorherige Entbinderung unter Stickstoffatmosphäre (Temperaturbereich 20 bis 1500 °C, Heizrate 10 K/min); 3 a thermogravimetric analysis of the mixtures produced in the green state after extrusion with prior debinding and without prior binder removal under a nitrogen atmosphere (temperature range 20 to 1500 ° C, heating rate 10 K / min);

4 die Entwicklung der Porositäten ausgehend vom Grünling nach Entbinderung im Wasserbad und anschließender Pyrolyse oder direkter Pyrolyse ohne vorherige Entbinderung; 4 the development of porosities starting from the green body after debinding in a water bath and subsequent pyrolysis or direct pyrolysis without prior debindering;

5 eine EDS-Analyse typischer C-SiSiC-Mikrostrukturen nach der Silizierung (T > 1450 °C); 5 an EDS analysis of typical C-SiSiC microstructures after siliconization (T> 1450 ° C);

6 SEM-Bilder von polierten Querschnitten nach der Pyrolyse; 6 SEM images of polished cross sections after pyrolysis;

7 SEM-Bilder von polierten Querschnitten von typischem C-SiSiC-Material nach der Silizierung; 7 SEM images of polished cross-sections of typical C-SiSiC material after siliconization;

8 SEM-Bilder von unpolierten Querschnitten des FS-3 Grünlings nach dem Extrudierungsschritt und vor dem Wasser-Entbinderungsschritt; 8th SEM images of unpolished cross sections of the FS-3 green compact after the extrusion step and before the water debinding step;

9 die Porengrößenverteilung nach dem Entbinderungsschritt durch Wasserentfernung und Pyrolyse an den verschiedenen Proben FS-1 (a), FS-2 (b und FS-3 (c), gemessen durch Quecksilberinfiltrationsporosimetrie nach DIN 66133 . 9 the pore size distribution after the debinding step by water removal and pyrolysis on the various samples FS-1 (a), FS-2 (b and FS-3 (c), measured by mercury infiltration porosimetry DIN 66133 ,

Die grundsätzlichen Schritte des erfindungsgemäßen Verfahrens sind in 1 schematisch dargestellt. Es handelt sich um ein vierstufiges Verfahren. In der ersten Stufe wird eine Mischung durch Trockenmischen von Rohstoffen hergestellt, wozu Binder und Kohlenstoffprecursoren verwendet werden, gegebenenfalls unter Zusatz von Füllstoffen. The basic steps of the method according to the invention are in 1 shown schematically. It is a four-step process. In the first stage, a blend is prepared by dry blending raw materials, using binders and carbon precursors, optionally with the addition of fillers.

Hieran schließt sich ein endkonturnahes Formgebungsverfahren an, gefolgt von einer Entbinderung und Kohlenstoffkonversion durch Pyrolyse, woran sich schließlich eine Silizierung anschließt.  This is followed by a near-net shape forming process, followed by debinding and carbon conversion by pyrolysis, followed by finally silicidation.

Die erste hier untersuchte Herstellungsroute 1 schließt eine Formgebung durch Extrudieren oder Spritzgießen ein, gefolgt von einer Wasser-Entbinderung im Wasserbad. Daran schließt sich dann die thermische Entbinderung (Pyrolyse) bei Temperaturen unterhalb von 1650 °C an. Schließlich erfolgt die Silizierung bevorzugt durch Flüssigphaseninfiltration bei Temperaturen oberhalb der Schmelztemperatur von Silizium und bevorzugt unterhalb von 1650 °C. The first production route investigated here 1 includes molding by extrusion or injection, followed by water debinding in the water bath. This is followed by thermal debinding (pyrolysis) at temperatures below 1650 ° C. Finally, the silicization is preferably carried out by liquid phase infiltration at temperatures above the melting temperature of silicon, and preferably below 1650 ° C.

Bei einer zweiten Herstellungsroute wird auf die vorherige Wasser-Entbinderung verzichtet und der Binder im Zuge der thermischen Entbinderung (Pyrolyse) ausgetrieben.  In a second production route is dispensed with the previous water debindering and expelled the binder in the course of thermal debinding (pyrolysis).

Bei einem alternativen, hier nicht näher untersuchten Verfahren erfolgt die Formgebung durch Warmpressen mit Drücken von P < 10 MPa (Route 3). In an alternative method, which is not examined in more detail here, the shaping takes place by hot pressing with pressures of P <10 MPa (Route 3 ).

Beispiele: Examples:

1. Verwendete Materialien 1. Used materials

In Tabelle 1 ist die Zusammensetzung von drei verschiedenen Mischungen zusammengefasst, die als FS-1, FS-2 und FS-3 bezeichnet sind. Hierbei wurden insbesondere unterschiedliche Mischungsverhältnisse eines thermoplastischen Binders von Halbkoks als sinterfähigem Kohlenstoffprecursormaterial und von Füllstoffen aus aktiviertem Kohlenstoff und aus Kohlenstofffasern verwendet. Material Binder Halbkoks Aktivierter Kohlenstoff C-Fasern Vol.-% Vol.-% Vol.-% Vol.-% FS-1 36,0 35,2 9,0 19,8 FS-2 45,0 30,3 7,7 17,0 FS-3 48,3 23,5 11,2 17,0 Tabelle 1 Table 1 summarizes the composition of three different mixtures designated FS-1, FS-2 and FS-3. Here, in particular, different mixing ratios of a thermoplastic binder of semi-coke were used as sinterable Kohlenstoffprecursormaterial and fillers of activated carbon and carbon fibers. material binder char Activated carbon C-fibers Vol .-% Vol .-% Vol .-% Vol .-% FS-1 36.0 35.2 9.0 19.8 FS-2 45.0 30.3 7.7 17.0 FS-3 48.3 23.5 11.2 17.0 Table 1

Als thermoplastischer Binder wurde ein kommerziell erhältlicher thermoplastischer Binder (Licomont EK 583 G, eMBe Products and Service GmbH, Deutschland, verwendet, mit einer Schmelztemperatur von ungefähr 100 °C. Als Halbkoks wurde ein Kohlenstoff-Teermaterial auf der Basis eines sinterbaren Halbkokses verwendet (Carbosint, Rütgers Chemicals AG, Deutschland).  The thermoplastic binder used was a commercially available thermoplastic binder (Licomont EK 583 G, eMBe Products and Service GmbH, Germany, having a melting temperature of about 100 ° C. The semicarbons used were a carbon tar material based on a sinterable semi-coke (Carbosint Rütgers Chemicals AG, Germany).

Als aktivierter Kohlenstoff wurde Kohlenstoffpulver mit einer spezifischen Oberfläche von 1100 m2/g (RD-90, Chemviron Carbon, Belgien) als weiteres Füllstoff verwendet. Die aktivierten Kohlenstoffpartikel hatten einen durchschnittlichen Durchmesser von 10 µm und waren kugelförmig. Ferner wurden als weiterer Füllstoff gemahlene Kohlenstofffasern (C-Fasern mit einer durchschnittlichen Länge von 360 µm und einem durchschnittlichen Durchmesser von 13 µm (Ashland-Südchemie-Kernfest GmbH, Deutschland) verwendet. As activated carbon, carbon powder with a specific surface area of 1100 m 2 / g (RD-90, Chemviron Carbon, Belgium) was used as a further filler. The activated carbon particles had an average diameter of 10 μm and were spherical. Further, as a further filler milled carbon fibers (C-fibers with an average length of 360 microns and an average diameter of 13 microns (Ashland-Südchemie-Kernfest GmbH, Germany) were used.

Der Halbkoks diente als sinterfähiger Kohlenstoffprecursor. Das aktivierte Kohlenstoffpulver diente zur Unterstützung des Reaktionsmechanismus zwischen den reaktiven Elementen und dem Silizium bei der späteren Flüssigphaseninfiltration. Die Kohlenstofffasern dienten als zusätzliche Kohlenstoffquelle und ferner als zusätzliches, festigkeitssteigerndes Stabilisierungselement. The semi-coke served as a sinterable carbon precursor. The activated carbon powder served to aid the reaction mechanism between the reactive elements and the silicon in the later liquid phase infiltration. The carbon fibers served as an additional source of carbon and also as an additional strength enhancing stabilizer.

2. Mischen und Extrudieren 2. Mix and extrude

Zunächst wurden alle Materialien in Pulverform gemäß Tabelle 1 vorgemischt. Der Halbkoks wurde zuvor für die Materialsysteme FS-2 und FS-3 vorgemischt, um einen direkten Vergleich von unterschiedlichen Partikelgrößen zu ermöglichen. Zur Homogenisierung der Materialien wurde ein Drehtrommelmischer verwendet. Die Mischzeit betrug zehn Minuten für jedes Materialsystem.First, all materials in powder form according to Table 1 were premixed. The semi-coke was previously premixed for the FS-2 and FS-3 material systems to allow a direct comparison of different particle sizes. To homogenize the materials, a rotary drum mixer was used. The mixing time was ten minutes for each material system.

Die solchermaßen vorgemischten Zusammensetzungen wurden dreimal durch einen Doppelschraubenextruder (Schraubendurchmesser 16 mm) ohne Mundstück bei 140 °C gepresst, um den Binder zu schmelzen und die Vormischung zu homogenisieren. Schließlich wurde intensiv vorgemischtes Granulat in denselben Extruder zugeführt und langsam durch eine Stangenform (Durchmesser 12 mm) bei 140 °C extrudiert. Die Extrudiergeschwindigkeit war durch die Auslegung der Maschine begrenzt. Die erhaltenen Stangen wurden durch eine V-Form unterstützt, gekühlt und zur weiteren Verarbeitung in Stücke geschnitten. The thus premixed compositions were pressed three times through a twin screw extruder (16 mm diameter screw) without a die at 140 ° C to melt the binder and homogenize the masterbatch. Finally, intensively premixed granules were fed into the same extruder and slowly extruded through a rod (12 mm diameter) at 140 ° C. Extrusion speed was limited by the design of the machine. The resulting bars were supported by a V-shape, cooled and cut into pieces for further processing.

3. Pyrolyse und Silizierung 3. Pyrolysis and silicization

Die Herstellung von porösen Kohlenstoff-Halbzeugen und schließlich von C-SiSiC-Keramiken erfordert zwei Bearbeitungsschritte, nämlich die Pyrolyse und die Silizierung, nachdem die Grünlinge durch Extrudieren hergestellt sind. Die Grünlinge auf der Basis von FS-1, FS-2 und FS-3 wurden zunächst in einem Wasserbad sieben Tage lang bei 33 °C entbindert. Im Folgenden wurde die Pyrolyse durchgeführt (vgl. Herstellungsroute 1 gemäß 1). Die Pyrolyse wurde mit einer Heizrate von 15 K/h bis auf 900 °C, gefolgt von 100 K/h bis auf 1650 °C Endtemperatur unter fließendem Stickstoff durchgeführt. The production of porous carbon semi-finished products and finally C-SiSiC ceramics requires two processing steps, namely pyrolysis and siliciding, after the green compacts are made by extrusion. The green compacts based on FS-1, FS-2 and FS-3 were first debinded in a water bath at 33 ° C for seven days. In the following, the pyrolysis was carried out (see production route 1 according to 1 ). The pyrolysis was carried out at a heating rate of 15 K / h up to 900 ° C, followed by 100 K / h up to 1650 ° C final temperature under flowing nitrogen.

Während der Pyrolyse verdampft der thermoplastische Binder vollständig, während sich der Halbkoks mit einer hohen Kohlenstoffrate umsetzt und somit eine Kohlenstoffmatrix bildet, die zusammen mit den anderen Füllstoffen eine hohe Porosität aufweist. Die Kohlenstoffkonversion geht mit einem Massenverlust und einer Schrumpfung einher. Um den Einfluss der vorherigen Wasser-Entbinderung zu quantifizieren, wurden andere Proben von Grünlingen direkt pyrolisiert, ohne dass eine vorherige Wasser-Entbinderung erfolgte (vgl. Route 2, 1). During pyrolysis, the thermoplastic binder evaporates completely, while the semi-coke reacts at a high rate of carbon and thus forms a carbon matrix which, together with the other fillers, has a high porosity. Carbon conversion is accompanied by mass loss and shrinkage. To quantify the impact of previous water debindering, other samples of green bodies were directly pyrolyzed without prior water debindering (see Route 2 . 1 ).

In den nachfolgenden Beispielen sind Materialkonfigurationen, die die Wasser-Entbinderung enthalten, mit "WD" bezeichnet, Materialien, die nur von der thermischen Pyrolyse stammen, mit "TD" bezeichnet, und Materialien, die auf der Basis von beiden Schritten hergestellt wurden, mit "WD + TD".  In the examples that follow, material configurations that include water debindering are labeled "WD", materials that are derived only from thermal pyrolysis, labeled "TD", and materials that are manufactured based on both steps "WD + TD".

Nach der Wasser-Entbinderung bzw. der Pyrolyse wurden die erhaltenen porösen Kohlenstoff-Halbzeuge mit flüssigem Silizium in einem Ofen infiltriert. Hierbei erfolgte eine Aufheizung auf 1650 °C mit 130 K/h und ein Halten bei der Endtemperatur über dreißig Minuten, um die Silizierung abzuschließen. Danach wurde anhaftendes Silizium durch Sandstrahlen von den Proben mittels Korundgranulat entfernt. After water debindering or pyrolysis, the obtained porous carbon semi-finished products were infiltrated with liquid silicon in an oven. This was heated to 1650 ° C with 130 K / h and holding at the final temperature for over thirty minutes to complete the silicization. Thereafter, adhered silicon was removed by sand blasting the samples with corundum granules.

4. Charakterisierung und Testergebnisse 4. Characterization and test results

Um das thermische Verhalten der Rohstoffe und der hergestellten Mischungen zu untersuchen, wurden gravimetrische Thermoanalysen (TGA) unter fließendem Stickstoff (100 ml/min) durchgeführt. Die Heizrate war 10 K/min im Temperaturbereich von 20 bis 1500 °C. To investigate the thermal behavior of the raw materials and the mixtures produced, gravimetric thermal analyzes (TGA) were carried out under flowing nitrogen (100 ml / min). The heating rate was 10 K / min in the temperature range of 20 to 1500 ° C.

Zur Bestimmung der Mikrostrukturdichte und -porosität wurde ein Helium-Pyknometer gemäß ISO 1183 verwendet. To determine the microstructure density and porosity, a helium pycnometer was used according to ISO 1183 used.

4.1 Charakterisierung der Rohstoffe 4.1 Characterization of raw materials

In 2 sind TGA-Kurven der verwendeten Rohstoffe dargestellt. Diese wurden zuvor 24 Stunden bei 40 °C unter Stickstoffatmosphäre getrocknet. In 2 TGA curves of the raw materials used are shown. These were previously dried for 24 hours at 40 ° C under a nitrogen atmosphere.

Der Massenverlust des thermoplastischen Binders begann bei etwa 250 °C und war bei 550 °C vollständig beendet. Der Massenverlust von aktiviertem Kohlenstoff als auch Kohlenstofffasern lag unterhalb von 5 % bis zu einer Temperatur von 1100 C°. Bei hoher Temperatur zeigte der aktivierte Kohlenstoff einen signifikant höheren Massenverlustgradienten. Der sich ergebende Massenverlust ist das Ergebnis einer Eliminierung von organischen Gruppen, insbesondere beim thermoplastischen Binder, verdampften Kohlenwasserstoffen, Kohlenstoffoxiden und Wasserstoff. Am Ende konvergierte der Massenverlust der Rohstoffe asymptotisch zu ihrer spezifischen Massenausbeute (in Gew.-%), was wiederum eine wichtige Quelle für die gesamte Kohlenstoffausbeute und die Porositätsverteilung des porösen Kohlenstoff-Halbzeuges ist.  The mass loss of the thermoplastic binder began at about 250 ° C and was completed at 550 ° C. The mass loss of activated carbon as well as carbon fibers was below 5% up to a temperature of 1100 ° C. At high temperature, the activated carbon showed a significantly higher mass loss gradient. The resulting mass loss is the result of elimination of organic groups, particularly the thermoplastic binder, vaporized hydrocarbons, carbon oxides and hydrogen. In the end, the mass loss of the raw materials converged asymptotically to their specific mass yield (in wt%), which in turn is an important source of total carbon yield and porosity distribution of the porous carbon semi-finished product.

4.2. Charakterisierung der Mischungen und Extrudierung 4.2. Characterization of the mixtures and extrusion

4 zeigt die thermogravimetrischen Analysen (TGA) der Materialien der durch Extrudieren hergestellten Grünlinge unter Stickstoffatmosphäre mit einer Heizrate von 10 K/min. 4 shows the thermogravimetric analyzes (TGA) of the materials of the green compacts produced by extrusion under a nitrogen atmosphere at a heating rate of 10 K / min.

Die unterschiedlichen Materialien zeigten bei der Extrudierung unterschiedliche Verarbeitungscharakteristiken. Das Material FS-1 ließ sich infolge des niedrigen Anteils an thermoplastischem Binder von nur 36 Vol.-% nur schwer extrudieren. Eine Vergrößerung des Binder-Anteils auf 45 Vol.-% bzw. 48,3 Vol.-% bei FS-2 bzw. FS-3 erlaubte eine deutlich erleichterte Extrudierung mit erheblich niedrigeren Scherkräften und Drehmoment infolge der niedrigeren Viskosität. Selbst die Vergrößerung des Anteils an aktiviertem Kohlenstoff und die gleichzeitige Verringerung des Anteils an Halbkoks beeinflusste die Verarbeitbarkeit des Materialsystems FS-3 kaum.  The different materials showed different processing characteristics during extrusion. The material FS-1 was difficult to extrude due to the low level of thermoplastic binder of only 36% by volume. Increasing the binder content to 45% by volume and 48.3% by volume, respectively, for FS-2 and FS-3 allowed significantly easier extrusion with significantly lower shear forces and lower viscosity torque. Even increasing the proportion of activated carbon and simultaneously reducing the content of semi-coke hardly affected the processability of the FS-3 material system.

4 zeigt, dass sich für alle drei Materialien FS-1, FS-2, FS-3 ähnliche Gewichtsverluste ergeben. Unter Berücksichtigung der unterschiedlichen Dichten der Füllstoffe und des Binders ergibt sich, dass der Wasser-Entbinderungsschritt ungefähr 40 bis 45 Gew.-% des Binderanteils entfernen kann. Der Hauptgewichtsverlust bei jedem Material endete bei etwa 550 °C, was mit dem Gewichtsverlust des thermoplastischen Binders korreliert und seine vollständige Degradation anzeigt. Darüber ist der Massengewichtsverlust für jedes Materialsystem fast der gleiche. 4 shows that there are similar weight losses for all three materials FS-1, FS-2, FS-3. Considering the different densities of the fillers and the binder, it follows that the water debinding step can remove about 40 to 45% by weight of the binder content. The major weight loss for each material ended at about 550 ° C, which correlates with the weight loss of the thermoplastic binder and indicates its complete degradation. In addition, the weight loss for each material system is almost the same.

4.3. Dichte, Porosität und Mikrostruktur bei Extrudierung und Pyrolyse 4.3. Density, porosity and microstructure during extrusion and pyrolysis

Die an den Proben FS-1, FS-2, FS-3 gemessenen Porositäten und Porendurchmesser sind in Tabelle 2 zusammengefasst. Material a Modus Porendurchmesser a Durchschnitt Porendurchmesser a Offene Porosität b Offene Porosität [nm] [nm] [nm] [nm] FS-1 4169,9 484,2 47,59 38,91 FS-2 4115,3 820,0 52,76 41,00 FS-3 2037,4 343,0 52,45 46,00 Tabelle 2 a gemessen durch Quecksilberinfiltrationsprosimetrie nach DIN 66133 und berechnet nach Porenformmodell "zylindrisch"
b gemessen nach Archimedes-Verfahren nach DIN 51918
The porosities and pore diameters measured on Samples FS-1, FS-2, FS-3 are summarized in Table 2. material a mode pore diameter a average pore diameter a Open porosity b Open porosity [Nm] [Nm] [Nm] [Nm] FS-1 4,169.9 484.2 47.59 38.91 FS-2 4,115.3 820.0 52.76 41,00 FS-3 2,037.4 343.0 52.45 46,00 Table 2 a measured by mercury infiltration spectrometry DIN 66133 and calculated according to pore shape model "cylindrical"
b measured by Archimedes method DIN 51918

Die Messungen wurden zum einen durch Quecksilberinfiltrationsporosimetrie nach DIN 66133 und zum anderen nach dem Archimedes-Verfahren nach DIN 51918 durchgeführt. Die Kohlenstoffausbeute der Materialsysteme, die zuvor einem Wasser-Entbinderungsschritt unterzogen wurden und dann pyrolisiert wurden, ist etwa 10 Vol.-% größer im Vergleich zu den Kohlenstoffausbeuten bei der direkten Pyrolyse. Dieses Ergebnis korrespondiert mit den TGA-Messungen gemäß 2 bzw. 3. Dies zeigt, dass der Zerfall des thermoplastischen Binders den Zerfallmechanismus der anderen Bestandteile nicht beeinflusst, was letztlich zu einer identischen Dichte nach der Pyrolyse gemäß Route 1 und Route 2 führt. The measurements were detected by mercury infiltration porosimetry DIN 66133 and secondly according to the Archimedes method DIN 51918 carried out. The carbon yield of the material systems previously subjected to a water debinding step and then pyrolyzed is about 10% by volume larger compared to the carbon yields in direct pyrolysis. This result corresponds to the TGA measurements according to 2 respectively. 3 , This shows that the decay of the thermoplastic binder does not affect the disintegration mechanism of the other constituents, ultimately leading to an identical density after pyrolysis by route 1 and route 2 leads.

Jedoch können einige Effekte betreffend die Gesamtdichte und die offene Porosität auf die unterschiedlichen Entbinderungsverfahren zurückgeführt werden.  However, some effects on total density and open porosity can be attributed to the different debindering methods.

4 zeigt die Entwicklung der Gesamtdichte und der offenen Porosität in den Grünlingen FS-1, FS-2 und FS-3. Offensichtlich haben FS-1 und FS-2 den höchsten Feststoffanteil und die niedrigste Porosität, wobei es einen Unterschied in der Porosität abhängig von der Durchführung der Wasser-Entbinderung gibt. Die zusätzlich einer Wasser-Entbinderung unterzogenen Materialien (WD + TD) haben eine größere Gesamtdichte und somit eine geringere Porosität als die ausschließlich mit der Pyrolyse behandelten Materialien. 4 shows the evolution of the total density and the open porosity in green bodies FS-1, FS-2 and FS-3. Obviously, FS-1 and FS-2 have the highest solids content and the lowest porosity, with a difference in porosity depending on the performance of water debindering. The additional water-debindered materials (WD + TD) have a greater total density and thus a lower porosity than the materials treated exclusively with the pyrolysis.

8 zeigt SEM-Aufnahmen von unpolierten Querschnitten des FS-3-Grünlings nach dem Extrudierungsschritt (a, c) und nach dem Wasser-Entbinderungsschritt (b, d). Bei dem pyrolisierten Material mit vorheriger Wasser-Entbinderung (WD + TD) als auch bei dem direkt pyrolisierten Material (TD) liegt die offene Porosität im Bereich von 38 bis 49 Vol.-% und die korrespondierende Gesamtdichte zwischen 0,78 und 0,94 g/cm3 (vgl. 4). Im Allgemeinen ist die offene Porosität überwiegend durch den Volumengehalt des thermoplastischen Binders innerhalb des Materialsystems bestimmt. 8th shows SEM photographs of unpolished cross sections of the FS-3 green compact after the extrusion step (a, c) and after the water debinding step (b, d). For the pyrolyzed material with prior water debindering (WD + TD) as well as the direct pyrolyzed material (TD), the open porosity is in the range of 38 to 49 vol% and the corresponding total density is between 0.78 and 0.94 g / cm 3 (cf. 4 ). In general, the open porosity is predominantly determined by the volume content of the thermoplastic binder within the material system.

6 zeigt die Mikrostrukturen von FS-1 (6a, 6b), FS-2 (6c, 6d) und FS-3 (6e, 6f) nach der Pyrolyse mit vorheriger Wasser-Entbinderung. 6 shows the microstructures of FS-1 ( 6a . 6b ), FS-2 ( 6c . 6d ) and FS-3 ( 6e . 6f ) after pyrolysis with prior water debindering.

Die Porengrößenverteilung für alle Materialsysteme nach der Pyrolyse mit vorheriger Wasser-Entbinderung wurde durch Quecksilberinfiltrationsporosimetrie gemessen (vgl. 9). The pore size distribution for all material systems after pyrolysis with prior water debindering was measured by mercury infiltration porosimetry (cf. 9 ).

9a zeigt das Materialsystem FS-1, 9b zeigt das Materialsystem FS-2 und 9c das Materialsystem FS-3. Die Porengrößenverteilungen unterscheiden sich insbesondere im Falle von FS-1 gemäß 9a. Die gemessenen Porengrößenverteilungen reflektieren die Unterschiede in den Materialzusammensetzungen, insbesondere eine Variation im Anteil des aktivierten Kohlenstoffes mit hoher Oberfläche, was insbesondere zur Beeinflussung der Porengrößenverteilung im Bereich von < 100 Nm führt. 9a shows the material system FS-1, 9b shows the material system FS-2 and 9c the material system FS-3. The pore size distributions differ in particular in the case of FS-1 according to 9a , The measured pore size distributions reflect the differences in the material compositions, in particular a variation in the proportion of the activated carbon with a high surface area, which in particular leads to an influence on the pore size distribution in the range of <100 Nm.

Die gemessenen Porositäten gemäß Tabelle 2 unterscheiden sich etwas bezüglich der gewählten Messmethode, was im Ergebnis jedoch nicht wesentlich ist.  The measured porosities according to Table 2 differ somewhat with respect to the selected measuring method, which is not essential in the result.

4.4. Mikrostruktur von C-SiSiC-Proben nach Silizierung 4.4. Microstructure of C-SiSiC samples after silicization

In 7 sind SEM-Bilder von polierten Querschnitten nach der Silizierung von FS-1 (7a, 7b), FS-2 (7c, 7d) und FS-3 (7e, 7f) dargestellt. Sämtliche C-SiSiC-Materialien zeigen eine ziemlich homogene dreiphasige Mikrostruktur bestehend aus reaktionsgebildetem Siliziumkarbid (SiC), Restsilizium (Si) und Restkohlenstoff (C) aus dem Kohlenstoff-Halbzeug. In 7 are SEM images of polished cross-sections after silicization of FS-1 ( 7a . 7b ), FS-2 ( 7c . 7d ) and FS-3 ( 7e . 7f ). All C-SiSiC materials show a fairly homogeneous three-phase microstructure consisting of reaction-formed silicon carbide (SiC), residual silicon (Si), and residual carbon (C) from the carbon precursor.

Das C-SiSiC-Material auf der Basis von FS-1 (7a, 7b) zeigt einen hohen Anteil an nicht konvertiertem Restkohlenstoff (ungefähr 6 bis 10 Vol.-%). Der Restkohlenstoff ist ziemlich gleichmäßig verteilt. Allgemein ist nicht umgewandelter Kohlenstoff ein Anzeichen für nicht ausreichende Porosität und eine nicht zugängliche dichte Kohlenstoffmatrix des Kohlenstoffprecursors. Der zweite Effekt, der die Reaktionsfähigkeit beeinflusst, ist die Kristallstruktur. The C-SiSiC material based on FS-1 ( 7a . 7b ) shows a high proportion of unconverted residual carbon (about 6 to 10% by volume). The residual carbon is fairly evenly distributed. Generally, unconverted carbon is an indication of insufficient porosity and not one accessible dense carbon matrix of the carbon precursor. The second effect that affects reactivity is the crystal structure.

Der Pechkoks, der aus dem polyaromatischen Halbkoks-Precursor gebildet ist, und die Pechfasern, die aus chemisch ähnlichen Precursoren gebildet sind, sind gut kristallisiert und daher relativ wenig reaktiv. Die offene Porosität und die großen Porendurchmesser des FS-1-Kohlenstoff-Halbzeugs sind die Gründe für ein C-SiSiC-Material mit hohem Rest-Kohlenstoffanteil und entsprechend niedrigem Siliziumkarbidanteil (ungefähr 71 Vol. %). Im Vergleich dazu zeigten die C-SiSiC-Materialien auf der Basis von FS-2 (7c, 7d) und FS-3 (7e, 7f) einen niedrigeren Rest-Kohlenstoffanteil (ungefähr 0 bis 3 Vol. %) und einen leicht höheren Siliziumkarbid-Umsetzungsgrad als bei FS-1. Mit den Systemen FS-2 und FS-3 wurde eine Siliziumkarbid-Ausbeute von ungefähr 75 Vol. % erreicht. The pitch coke formed from the polyaromatic semi-coke precursor and the pitch fibers formed from chemically similar precursors are well crystallized and therefore relatively unreactive. The open porosity and large pore diameters of the FS-1 carbon semi-finished product are the reasons for a C-SiSiC material with high residual carbon content and correspondingly low silicon carbide content (approximately 71 vol.%). In comparison, FS-2 based C-SiSiC materials ( 7c . 7d ) and FS-3 ( 7e . 7f ) has a lower residual carbon content (about 0 to 3 vol.%) and a slightly higher silicon carbide conversion efficiency than FS-1. The FS-2 and FS-3 systems achieved a silicon carbide yield of approximately 75% by volume.

Alle Mikrostrukturen zeigten große verbundene Bereiche von Restsilizium nach der Silizierung. Dieser Effekt war stärker bei den C-SiSiC-Materialien aus FS-2 und FS-3 mit höherem Anteil von thermoplastischem Binder in der Grünphase und somit höherer Porosität in dem entbinderten Material im Vergleich zu FS-1. Der größere Binderanteil verursacht Binder-Cluster, die ihrerseits große Poren-Cluster nach dem Entbinderungsschritt verursachen. Diese großen und kompakten Porositätsbereiche sind nur sporadisch in den gezeigten Porengrößenverteilungsanalysen zu sehen. In diesen großen Poren kann kein Siliziumkarbid gebildet werden, und es gibt große Bereiche von Restsilizium. Der Hauptunterschied im Restkohlenstoff und dem Siliziumverhältnis der Mikrostrukturzusammensetzungen korreliert stark mit dem Unterschied in den Dichten, wie in Tabelle 3 dargestellt. C-SiSiC a Dichte auf Basis von WD + TD b Dichte auf Basis von WD + TD a Dichte auf Basis von TD b Dichte auf Basis von TD [g/cm3] [g/cm3] [g/cm3] [g/cm3] FS-1 2,88 2,88 2,93 2,94 FS-2 2,97 2,99 2,98 3,04 FS-3 3,01 3,01 2,97 2,99 Tabelle 3 a gemessen durch Quecksilberinfiltrationsprosimetrie nach DIN 66133 und berechnet nach Porenformmodell "zylindrisch"
b gemessen nach Archimedes-Verfahren nach DIN 51918
All microstructures showed large interconnected areas of residual silicon after siliconization. This effect was stronger for the FS-2 and FS-3 C-SiSiC materials with higher green binder thermoplastic binder content and thus higher porosity in the debinded material compared to FS-1. The larger binder content causes binder clusters, which in turn cause large pore clusters after the debinding step. These large and compact porosity domains are only sporadically seen in the pore size distribution analyzes shown. No silicon carbide can be formed in these large pores and there are large areas of residual silicon. The major difference in residual carbon and the silicon ratio of the microstructure compositions correlates strongly with the difference in densities as shown in Table 3. C-SiSiC a Density based on WD + TD b Density based on WD + TD a Density based on TD b Density based on TD [g / cm 3 ] [g / cm 3 ] [g / cm 3 ] [g / cm 3 ] FS-1 2.88 2.88 2.93 2.94 FS-2 2.97 2.99 2.98 3.04 FS-3 3.01 3.01 2.97 2.99 Table 3 a measured by mercury infiltration spectrometry DIN 66133 and calculated according to pore shape model "cylindrical"
b measured by Archimedes method DIN 51918

In 5 sind EDS-Untersuchungen von typischen C-SiSiC-Mikrostrukturen nach der Silizierung gezeigt. Eine helle Farbe zeigt das Vorhandensein der entsprechenden Elemente in den unten gezeigten Element-Teilbildern. Neben der reinen Siliziumkarbidmatrix (SiC) kann eine zweiphasige (C-SiC, Si-SiC) und dreiphasige (C-SiSiC-Matrix) entstehen. Es sind daher nur die Elemente Silizium (Si) und Kohlenstoff (C) gezeigt. In 5 EDS studies of typical C-SiSiC microstructures after siliconization are shown. A bright color indicates the presence of the corresponding elements in the elementary subframes shown below. In addition to the pure silicon carbide matrix (SiC), a two-phase (C-SiC, Si-SiC) and three-phase (C-SiSiC matrix) can be formed. Therefore, only the elements silicon (Si) and carbon (C) are shown.

Die Ausbildung der Mikrostruktur wird in starker Weise vom Verhältnis zwischen der Kohlenstoffmatrix und der offenen als auch geschlossenen Porosität in dem Kohlenstoff-Halbzeug beeinflusst. Falls das Volumenverhältnis von Kohlenstoff und die Porosität mit dem Siliziumkarbidvolumen nicht konsistent sind, das aus den Elementen gebildet wird, gibt es entweder Restkohlenstoff oder Restsilizium in der Mikrostruktur (vgl. 5a). In 5b zeigt die gestrichelte Linie eine vollständig zu SiC umgesetzte Karbonfaser an. Die Karbonfaser wurde vollständig durch die Bildung von Siliziumkarbid chemisch umgesetzt. Somit wird durch die chemische Reaktion der Kohlenstofffasern und die Diffusion des Siliziums durch die anfängliche Siliziumkarbidrandschicht, ein Teil von feinkörnigem sekundärem SiC-Korn gebildet, das in flüssigem Silizium kristallisiert ist. Der Restkohlenstoff reagiert mit dem Silizium, das in die Kohlenstofffasermatrixbereiche diffundiert, was eine granulare Struktur bildet. The formation of the microstructure is strongly influenced by the ratio between the carbon matrix and the open and closed porosity in the carbon precursor. If the volume ratio of carbon and porosity are inconsistent with the silicon carbide volume formed from the elements, there is either residual carbon or residual silicon in the microstructure (cf. 5a ). In 5b the dashed line indicates a carbon fiber completely converted to SiC. The carbon fiber was completely chemically transformed by the formation of silicon carbide. Thus, by the chemical reaction of the carbon fibers and the diffusion of the silicon through the initial silicon carbide edge layer, a part of fine-grained secondary SiC grain which is crystallized in liquid silicon is formed. The residual carbon reacts with the silicon which diffuses into the carbon fiber matrix regions, forming a granular structure.

5. Schlussfolgerungen 5. Conclusions

Die Verarbeitbarkeit von Mischungen mittels thermoplastischer Extrudierung oder dem Spritzgussverfahren hängt insbesondere vom Verhältnis zwischen thermoplastischem Binder und Kohlenstoff-Precursor und Kohlenstoff-Füllstoffanteil ab. Das Materialsystem FS-1 zeigt eine relativ schlechte Verarbeitbarkeit mittels des Extrusionsverfahrens, verursacht durch einen relativ kleinen Volumenanteil (36 Vol.-%) von thermoplastischem Binder und entsprechend hoher Viskosität. The processability of mixtures by means of thermoplastic extrusion or the injection molding process depends in particular on the relationship between thermoplastic binder and carbon precursor and carbon filler content. The material system FS-1 shows a relatively poor processability by means of the extrusion process, caused by a relatively small volume fraction (36 vol .-%) of thermoplastic binder and correspondingly high viscosity.

Auf der Basis der verwendeten Zugaben von Kohlenstoffprecursor und Füllstoffen sind thermoplastische Binderanteile oberhalb von etwa 40 Vol.-% bevorzugt (FS-2: 45 Vol.-% und FS-3: 48,3 Vol.-%), um niedrige Viskositäten zu erhalten. Dies ist hilfreich für die Extrudierung. On the basis of the carbon precursor additions and fillers used, thermoplastic binder levels above about 40% by volume are preferred (FS-2: 45% by volume and FS-3: 48.3% by volume) to low viscosities receive. This is helpful for the extrusion.

Nach der Extrudierung und der Pyrolyse zeigen die Kohlenstoff-Halbzeuge eine ausreichende Festigkeit zur weiteren Verarbeitung mittels der Flüssigsilizierung (LSI). Der sinterbare Halbkoks reagiert bei der Pyrolyse zu einer Pechkoks-Struktur, die nach der Entfernung des thermoplastischen Binders als ein permanenter Binder wirkt und eine ausreichende Festigkeit im Kohlenstoffgerüst sicherstellt. Eine teilweise Substitution von Halbkoks durch aktivierten Kohlenstoff in FS-3 führt zu einem signifikanten Festigkeitsabfall des Kohlenstoff-Halbzeugs im Vergleich zu FS-1 und FS-2.  After extrusion and pyrolysis, the carbon semi-finished products show sufficient strength for further processing by means of liquid siliciding (LSI). The sinterable semi-coke reacts in the pyrolysis to a pitch coke structure, which acts as a permanent binder after removal of the thermoplastic binder and ensures sufficient strength in the carbon skeleton. Partial substitution of semi-coke by activated carbon in FS-3 leads to a significant decrease in the strength of the carbon semi-finished product compared to FS-1 and FS-2.

Die Morphologie von Kohlenstoff-Füllstoffen und der thermoplastische Binderanteil als auch die Verteilung der Bestandteile beeinflussen die Porenverteilung und die durchschnittlichen Porengrößen in den Kohlenstoff-Halbzeugen nach der Pyrolyse. Die Poren in FS-2 und FS-3 sind homogener verteilt und kleiner als im Materialsystem FS-1. Dies ist teilweise auf den vorgemahlenen Halbkoks bei FS-2 und FS-3 zurückzuführen. In dem FS-3-Kohlenstoff-Halbzeug sind die Poren signifikant kleiner (durchschnittlicher Porendurchmesser von 343 Nm bei einer offenen Porosität zwischen 46 und 52 Vol.-%), was auf den vergrößerten Anteil an aktiviertem Kohlenstoff und somit einer Zunahme an Poren von Nanogröße führt.  The morphology of carbon fillers and the thermoplastic binder content as well as the distribution of the constituents influence the pore distribution and the average pore sizes in the carbon semi-finished products after pyrolysis. The pores in FS-2 and FS-3 are more homogeneously distributed and smaller than in the material system FS-1. This is partly due to the pre-ground semi-cokes in FS-2 and FS-3. In the FS-3 carbon semi-finished product, the pores are significantly smaller (average pore diameter of 343 Nm with open porosity between 46 and 52% by volume), due to the increased amount of activated carbon and thus an increase in nano-size pores leads.

Nach der Silizierung weisen alle untersuchten Materialsysteme eine dreiphasige C-SiSiC-Mikrostruktur auf. Der Restkohlenstoff und das Restsilizium sind in einer relativ dichten SiC-Matrix eingebettet, mit SiC-Korngrößen zwischen 200 Nm und 2 µm. FS-1 zeigt einen hohen Anteil von nichtkonvertiertem Restkohlenstoff (6 bis 10 Vol.-%), was auf die größeren Halbkoks-Partikel zurückzuführen ist, die verwendet wurden. Im Vergleich ist bei dem gemahlenen Halbkoks bei FS-2 und FS-3 der Restkohlenstoffanteil geringer. Dies beeinflusst ebenfalls die SiC-Ausbeute. After silicization, all material systems investigated have a three-phase C-SiSiC microstructure. The residual carbon and the residual silicon are embedded in a relatively dense SiC matrix, with SiC grain sizes between 200 Nm and 2 μm. FS-1 shows a high proportion of non-converted residual carbon (6 to 10% by volume) due to the larger semi-coke particles that were used. In comparison, in the case of the ground semi-cokes in FS-2 and FS-3, the residual carbon content is lower. This also affects the SiC yield.

Im Ergebnis lassen sich durch die Mischungsverhältnisse der verschiedenen Ausgangsmaterialien, durch den Anteil des thermoplastischen Binders und durch die Art der verwendeten Materialien maßgeschneiderte C-SiSiC-Keramiken herstellen, die auf den gewünschten Anwendungsfall abgestimmt werden können. Ein hoher Restkohlenstoffanteil kann vorteilhaft etwa für gute tribologische Eigenschaften und gegebenenfalls Eigenschmierfähigkeit verwendet werden. Bauteile ohne oder mit geringem Silizium- und Kohlenstoffüberschuss dagegen sind für maximale Härte und Festigkeit ausgelegt. Auf diese Weise wird die Herstellung keramischer Verbundwerkstoffe mit speziellen funktionalen Eigenschaften, wie zum Beispiel hoher Wärmeleitfähigkeit, geringer Wärmedehnung, sowie hoher Härte und Elastizitätsmodul, sowie Kombinationen davon werden damit ermöglicht. As a result, tailored C-SiSiC ceramics can be produced by the mixing ratios of the various starting materials, by the proportion of the thermoplastic binder and by the type of materials used, which can be tailored to the desired application. A high residual carbon content can advantageously be used, for example, for good tribological properties and optionally self-lubricity. By contrast, components with little or no silicon and carbon surplus are designed for maximum hardness and strength. In this way, the production of ceramic composite materials with special functional properties, such as high thermal conductivity, low thermal expansion, and high hardness and modulus of elasticity, as well as combinations thereof are made possible.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • EP 1795513 A1 [0002] EP 1795513 A1 [0002]
  • EP 1657227 A1 [0004] EP 1657227 A1 [0004]
  • EP 2053029 A1 [0005] EP 2053029 A1 [0005]

Zitierte Nicht-PatentliteraturCited non-patent literature

  • DIN 66133 [0067] DIN 66133 [0067]
  • ISO 1183 [0084] ISO 1183 [0084]
  • DIN 66133 [0090] DIN 66133 [0090]
  • DIN 51918 [0090] DIN 51918 [0090]
  • DIN 66133 [0091] DIN 66133 [0091]
  • DIN 51918 [0091] DIN 51918 [0091]
  • DIN 66133 [0102] DIN 66133 [0102]
  • DIN 51918 [0102] DIN 51918 [0102]

Claims (29)

Verfahren zum Herstellen von Siliziumcarbid-Keramiken mittels Flüssig- oder Gasphasensilizierung mit den folgenden Schritten: (a) Herstellen einer Mischung aus thermoplastischem Bindemittel und einem sinterfähigen Kohlenstoffprecursor; (b) Formung der Mischung zu einem Grünling mittels eines endkonturnahen Formgebungsverfahrens; (c) Pyrolisieren des Grünlings zur Herstellung eines porösen Halbzeugs; (d) Infiltrieren des porösen Halbzeugs mit Silizium durch Flüssig- oder Gasphaseninfiltration.  Method for producing silicon carbide ceramics by means of liquid or gas phase siliciding, comprising the following steps: (a) preparing a mixture of thermoplastic binder and a sinterable carbon precursor; (b) shaping the mixture into a green compact by a near-net shape forming process; (c) pyrolyzing the green compact to produce a porous semi-finished product; (d) infiltrating the porous semi-finished product with silicon by liquid or gas phase infiltration. Verfahren nach Anspruch 1, bei dem der Mischung zusätzlich mindestens ein Füllstoff zugesetzt wird.  The method of claim 1, wherein the mixture additionally at least one filler is added. Verfahren nach Anspruch 1 oder 2, bei dem die Pyrolyse im Schritt (c) unter Sauerstoffausschluss bei Temperaturen oberhalb von 500 °C bis zu maximal 1700 °C durchgeführt wird.  Process according to Claim 1 or 2, in which the pyrolysis in step (c) is carried out with exclusion of oxygen at temperatures above 500 ° C up to a maximum of 1700 ° C. Verfahren nach Anspruch 3, bei dem zur Pyrolyse zunächst mit einer niedrigen Heizrate von vorzugsweise 10 K/h bis 30 K/h auf eine Temperatur oberhalb von 500 °C, vorzugsweise etwa 800 bis 1000 °C aufgeheizt wird und dann mit einer höheren Heizrate von vorzugsweise 50 bis 150 K/h auf eine Temperatur von mindestens 1500 °C, vorzugsweise 1600 bis 1700 °C, besonders bevorzugt bis 1650 °C, aufgeheizt wird.  A method according to claim 3, wherein for pyrolysis, first with a low heating rate of preferably 10 K / h to 30 K / h is heated to a temperature above 500 ° C, preferably about 800 to 1000 ° C and then with a higher heating rate of preferably 50 to 150 K / h to a temperature of at least 1500 ° C, preferably 1600 to 1700 ° C, particularly preferably up to 1650 ° C, is heated. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der thermoplastische Binder aus der Gruppe ausgewählt wird, die aus Bindemitteln auf Basis von Polyethylen, Polypropylen, Polyethylencopolymeren, Polypropylencopolymeren, Polystyrol, Polyethyl-Wachsen, Esterwachsen, natürlichen Wachsen, Polyethylenglycol, Styrolacrylnitril, Acrylester-Copolymeren, Paraffinwachsen, Fischer-Tropsch-Wachsen, Vinylacetatcopolymeren und Polyacetal besteht.  A process according to any one of the preceding claims wherein the thermoplastic binder is selected from the group consisting of polyethylene, polypropylene, polyethylene copolymers, polypropylene copolymers, polystyrene, polyethylene waxes, ester waxes, natural waxes, polyethylene glycol, styrene acrylonitrile, acrylic ester copolymers , Paraffin waxes, Fischer-Tropsch waxes, vinyl acetate copolymers and polyacetal. Verfahren nach einem der vorhergehenden Ansprüche, bei dem nach dem Schritt (b) zunächst eine Entbinderung zur Entfernung des thermoplastischen Binders durchgeführt wird, vorzugsweise in einem Bad aus Wasser oder organischen Lösungsmitteln bei einer gegenüber Raumtemperatur erhöhten Temperatur, weiter bevorzugt in einem Wasserbad bei 30 bis 40 °C.  Method according to one of the preceding claims, in which, after the step (b), debinding is first carried out to remove the thermoplastic binder, preferably in a bath of water or organic solvents at a temperature elevated from room temperature, more preferably in a water bath at 30 to 40 ° C. Verfahren nach einem der Ansprüche 1 bis 5, bei dem eine Entbinderung zur Entfernung des thermoplastischen Binders simultan mit der Pyrolyse im Schritt (c) durchgeführt wird.  A process according to any one of claims 1 to 5, wherein debinding to remove the thermoplastic binder is carried out simultaneously with the pyrolysis in step (c). Verfahren nach einem der vorhergehenden Ansprüche, bei dem ein Kohlenstoffprecursor zugesetzt wird, der aus der Gruppe ausgewählt ist, die aus Petrolpechen, Steinkohleteerpechen, synthetischen Pechen, Polyaromatenmesophasenpechen (PAM-Pechen) und Mischungen hieraus besteht.  A process according to any one of the preceding claims, wherein a carbon precursor selected from the group consisting of petroleum pitches, coal tar pitches, synthetic pitches, polyaromatic mesophase pitches (PAM pitches) and mixtures thereof is added. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Mischung als Füllstoff ein technischer Kohlenstoff zugesetzt wird.  Method according to one of the preceding claims, in which a technical carbon is added to the mixture as filler. Verfahren nach Anspruch 9, bei ein Füllstoff zugesetzt wird, der aus der Gruppe ausgewählt ist, die aus Koksen, Naturgraphit, synthetischem Graphit, Rußen, Aktivkohle, Kohlenstofffasern, CNTs, Graphen, SiC und Mischungen hiervon besteht.  The method of claim 9, wherein a filler selected from the group consisting of cokes, natural graphite, synthetic graphite, carbon blacks, activated carbon, carbon fibers, CNTs, graphene, SiC and mixtures thereof is added. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Kohlenstoffprecursoren und/oder Füllstoffe zumindest teilweise in Pulverform zugegeben werden.  Method according to one of the preceding claims, in which the carbon precursors and / or fillers are added at least partially in powder form. Verfahren nach Anspruch 11, bei dem pulverförmige Kohlenstoffprecursoren und/oder Füllstoffe zugegeben werden, die aus der Gruppe ausgewählt werden, die aus verkokter Cellulose, verkokten Polysacchariden, PAM-Pechen, gemahlenem Petrolkoks, Pechkoks, Graphen, Naturgraphit, synthetischem Graphit, Ruß, Flammruß, Gasruß und Mischungen hiervon besteht.  A process according to claim 11 wherein powdered carbon precursors and / or fillers selected from the group consisting of coked cellulose, coked polysaccharides, PAM pitch, ground petroleum coke, pitch coke, graphene, natural graphite, synthetic graphite, carbon black, flame black, are added , Gas black and mixtures thereof. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Kohlenstoffprecursoren und/oder Füllstoffe zumindest teilweise in Faserform zugegeben werden.  Method according to one of the preceding claims, in which the carbon precursors and / or fillers are added at least partly in fibrous form. Verfahren nach Anspruch 13, bei dem faserförmige Kohlenstoffprecursoren und/oder Füllstoffe zugegeben werden, die aus der Gruppe ausgewählt werden, die aus C-Fasern auf Rayon-Basis, PAM-Basis, Pechbasis, Kohlenstoffnanoröhren, Graphen, SiC-Fasern und Mischungen hiervon besteht.  The method of claim 13, wherein fibrous carbon precursors and / or fillers are added selected from the group consisting of rayon-based, PAM-based, pitch-based, carbon nanotubes, graphene, SiC-fibers, and mixtures thereof , Verfahren nach einem der vorhergehenden Ansprüche, bei dem 10 bis 30 Vol.-%, vorzugsweise 15 bis 25 Vol.-%, an sinterfähigem Kohlenstoffprecursor zugegeben werden. A process according to any one of the preceding claims, wherein 10 to 30% by volume, preferably 15 to 25% by volume, of sinterable carbon precursor is added. Verfahren nach einem der Ansprüche 2 bis 14, bei dem 10 bis 40 Vol.-%, vorzugsweise 15 bis 25 Vol.-%, des Füllstoffes in Faserform zugegeben werden.  A process according to any one of claims 2 to 14 wherein 10 to 40% by volume, preferably 15 to 25% by volume, of the filler is added in fibrous form. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Anteil des thermoplastischen Binders an der Mischung mindestens 35 Vol.-%, vorzugsweise mindestens 40 Vol.-%, weiter bevorzugt mindestens 45 Vol.-% beträgt.  Method according to one of the preceding claims, in which the proportion of the thermoplastic binder in the mixture is at least 35% by volume, preferably at least 40% by volume, more preferably at least 45% by volume. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Anteil des thermoplastischen Binders an der Mischung höchstens 65 Vol.-%, vorzugsweise höchstens 55 Vol.-% beträgt.  Method according to one of the preceding claims, in which the proportion of the thermoplastic binder in the mixture is at most 65% by volume, preferably at most 55% by volume. Verfahren nach einem der vorhergehenden Ansprüche, bei dem im Schritt (d) eine Flüssigphaseninfiltration oberhalb der Schmelztemperatur von Silizium drucklos über Kapillarkräfte durchgeführt wird.  Method according to one of the preceding claims, wherein in step (d) a liquid phase infiltration above the melting temperature of silicon is carried out without pressure via capillary forces. Verfahren nach einem der Ansprüche 1 bis 18, bei dem im Schritt (d) eine Flüssigphaseninfiltration oberhalb der Schmelztemperatur von Silizium unter reduziertem Druck durchgeführt wird.  A method according to any one of claims 1 to 18, wherein in step (d) liquid phase infiltration is performed above the melting temperature of silicon under reduced pressure. Verfahren nach Anspruch 19 oder 20, bei dem die Flüssigphaseninfiltration bei einer Temperatur von 1450 bis 1750 °C, vorzugsweise von 1550 bis 1700 °C, weiter bevorzugt bei 1600 bis 1700 °C, besonders bevorzugt bei etwa 1650 °C durchgeführt wird.  The method of claim 19 or 20, wherein the liquid phase infiltration at a temperature of 1450 to 1750 ° C, preferably from 1550 to 1700 ° C, more preferably at 1600 to 1700 ° C, more preferably at about 1650 ° C is performed. Verfahren nach Anspruch 21, bei dem mit einer Heizrate von 50 bis 200 K/h, vorzugsweise von 100 bis 160 K/h, besonders bevorzugt von etwa 130 K/h bis auf die Maximaltemperatur aufgeheizt wird und diese mindestens 10 min gehalten wird, vorzugsweise 20 bis 60 min.  Process according to Claim 21, in which the heating rate is from 50 to 200 K / h, preferably from 100 to 160 K / h, more preferably from approximately 130 K / h, to maximum temperature and maintained for at least 10 minutes, preferably 20 to 60 min. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Formgebung im Schritt (b) durch Extrudieren oder Spritzgießen erfolgt.  Method according to one of the preceding claims, in which the shaping in step (b) takes place by extrusion or injection molding. Verfahren nach Anspruch 23, bei dem die Formgebung im Schritt (b) durch Extrudieren bei einer Temperatur im Bereich von 100 bis 200 °C, vorzugsweise im Bereich von 120 bis 160 °C, besonders bevorzugt bei etwa 140 °C, erfolgt.  A method according to claim 23, wherein the molding in step (b) is carried out by extrusion at a temperature in the range of 100 to 200 ° C, preferably in the range of 120 to 160 ° C, more preferably at about 140 ° C. Verfahren nach einem der Ansprüche 1 bis 22, bei dem die Formgebung im Schritt (b) durch Warmpressen mit einem Druck von weniger als 10 MPa erfolgt.  A method according to any one of claims 1 to 22, wherein the molding in step (b) is carried out by hot pressing at a pressure of less than 10 MPa. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Grünling nach dem Schritt (b) oder das poröse Halbzeug nach dem Schritt (c) in einem Zwischenbearbeitungsschritt vor der nachfolgenden Sizilierung mit einem spangebenden Verfahren bearbeitet wird, insbesondere durch Schleifen, Fräsen, Bohren.  Method according to one of the preceding claims, in which the green compact after step (b) or the porous semi-finished product after step (c) is processed in a intermediate processing step prior to the subsequent sizing with a cutting process, in particular by grinding, milling, drilling. Siliziumcarbid-Keramikbauteil aus einem extrudierten oder spritzgegossenem porösen Halbzeug auf Kohlenstoffbasis, das mit Silizium infiltriert und reaktionsgebunden ist, hergestellt nach einem der vorhergehenden Ansprüche.  A silicon carbide ceramic component formed from an extruded or injection-molded porous carbon-based semi-finished product infiltrated and reactive with silicon prepared according to any one of the preceding claims. Verwendung des Siliziumcarbid-Keramikbauteils nach Anspruch 27 mit einem Rest-Kohlenstoffanteil von vorzugsweise mehr als 1 Vol.-%, besonders bevorzugt mehr als 5 Vol.-% als Bauteil mit tribologischer Beanspruchung und/oder Eigenschmierfähigkeit und/oder guter Wärmeleitfähigkeit.  Use of the silicon carbide ceramic component according to claim 27 with a residual carbon content of preferably more than 1% by volume, particularly preferably more than 5% by volume, as a component with tribological stress and / or intrinsic lubricity and / or good thermal conductivity. Verwendung eines Siliziumcarbid-Keramikbauteils nach Anspruch 27 mit geringem Rest-Kohlenstoffanteil und geringem Rest-Siliziumanteil von vorzugsweise jeweils < 5 Vol.-%, besonders bevorzugt < 2 Vol.-% für Einsatzzwecke mit hoher Härte und/oder Festigkeit.  Use of a silicon carbide ceramic component according to claim 27 with low residual carbon content and low residual silicon content of preferably in each case <5% by volume, particularly preferably <2% by volume for applications with high hardness and / or strength.
DE102013114628.7A 2013-12-20 2013-12-20 Process for producing near net shape shaped silicon carbide ceramics Active DE102013114628B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102013114628.7A DE102013114628B4 (en) 2013-12-20 2013-12-20 Process for producing near net shape shaped silicon carbide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013114628.7A DE102013114628B4 (en) 2013-12-20 2013-12-20 Process for producing near net shape shaped silicon carbide ceramics

Publications (3)

Publication Number Publication Date
DE102013114628A1 true DE102013114628A1 (en) 2015-06-25
DE102013114628A8 DE102013114628A8 (en) 2015-08-27
DE102013114628B4 DE102013114628B4 (en) 2018-11-22

Family

ID=53275043

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013114628.7A Active DE102013114628B4 (en) 2013-12-20 2013-12-20 Process for producing near net shape shaped silicon carbide ceramics

Country Status (1)

Country Link
DE (1) DE102013114628B4 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108178633A (en) * 2018-01-24 2018-06-19 湖南屹林材料技术有限公司 A kind of middle low speed magnetic suspension train skid body material and preparation method thereof
CN109293349A (en) * 2018-11-27 2019-02-01 中航装甲科技有限公司 A kind of silica base graphene ceramic core and preparation method thereof
CN109467445A (en) * 2018-11-27 2019-03-15 中航装甲科技有限公司 A kind of graphene enhancing paraffinic base plasticizer materials and preparation method thereof
WO2020057094A1 (en) * 2018-09-20 2020-03-26 东北大学 Silicon carbide closed-cell ceramic prepared by using industrial silicon-based waste residue and preparation method therefor
CN110922191A (en) * 2019-12-20 2020-03-27 厦门大学 Silicon carbide polymer precursor ceramic defect healing method
RU2730092C1 (en) * 2019-10-28 2020-08-17 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Composition with carbon nanotubes for producing carbon billet for high-density sic/c/si ceramics and method of producing articles from sic/c/si ceramics
CN112453385A (en) * 2020-11-23 2021-03-09 成都威士达粉末冶金有限公司 Powder metallurgy composite material with high composite ratio and manufacturing method thereof
DE102021128414A1 (en) 2021-11-01 2023-05-04 Nippon Kornmeyer Carbon Group Gmbh Process for the production of carbonized or graphitized 3D objects
DE102022000067B3 (en) 2022-01-08 2023-05-17 Fritz Wiehofsky Roasting, grilling, baking and/or cooking utensils and methods for the production thereof
DE102023106136A1 (en) 2022-09-29 2024-04-04 Fritz Wiehofsky Composite cookware made of high-performance ceramic and stainless steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204355A (en) * 2019-06-21 2019-09-06 彭雅妮 A kind of high temperature resistant porous ceramic film material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657227A1 (en) 2004-11-15 2006-05-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Process of manufacture of a carbide ceramic material with a defined graded phase distribution profile, carbide ceramic material and structural member.
EP1795513A1 (en) 2005-12-09 2007-06-13 Sgl Carbon Ag Method for the production of silicon carbide ceramic
EP2053029A1 (en) 2007-10-23 2009-04-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for manufacturing a carbide ceramic component and carbide ceramic component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021976A1 (en) 2009-05-19 2010-11-25 Skz - Kfe Ggmbh Kunststoff-Forschung Und -Entwicklung Method for producing a component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657227A1 (en) 2004-11-15 2006-05-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Process of manufacture of a carbide ceramic material with a defined graded phase distribution profile, carbide ceramic material and structural member.
EP1795513A1 (en) 2005-12-09 2007-06-13 Sgl Carbon Ag Method for the production of silicon carbide ceramic
EP2053029A1 (en) 2007-10-23 2009-04-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for manufacturing a carbide ceramic component and carbide ceramic component

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIN 51918
DIN 66133
ISO 1183

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108178633A (en) * 2018-01-24 2018-06-19 湖南屹林材料技术有限公司 A kind of middle low speed magnetic suspension train skid body material and preparation method thereof
WO2020057094A1 (en) * 2018-09-20 2020-03-26 东北大学 Silicon carbide closed-cell ceramic prepared by using industrial silicon-based waste residue and preparation method therefor
CN109293349A (en) * 2018-11-27 2019-02-01 中航装甲科技有限公司 A kind of silica base graphene ceramic core and preparation method thereof
CN109467445A (en) * 2018-11-27 2019-03-15 中航装甲科技有限公司 A kind of graphene enhancing paraffinic base plasticizer materials and preparation method thereof
RU2730092C1 (en) * 2019-10-28 2020-08-17 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Composition with carbon nanotubes for producing carbon billet for high-density sic/c/si ceramics and method of producing articles from sic/c/si ceramics
CN110922191A (en) * 2019-12-20 2020-03-27 厦门大学 Silicon carbide polymer precursor ceramic defect healing method
CN112453385A (en) * 2020-11-23 2021-03-09 成都威士达粉末冶金有限公司 Powder metallurgy composite material with high composite ratio and manufacturing method thereof
DE102021128414A1 (en) 2021-11-01 2023-05-04 Nippon Kornmeyer Carbon Group Gmbh Process for the production of carbonized or graphitized 3D objects
DE102022000067B3 (en) 2022-01-08 2023-05-17 Fritz Wiehofsky Roasting, grilling, baking and/or cooking utensils and methods for the production thereof
WO2023131519A1 (en) 2022-01-08 2023-07-13 Fritz Wiehofsky Cooking utensil made of a sintered heavy-duty material, and method for producing same
DE102023106136A1 (en) 2022-09-29 2024-04-04 Fritz Wiehofsky Composite cookware made of high-performance ceramic and stainless steel

Also Published As

Publication number Publication date
DE102013114628A8 (en) 2015-08-27
DE102013114628B4 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
DE102013114628B4 (en) Process for producing near net shape shaped silicon carbide ceramics
EP1084997B1 (en) Ceramic matrix composite reinforced with fibre bundles
EP1741685B1 (en) Porous beta-SiC containing shaped ceramic body and method of making it.
CA2661927C (en) Low cte highly isotropic graphite
EP0887572A1 (en) Friction element consisting of brake disc and lining
EP1634860A2 (en) Process for the production of a carbide ceramic material, carbide ceramic material, pre-form for a carbide ceramic component and a process for preparing a starting material for a pre-form of a ceramic material
DE60130688T2 (en) METHOD FOR THE PRODUCTION OF SIC FIBER REINFORCED SIC COMPOUND MATERIAL USING A HOT PRESSURE
EP1795513A1 (en) Method for the production of silicon carbide ceramic
EP0720972A2 (en) Process for the reutilization of composites with a carbon matrix containing carbon fibers
EP1089952B1 (en) Method for producing shaped bodies on the basis of carbon, carbides and/or carbonitrides
EP1493723A1 (en) Process for the production of ceramics, ceramic components and pre-forms for the production of the ceramics
EP0662462B1 (en) Method of making ceramic silicon carbide articles
EP1657227B1 (en) Process of manufacture of a carbide ceramic material with a defined graded phase distribution profile, carbide ceramic material and structural member.
EP2308809B1 (en) Material, method for producing a material and use thereof
EP3687957A2 (en) Method for producing complex geometric components containing carbon or silicon carbide
EP2053029B1 (en) Method for manufacturing of a carbide ceramic component
DE19823521C2 (en) Process for the production of carbon composite materials and / or carbon-containing, carbidic and / or carbonitridic materials
WO2019063832A1 (en) Ceramic component
DE102006026550A1 (en) Ceramic materials containing carbon particles of spherical shape
EP1017648B1 (en) Method for producing carbon composite materials and/or materials containing carbon, carbidic and/or carbonitridic materials
EP2412692A2 (en) Method for producing a fiber based material compound, a fiber based material compound and a workpiece using the fiber based material compound
DE2116838C3 (en) Process for the manufacture of composite bodies based on graphite
DE102010030551B4 (en) Method for producing a material composition for a ceramic structural component
WO2018213859A1 (en) Method for producing a silicon carbide ceramic body
DE19644678A1 (en) Dense ceramic-carbon composite material production

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final