JPS63280787A - Composition for gasket - Google Patents

Composition for gasket

Info

Publication number
JPS63280787A
JPS63280787A JP11480387A JP11480387A JPS63280787A JP S63280787 A JPS63280787 A JP S63280787A JP 11480387 A JP11480387 A JP 11480387A JP 11480387 A JP11480387 A JP 11480387A JP S63280787 A JPS63280787 A JP S63280787A
Authority
JP
Japan
Prior art keywords
gasket
composition
fibers
grown carbon
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11480387A
Other languages
Japanese (ja)
Inventor
Katsuyuki Nakamura
克之 中村
Yukinari Komatsu
小松 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11480387A priority Critical patent/JPS63280787A/en
Publication of JPS63280787A publication Critical patent/JPS63280787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)

Abstract

PURPOSE:To obtain the titled composition, containing carbon fibers, having acidic functional groups and prepared by a vapor growth method and having improved airtightness, heat, oil, antifreeze, chemical, solvent resistance, etc., and excellent mechanical strength, dispersibility and joining properties. CONSTITUTION:The aimed composition containing normally >=0.1wt.% (optimally 2-98wt.%) fibers, having preferably 7.1-6.88 (optimally 7.06-6.89) lattice con stant in structural analysis by X-ray diffractometry, obtained by oxidizing carbon fibers, consisting of a readily graphitizable carbonaceous substance, etc., and prepared by a vapor growth method with an oxidizing agent, such as oxidizing gas, e.g. oxygen, or nitric acid and having 3-500mu equiv/g (espe cially preferably 15-350mu equiv/g) acidic functional groups. Furthermore, the above-mentioned fibers preferably have fine fiber diameter and >=10 (optimally >=100) ratio of the fiber length/fiber diameter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気密性および耐熱性に優れたガスケット用組
成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a gasket composition with excellent airtightness and heat resistance.

従来、ガスケットとしては各種のものがあるが、本発明
は、特に耐熱性を要求されるガスケット、例、tば、エ
ンジンのシリンダブロック上面とシリンダヘッド下面と
の間に挟持し両面間の気密保持を図るためのシリンダへ
ラドガスケット、あるいは、エンジンのエキシストマニ
ホルド部分の気密を保持するガスケットなど、高温とな
る部分に使用するガスケットの構成材料として用いるに
適した組成物であって、例えば、金属板製の芯材の両面
に積層するなどして適用される。
Conventionally, there are various types of gaskets, but the present invention is a gasket that requires particularly heat resistance, such as a gasket that is sandwiched between the upper surface of an engine's cylinder block and the lower surface of the cylinder head to maintain airtightness between both surfaces. This composition is suitable for use as a constituent material of gaskets used in high-temperature parts, such as cylinder head gaskets to maintain airtightness in engine exhaust manifold parts, and gaskets used in high-temperature parts. It is applied by laminating it on both sides of a board core material.

(従来の技術) 従来、例えば、シリンダへラドガスケットは、少量のゴ
ムを結合剤として用い、これにアスベストを混練した組
成物を金属板製の芯材の両面に積層したものが使用され
ていた。しかし、ここで用いるアスベストは、その粉塵
が人体へ傷害を与える恐れが有ることから、他の材料へ
代替が必要に成ってきた。
(Prior art) Conventionally, for example, cylinder head gaskets were made by laminating a composition made by mixing asbestos into a small amount of rubber as a binder on both sides of a metal plate core material. . However, since the asbestos used here has the risk of causing injury to the human body, it has become necessary to use other materials instead.

(発明が解決しようとする問題点) このため、アスベストに代わる材料が種々検討されてい
る。
(Problems to be Solved by the Invention) For this reason, various materials to replace asbestos are being studied.

例えば、有機繊維を炭化して作る炭素繊維や、ピッチを
紡糸後戻化して作る炭素繊維を用いる試みである。しか
し、この方法ではシール性に乏しく実用化が困難であっ
た。このため、粒状の膨張黒鉛を用いる方法が提案され
ている。しかし、この方法ではコストが高いばかりでな
く、耐油性、耐不凍液性が乏しく、これに起因する使用
時のシール性の低下が認められ改善が必要であった。
For example, attempts have been made to use carbon fibers made by carbonizing organic fibers, or carbon fibers made by spinning pitch and then spinning it back. However, this method has poor sealing properties and is difficult to put into practical use. For this reason, a method using granular expanded graphite has been proposed. However, this method is not only expensive, but also has poor oil resistance and antifreeze resistance, which results in a decrease in sealing performance during use, which requires improvement.

このように、アスベストを用いたガスクット組放物に置
き替わる組成物の開発が急がれている。
As described above, there is an urgent need to develop a composition that can replace the gasket assembly using asbestos.

(問題点を解決するための手段) 本発明者等は、これまで、新しい炭素材料として、気相
成長法炭素繊維の開発並びにこの素材の特性、反広性に
ついて基礎的研究を進めていたが、更に、本繊維の特異
な形態と化学的、熱的安定性に注目し各種の実用性試験
を行っていたところ、本繊維の形状や凝集状態、他の物
質との分散状態に因って、優れたシール性があることを
見出し、さらに検討の結果、本発明に到達した。
(Means for solving the problem) The present inventors have been conducting basic research on the development of vapor-grown carbon fiber as a new carbon material, and the characteristics and anti-spreading properties of this material. Furthermore, as we conducted various practicality tests focusing on the unique morphology and chemical and thermal stability of this fiber, we found that due to the shape, agglomeration state, and dispersion state of this fiber, They discovered that it has excellent sealing properties, and as a result of further study, they arrived at the present invention.

すなわち、本発明は、酸性官能基を3〜500peq/
g有する気相成長法炭素繊維を含有するガスケット組成
物である。
That is, in the present invention, the acidic functional group is
This is a gasket composition containing vapor-grown carbon fiber having the following properties.

本発明において、気相成長法炭素繊維とは、炭化水素な
どの炭素源を、触媒の存在下に加熱して気相成長させて
作られる繊維状の炭素質の物質、これを粉砕したり切断
したりした撫々の形態の炭素質物質、あるいは、これら
を加熱処理した炭素質物質であり、本発明でいう気相成
長法炭素繊維は、電子顕微鏡で観察すると、芯の部分と
、これを取巻く、−見して、年輪状の炭素層からなる特
異な形状の繊維及びこれが粉砕、破砕、切断などの加工
を受けたものである。
In the present invention, vapor-grown carbon fiber refers to a fibrous carbonaceous material that is produced by heating a carbon source such as a hydrocarbon in the presence of a catalyst and growing it in a vapor phase, and which is pulverized or cut. It is a carbonaceous material in the form of a smooth, smooth carbonaceous material, or a carbonaceous material obtained by heat treatment of these materials.When observed with an electron microscope, the vapor grown carbon fiber referred to in the present invention shows a core part and a carbonaceous material that is heat-treated. Surrounding the fibers are uniquely shaped fibers made of annual ring-shaped carbon layers, which have been subjected to processes such as crushing, crushing, and cutting.

本発明でいう気相成長法炭素繊維は、好ましくは、直径
が5μm以下、一般には、0.01〜4μm1特に9.
01〜2 Am、更に好ましくは、0.01〜1μm、
最も好ましくは、0.01〜0.5μmであり、繊維の
長さは特に制限はない。一般には、5000μm以下で
あるが、更に短くても良く、1000μmや100μm
1あるいは10μmでも良く、又、これを更に短く破砕
や切断あるいは粉砕した繊維状物、あるいは、粒状や不
定形状の物も使用できる。
The vapor grown carbon fiber as used in the present invention preferably has a diameter of 5 μm or less, generally 0.01 to 4 μm, especially 9.
01-2 Am, more preferably 0.01-1 μm,
Most preferably, it is 0.01 to 0.5 μm, and the length of the fiber is not particularly limited. Generally, the length is 5000 μm or less, but it may be even shorter, such as 1000 μm or 100 μm.
The diameter may be 1 or 10 μm, and fibrous materials obtained by crushing, cutting, or pulverizing these into shorter lengths, or granular or irregularly shaped materials may also be used.

本発明でいう気相成長法炭素繊維は、炭素の純度が高く
、一般K、97,5%以上、特に、98%以上、最も好
ましくは98.5%以上である。
The vapor grown carbon fiber referred to in the present invention has a high carbon purity, generally K, 97.5% or more, particularly 98% or more, most preferably 98.5% or more.

また、本発明において、気相成長法炭素繊維は、易黒鉛
化性の炭素質物、あるいは、黒鉛性の高い炭素質物であ
り、特に、易黒鉛化性の炭素質物が好ましく、更に、そ
の中でもX線解析による構造解析において、その格子定
数の7.1〜6.88の範囲のものが特に好ましく、最
も好ましくは、7.06S6.89の範囲のものである
Further, in the present invention, the vapor-grown carbon fiber is an easily graphitizable carbonaceous material or a highly graphitizable carbonaceous material, and an easily graphitizable carbonaceous material is particularly preferable. In structural analysis by line analysis, the lattice constant is particularly preferably in the range of 7.1 to 6.88, and most preferably in the range of 7.06S6.89.

本発明において、気相成長法炭素繊維を含有するガスケ
ット組成物は、上記の気相成長法炭素繊維がガスケット
、の構成成分として存在している組成物であり、組成物
中の気相成長法炭素繊維の量は特に制限はない。一般に
は、組成物の固体成分の中の0.1重に%以上存在して
おり、好ましくは、0.2重量%以上、特に、0.4重
量%〜99.9重量%存在している組成物であり、最も
好ましくは、2重量%以上98憲量%以下である。
In the present invention, the gasket composition containing vapor-grown carbon fibers is a composition in which the above-mentioned vapor-grown carbon fibers are present as a constituent component of the gasket, and the gasket composition contains the vapor-grown carbon fibers in the composition. The amount of carbon fiber is not particularly limited. It is generally present in an amount of at least 0.1% by weight of the solid components of the composition, preferably at least 0.2%, particularly from 0.4% to 99.9% by weight. The composition is most preferably 2% by weight or more and 98% by weight or less.

本発明において気相成長法炭素繊維は、酸性官能基を3
〜500μeq/g有していることも特徴であり、酸性
官能基の量は好ましくは8〜450μeq/g s特に
15へ350μeq/’gの範囲である。酸性官能基の
量がこの範囲であると、ガスケット組成物の作成時にバ
インダーや他の成分例えばs機粉末や他の繊維と混合す
る段階で極めて作業性に優れるばかりでなく、分散性も
良く、更に、ガスケット性能も改善される。
In the present invention, the vapor grown carbon fiber has 3 acidic functional groups.
The amount of acidic functional groups is preferably in the range from 8 to 450 μeq/g, particularly from 15 to 350 μeq/'g. When the amount of acidic functional groups is within this range, not only is workability extremely excellent at the stage of mixing with the binder and other components such as machine powder and other fibers when creating the gasket composition, but also the dispersibility is good. Furthermore, gasket performance is also improved.

本発明における酸性官能基を有する気相成長法炭素繊維
の製造方法としては、気相成長法炭素繊維を酸素などの
酸化性ガスや硝酸などの酸化剤などで酸化する方法が最
も一般的であり、酸化する方法の代わりにその他、プラ
ズマ法、グラフト法等も用いられ得る。
The most common method for producing vapor grown carbon fibers having acidic functional groups in the present invention is to oxidize vapor grown carbon fibers with an oxidizing gas such as oxygen or an oxidizing agent such as nitric acid. In place of the oxidation method, a plasma method, a graft method, etc. may also be used.

本発明において、酸性官能基を有する気相成長法炭素繊
維を含有するガスケット組成物は、上記の気相成長法炭
素繊維がガスケット組成物の構成成分として存在してい
る組成物であり、組成物中の気相成長法炭素繊維の量は
特に制限はない。一般には、組成物の固体成分の中の0
.1重量%以上存在しており、好ましくは、0.2重量
%以上、特に、0.4重量%〜99.9重量%存在して
いる組成物であり、最も好ましくは、2重量%以上98
重量%以下である。
In the present invention, a gasket composition containing a vapor grown carbon fiber having an acidic functional group is a composition in which the above vapor grown carbon fiber is present as a constituent component of the gasket composition. There is no particular limit to the amount of vapor grown carbon fiber inside. Generally, 0 among the solid components of the composition
.. 1% or more by weight, preferably 0.2% or more, especially 0.4% to 99.9% by weight, most preferably 2% or more 98% by weight.
% by weight or less.

本発明において、気相成長法炭素繊維の効果は、ガスケ
ット組成物の気密性向上、耐熱性の向上、耐油性、耐不
凍液性、耐薬品性、耐溶剤性の向上にある他、酸性官能
基を有することにより組成物に使用するバインダーとの
分散や接合にも優れ、更K、組成物の機械的強度の改善
効果もあり、これらが複合的に相乗効果として現れると
ころにある。
In the present invention, the effect of the vapor grown carbon fiber is to improve the airtightness, heat resistance, oil resistance, antifreeze resistance, chemical resistance, and solvent resistance of the gasket composition, as well as to improve the acidic functional group. By having this, it has excellent dispersion and bonding with the binder used in the composition, and also has the effect of improving the mechanical strength of the composition, and these are combined to appear as a synergistic effect.

この様な効果を最大に発揮させるには、気相成長法炭素
繊維が極めて微細な状態、かつ、繊維の形状で用いられ
る場合に、その効果が著しく、好ましい。この際、繊維
の径が細いばかりでなく、繊維長さ/繊維の径の比が、
5以上好ましくは10以上、特に20以上、最も好まし
くは80以上あることである。
In order to maximize such effects, it is preferable that the vapor-grown carbon fibers be used in an extremely fine state and in the form of fibers, since the effects are remarkable. At this time, not only the diameter of the fiber is small, but also the ratio of fiber length/fiber diameter is
The number is 5 or more, preferably 10 or more, particularly 20 or more, and most preferably 80 or more.

本発明のガスケット組成物は、以上のように、酸性官能
基を有する気相成長法炭素繊維を含有している事を特徴
としているが、ガスケット組成物を構成する物としては
他に、バインダー、気相成長法炭素繊維以外の繊維、充
填剤、その他薬剤や添加剤等が必要に応じて選択され使
用できる。
As described above, the gasket composition of the present invention is characterized by containing vapor grown carbon fibers having acidic functional groups, but the gasket composition also includes a binder, Fibers other than vapor grown carbon fibers, fillers, other chemicals, additives, etc. can be selected and used as necessary.

特に、バインダーは本組成物にとって必要な成分であり
、その様なバインダーとしては、有機系の樹脂やゴムが
使用され、特にゴム類が好適に使用され、例えば、アク
リルゴム、スチレンブタジェンゴム、アクリミニトリル
ブタジェンゴム、クロo7’レンゴム、フッ素ゴム、エ
ビクロロヒドリンゴム、クロロスルホン化ポリエチレン
ゴム、塩素化ポリエチレンゴム、エチレンプロピレンゴ
ム。
In particular, a binder is a necessary component for the present composition, and organic resins and rubbers are used as such binders, and rubbers are particularly preferably used, such as acrylic rubber, styrene-butadiene rubber, Acryminitril butadiene rubber, chloro-o7'rene rubber, fluororubber, shrimp chlorohydrin rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, ethylene propylene rubber.

エチレンプロピレンジエンゴム、シリコンゴムなどの合
成ゴム、および天然ゴムなどがあげられる。
Examples include synthetic rubbers such as ethylene propylene diene rubber and silicone rubber, and natural rubber.

バインダーは、本発明でいう気相成長法炭素繊維を結合
させるために、また、必要に応じて使用される気相成長
法炭素繊維以外の繊維や充填剤等をも結合させるために
必袂な物であるが、過剰に使用するとガスケットの耐熱
性や厄力緩相性を低下させるので、結合効果とのバラン
スの中でその使用量を設定する。一般には、気相成長法
炭素繊維100重量部に対し0.5〜10000重量部
が好ましく、特に1〜1000重量部が好ましく、最も
好ましくは2〜500重量部の範囲である。
The binder is essential in order to bind the vapor grown carbon fibers referred to in the present invention, and also to bind fibers other than the vapor grown carbon fibers, fillers, etc. that are used as necessary. However, if used in excess, the heat resistance and phasing properties of the gasket will decrease, so the amount used should be determined in balance with the bonding effect. Generally, the amount is preferably from 0.5 to 10,000 parts by weight, particularly preferably from 1 to 1,000 parts by weight, and most preferably from 2 to 500 parts by weight, based on 100 parts by weight of vapor grown carbon fiber.

気相成長法炭素繊維以外の繊維としては、有機系及び無
機系の各種繊維が使用できるが、好ましくは耐熱性に優
れた繊維であり、例えば、各種のセラミNyクファイバ
ー1石英ガラスファイバー、ロックウール、ステンレス
ファイバー、 炭素am 。
As fibers other than vapor grown carbon fibers, various organic and inorganic fibers can be used, but fibers with excellent heat resistance are preferred, such as various ceramic fibers, quartz glass fibers, rock fibers, etc. Wool, stainless fiber, carbon am.

アルミナファイバー、アルミナシリケートファイバー、
その他アスベストなどの無機質の繊維性物質、カイノー
ル繊維、アラミド繊維、ポリイミド繊維など有機質の繊
維も使用できるが、耐熱性や気密性、耐薬品性などの低
下をひきおこす場合があり、これら繊維を使用する目的
の範囲内で出来るだけ使用量を減すこと、あるいは使用
しないことを考慮する必要がある。
Alumina fiber, alumina silicate fiber,
Other inorganic fibrous materials such as asbestos, organic fibers such as kynor fibers, aramid fibers, and polyimide fibers can also be used, but they may cause a decrease in heat resistance, airtightness, chemical resistance, etc., so do not use these fibers. It is necessary to consider reducing the amount used or not using it as much as possible within the purpose.

その他、充填剤や薬剤、添加剤としては、従来からガス
ケット用組成物に使用されてきた物を種々使用可能であ
る。例えば、クレー、タルク、水酸化カルシウム、硫酸
バリウムなどの充填剤、加硫剤、加硫助剤、加硫促進剤
、酸化防止剤、金属害防止剤9着色剤、界面活性剤など
の薬剤や添加剤などである。これ等は、その使用量が過
多であると、ガスケットの諸物件を低下する恐れがあり
、使用目的に応じその盆を適正に制御する必要がある。
In addition, various fillers, chemicals, and additives that have been conventionally used in gasket compositions can be used. For example, fillers such as clay, talc, calcium hydroxide, barium sulfate, vulcanizing agents, vulcanization aids, vulcanization accelerators, antioxidants, metal damage inhibitors, colorants, surfactants, and other agents. additives, etc. If these are used in excessive amounts, there is a risk of degrading the various properties of the gasket, so it is necessary to properly control the tray depending on the purpose of use.

(実施例) 以下、実施例によって、本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

実施例1 直径が0.05〜0.1μmの気相成長法炭素繊維(ト
リスアセチルアセトナト鉄とベンゼンを1400℃の加
熱空間に導入し浮遊状態で合成した、炭素含量99%以
上、格子定数7.02)を酸素0.7%含有ガスで酸化
し、酸性官能基の量が88μeq/gの気相成長法炭素
繊維を得、これを若干破砕し、分散操作がしやすく、か
つ、電子顕微鏡観察で、繊維長が実質的に50μm以上
の気相成長法炭素繊維を得、この1001址部および、
アクリルブタジェンゴム13.3重量部、ゴム用配合剤
33重量部、メルク10.8重量部、クレー5.9M量
部をトルエンとともに混練して組成物を調製した。
Example 1 Vapor-grown carbon fiber with a diameter of 0.05 to 0.1 μm (trisacetylacetonate iron and benzene were introduced into a heating space at 1400°C and synthesized in a floating state, carbon content of 99% or more, lattice constant 7.02) was oxidized with a gas containing 0.7% oxygen to obtain a vapor grown carbon fiber with an amount of acidic functional groups of 88 μeq/g. By microscopic observation, a vapor grown carbon fiber having a fiber length of substantially 50 μm or more was obtained, and this 1001 portion and
A composition was prepared by kneading 13.3 parts by weight of acrylic butadiene rubber, 33 parts by weight of a rubber compounding agent, 10.8 parts by weight of Merck, and 5.9 M parts of clay with toluene.

この組成物を評価するためガスケットを作製した。すな
はち、上記組成物をフック付ぎの鉄板の両面に擦り込み
、次いでトルエンを除去し、これを150℃の加熱炉の
中で30分間加熱して加硫を行い、厚さ1.25j11
にのガスケットを得た。
A gasket was produced to evaluate this composition. In other words, the above composition was rubbed on both sides of an iron plate with hooks, the toluene was removed, and the composition was heated in a heating furnace at 150°C for 30 minutes to perform vulcanization, resulting in a thickness of 1.25J11.
I got a gasket for this.

この際、酸性官能基を有する気相成長法炭素繊維黒鉛化
物は、ゴム成分やゴム用配合剤、無機の粉末と良く分散
し極めて作業性に優れ良好なガスケットが作製出来た。
At this time, the vapor grown carbon fiber graphitized material having an acidic functional group was well dispersed with the rubber component, rubber compounding agent, and inorganic powder, and a good gasket with excellent workability was produced.

このガスケットについてASTM、F104タイプ1の
試験法に従い常温における圧縮率、復元率。
Compressibility and recovery rate of this gasket at room temperature according to ASTM F104 Type 1 test method.

応力緩和軍、耐熱性、水シール性、耐油性、耐不凍液性
を測定し、ガスケットとしての実用性を評価した。その
結果、本実施例の組成物から作られたガスケットは優れ
た性能を有し実用性が有ることが分った。
Stress relaxation resistance, heat resistance, water sealing properties, oil resistance, and antifreeze resistance were measured to evaluate its practicality as a gasket. As a result, it was found that the gasket made from the composition of this example had excellent performance and was practical.

なお、実用性の評価基準としては、厄力緩和率20%以
下、加熱後の圧縮率が加熱前の圧縮率の50%以上、水
7−ル性が5気圧以上、耐油性は、油浸漬後の圧縮率が
浸漬前の2倍以下によび復元率が25%以上、耐不凍液
性は、圧縮率が1.8倍以下、復元率が30%以上とし
た。
The evaluation criteria for practicality are as follows: strain relief rate is 20% or less, compression ratio after heating is 50% or more of the compression ratio before heating, water resistance is 5 atm or more, and oil resistance is 20% or less. The compression rate after immersion was 2 times or less and the recovery rate was 25% or more, and the antifreeze resistance was determined when the compression rate was 1.8 times or less and the recovery rate was 30% or more.

実施例2 繊維の直径が0.05〜0.2μ−の気相成長法炭素繊
維(炭素含量99%以上、格子定数6.98 )を若干
破砕し、電子顕微鏡で観察して実質的に長さ20km以
上、かつ分散性の良い気相成長法炭素繊維を得た。これ
を酸素0.5%有するガスで酸化し、酸性官能基量58
μeq/gの気相成長法炭素繊維を得、これを用い実施
例1と同様にガスケット組成物を作り、更に、ガスケッ
トとして実用性能評価を行い評価基準を満足する良好な
結果を得た。
Example 2 A vapor-grown carbon fiber (carbon content of 99% or more, lattice constant of 6.98) having a fiber diameter of 0.05 to 0.2μ was slightly crushed and observed with an electron microscope to determine that it was substantially long. A vapor grown carbon fiber having a length of 20 km or more and good dispersibility was obtained. This was oxidized with a gas containing 0.5% oxygen, and the amount of acidic functional groups was 58%.
A vapor grown carbon fiber of μeq/g was obtained, and a gasket composition was prepared using the same in the same manner as in Example 1. Furthermore, the practical performance of the gasket was evaluated, and good results satisfying the evaluation criteria were obtained.

実施例3 実施例1において、気相成長法炭素繊維100重量部の
代わりに気相成長法炭素繊維80重量部、アスベスト2
0重量部を用い、実施例1と同様にガスケット組成物を
調製し、更にガスケットとして実用性能の試験を行った
ところ、実用性の評価基準を満足する良好な結果を得た
Example 3 In Example 1, 80 parts by weight of vapor grown carbon fiber and asbestos 2 were used instead of 100 parts by weight of vapor grown carbon fiber.
A gasket composition was prepared in the same manner as in Example 1 using 0 parts by weight, and a practical performance test was conducted as a gasket. Good results satisfying the practicality evaluation criteria were obtained.

実施例4 実M例3においてアスベストの代わりにロックウール2
0重量部を用い、実施例1と同様にガスケット組成物を
調製し、更にガスケットとして実用性能評価試験を行っ
たところ満足する良好な結果を得た。
Example 4 Rock wool 2 instead of asbestos in Actual M Example 3
A gasket composition was prepared in the same manner as in Example 1 using 0 parts by weight, and a practical performance evaluation test was conducted as a gasket, and satisfactory results were obtained.

実施例5 実施例3において、アスベスト20重量部の代わりにア
スベスト10重量部、膨張黒鉛粉末10重量部を用い、
実施例1と同様にガスケット組成物を調製し、更にガス
ケットとしての実用性能評価試験を行ったところ満足す
る良好な結果を得た。
Example 5 In Example 3, 10 parts by weight of asbestos and 10 parts by weight of expanded graphite powder were used instead of 20 parts by weight of asbestos,
A gasket composition was prepared in the same manner as in Example 1, and a practical performance evaluation test as a gasket was conducted, and satisfactory results were obtained.

実施例6 実施例5において、アクリルブタジェンゴムの代わりに
、アクリルゴムな用い実施例1と同様にしてガスケット
組成物を得た。この組成物について実施例1と同様の方
法を用いガスケットとしての実用性評価試駆を行ったと
ころ満足する良好な結果を得た。
Example 6 In Example 5, acrylic rubber was used instead of acrylic butadiene rubber. A gasket composition was obtained in the same manner as in Example 1. This composition was tested for practicality as a gasket using the same method as in Example 1, and satisfactory results were obtained.

実施例7 実施例1において、アクリルブタジェンゴムのラテック
スを用い、トルエンを用いず水分散系で混合分散を行い
ガスケット組成物を得た。この組成物について実施例1
と同様の操作を用いガスケットを作製した。
Example 7 In Example 1, a gasket composition was obtained by mixing and dispersing acrylic butadiene rubber latex in an aqueous dispersion system without using toluene. Example 1 for this composition
A gasket was made using the same procedure as above.

得られたガスケットは実施例1と同様の実用性の評価試
験で評価基準を満足する良好な性能を示した。
The obtained gasket showed good performance satisfying the evaluation criteria in the same practicality evaluation test as in Example 1.

なお比較のため、酸性官能基を導入しない気相成長法炭
素繊維黒鉛化物についても同様の試験を行ったが、水中
に分散させにくく長時間を要し作業性に問題があった。
For comparison, a similar test was conducted on a vapor-grown carbon fiber graphitized material without introducing acidic functional groups, but it was difficult to disperse in water and required a long time, resulting in problems in workability.

比較例1 実施例1の試験において、気相成長法炭素繊維の代わり
に、ピッチ系炭素繊維(径14μm、長さ6 ta )
を用い、組成物の調製、ガスケットとしての評価につい
て同様の試験を試みた。
Comparative Example 1 In the test of Example 1, pitch-based carbon fiber (diameter 14 μm, length 6 ta) was used instead of vapor grown carbon fiber.
Similar tests were conducted for preparing a composition and evaluating it as a gasket.

しかし、この場合にはガスケットとしての形状を取りに
くくかつ、水シール性、耐油性、耐不凍液性が悪く実用
性が認められなかった。
However, in this case, it was difficult to form a gasket, and its water sealing properties, oil resistance, and antifreeze resistance were poor, and it was not practical.

比較例2 実施例2において、気相成長法炭素繊維80重置部およ
びアスベスト20重量部の代わりに、比較例1のピッチ
系炭素繊維の量を減らして同様の試験を行い、ガスケッ
トを得た。しかし、このガスケットは水シール性、耐油
性、耐不凍液性が不十分で実用性に劣っていた。
Comparative Example 2 In Example 2, a gasket was obtained by conducting the same test by reducing the amount of pitch-based carbon fiber in Comparative Example 1 instead of using 80 parts of vapor-grown carbon fiber and 20 parts by weight of asbestos. . However, this gasket had insufficient water sealing properties, oil resistance, and antifreeze resistance, making it less practical.

比較例3 実施例1の試験におして、気相成長法炭素繊維100重
量部の代わりに、アスペス)100重量部を用い同様の
試験を試みた。しかし、ガスケットとしての性能のうち
で水シール性が若干不十分であった。
Comparative Example 3 In the test of Example 1, a similar test was attempted using 100 parts by weight of Aspes in place of 100 parts by weight of the vapor grown carbon fiber. However, among the performances as a gasket, water sealing properties were somewhat insufficient.

(発明の効表) 本発明のガスケット用組成物は、気密性、耐熱性、耐油
性、耐不凍液性、耐薬品性、耐溶剤性等に優れている他
更に、ガスケット組成物の作成時及びガスケット作成時
の作業性が良く、又、組成物の機械的強度でも良好であ
り、工業的に極めて有用である。
(Efficacy Table of the Invention) The gasket composition of the present invention has excellent airtightness, heat resistance, oil resistance, antifreeze resistance, chemical resistance, solvent resistance, etc. The composition has good workability when making a gasket, and the mechanical strength of the composition is also good, making it extremely useful industrially.

特許田麩 旭化成工業株式会社Patented wheat flour Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 酸性官能基を3〜500μeq/g有する気相成長法炭
素繊維を含有するガスケット用組成物
Gasket composition containing vapor grown carbon fiber having 3 to 500 μeq/g of acidic functional groups
JP11480387A 1987-05-13 1987-05-13 Composition for gasket Pending JPS63280787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11480387A JPS63280787A (en) 1987-05-13 1987-05-13 Composition for gasket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11480387A JPS63280787A (en) 1987-05-13 1987-05-13 Composition for gasket

Publications (1)

Publication Number Publication Date
JPS63280787A true JPS63280787A (en) 1988-11-17

Family

ID=14647081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11480387A Pending JPS63280787A (en) 1987-05-13 1987-05-13 Composition for gasket

Country Status (1)

Country Link
JP (1) JPS63280787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273881A (en) * 1988-09-09 1990-03-13 Agency Of Ind Science & Technol Production of sealing material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273881A (en) * 1988-09-09 1990-03-13 Agency Of Ind Science & Technol Production of sealing material
JPH0553190B2 (en) * 1988-09-09 1993-08-09 Kogyo Gijutsuin

Similar Documents

Publication Publication Date Title
JP4746879B2 (en) Non-asbestos-based sheet gasket
US4998709A (en) Method of making graphite electrode nipple
JPS63280788A (en) Composition for gasket
CN107760038A (en) Expansion can porcelain SiClx rubber composite and preparation method thereof
Zhang et al. Biomass chitosan-induced Fe3O4 functionalized halloysite nanotube composites: preparation, characterization and flame-retardant performance
JPS63280786A (en) Composition for gasket
EP0559741B1 (en) Insulating material containing pitch based graphite fiber
JPS63280787A (en) Composition for gasket
JPH07305772A (en) Nonasbestine filler material for spiral gasket
JPS63280789A (en) Composition for gasket
US5990027A (en) Flexible graphite composite
JPS6372780A (en) Graphite sheet
WO1998045224A1 (en) Flexible graphite composite
Feng et al. Enhanced thermal shock resistance of low‐carbon Al2O3‐C refractories via CNTs/MgAl2O4 whiskers composite reinforcement
Berger et al. Microstructure and high temperature mechanical behavior of new polymer derived SiC based fibers
JPS61171786A (en) Composition for gasket
CN113683354A (en) High-temperature-resistant strength decay inhibition oil well cement and preparation method and application thereof
US2992901A (en) Production of artificial graphite
JPH02107690A (en) Composition for electrically conductive gasket
JPH0388706A (en) Production of carbon material
JPH0356772A (en) Joint sheet
US5215651A (en) Process for producing coke
JPH0559059B2 (en)
RU2679256C1 (en) Composition for the sealing material manufacturing
JPH0354286A (en) Sealing material composition