WO2011077597A1 - Sealing member - Google Patents

Sealing member Download PDF

Info

Publication number
WO2011077597A1
WO2011077597A1 PCT/JP2009/071906 JP2009071906W WO2011077597A1 WO 2011077597 A1 WO2011077597 A1 WO 2011077597A1 JP 2009071906 W JP2009071906 W JP 2009071906W WO 2011077597 A1 WO2011077597 A1 WO 2011077597A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal member
mass
carbon nanofibers
carbon
fepm
Prior art date
Application number
PCT/JP2009/071906
Other languages
French (fr)
Japanese (ja)
Inventor
徹 野口
宏之 植木
茂樹 犬飼
正栄 伊藤
ラグー マーダーウェン
守信 遠藤
悟史 飯生
Original Assignee
日信工業株式会社
シュルンベルジェ テクノロジー ベーフェー
セルヴィス ペトロリエ シュルンベルジェ
シュルンベルジェ カナダ リミテッド
シュルンベルジェ ホールディングス リミテッド
プラッド リサーチ アンド デベロプメント リミテッド
国立大学法人信州大学
Mefs株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日信工業株式会社, シュルンベルジェ テクノロジー ベーフェー, セルヴィス ペトロリエ シュルンベルジェ, シュルンベルジェ カナダ リミテッド, シュルンベルジェ ホールディングス リミテッド, プラッド リサーチ アンド デベロプメント リミテッド, 国立大学法人信州大学, Mefs株式会社 filed Critical 日信工業株式会社
Priority to JP2011547230A priority Critical patent/JP5592401B2/en
Priority to PCT/JP2009/071906 priority patent/WO2011077597A1/en
Publication of WO2011077597A1 publication Critical patent/WO2011077597A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1009Fluorinated polymers, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0692Fibres

Definitions

  • the present invention relates to a seal member.
  • the dispersibility of the carbon nanofiber which has been considered difficult so far, is improved, and the carbon nanofiber is uniformly distributed in the elastomer.
  • an elastomer and carbon nanofibers are kneaded, and dispersibility of carbon nanofibers having high cohesiveness is improved by shearing force.
  • the viscous elastomer penetrates into the carbon nanofiber, and a specific part of the elastomer has high activity of the carbon nanofiber due to chemical interaction.
  • a strong shearing force is applied to a mixture of an elastomer having high molecular mobility (elasticity) and carbon nanofibers
  • the carbon nanofibers are deformed as the elastomer is deformed.
  • the fibers also moved, and the aggregated carbon nanofibers were separated and dispersed in the elastomer by the restoring force of the elastomer due to elasticity after shearing.
  • expensive carbon nanofibers can be used efficiently as fillers for composite materials.
  • An object of the present invention is to provide a seal member excellent in heat resistance and wear resistance.
  • the sealing member according to the present invention is for tetrafluoroethylene-propylene copolymer (FEPM), including carbon nanofibers,
  • FEPM tetrafluoroethylene-propylene copolymer
  • the number of breaks in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz is 10 times or more.
  • the sealing member With respect to 100 parts by mass of the tetrafluoroethylene-propylene copolymer (FEPM), 0.5 part by mass to 30 parts by mass of the carbon nanofiber, and 0 part by mass to 50 parts by mass of a filler having an average particle diameter of 5 nm to 300 nm; Including, The carbon nanofiber has an average diameter of 10 nm to 20 nm, The compounding quantity of the said carbon nanofiber and the said filler can satisfy
  • Wt 0.09W1 + W2 (1) 5 ⁇ Wt ⁇ 30 (2)
  • W2 Compounding amount (parts by mass) of carbon nanofibers.
  • the number of breaks in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz can be 1,000 times or more.
  • the sealing member according to the present invention 4 parts by mass to 30 parts by mass of the carbon nanofibers and 0 part by mass to 60 parts by mass of a filler having an average particle diameter of 5 nm to 300 nm with respect to 100 parts by mass of the tetrafluoroethylene-propylene copolymer (FEPM).
  • FEPM tetrafluoroethylene-propylene copolymer
  • the carbon nanofiber has an average diameter of 60 nm to 110 nm
  • the compounding quantity of the said carbon nanofiber and the said filler can satisfy
  • Wt 0.1W1 + W2 (3) 10 ⁇ Wt ⁇ 30 (4)
  • W2 Compounding amount (parts by mass) of carbon nanofibers.
  • the compression set after 25 hours of compression and 70 hours at 200 ° C. can be 0% to 40%.
  • the wear amount Wa in a high-pressure wear test at 25 ° C. is 0.010 cm 3 / N ⁇ m to 0.070 cm 3 / N ⁇ m
  • the wear amount Wa can satisfy the following formula (5).
  • Wa (g 2 ⁇ g 1 ) / (P ⁇ L ⁇ d) (5)
  • g 1 Mass of the test piece before wear
  • g 2 Mass of the test piece after wear
  • P Set weight of weight
  • L Wear distance (m)
  • d Specific gravity (g / cm 3 ).
  • the seal member can be used in an oil field device.
  • the oil field device may be a logging device that performs logging in a well.
  • the seal member may be an endless seal member disposed in the oil field device.
  • the seal member may be a stator of a fluid drive motor disposed in the oil field device.
  • the fluid drive motor may be a mud motor.
  • the seal member may be a rotor of a fluid drive motor disposed in the oil field device.
  • the fluid drive motor may be a mud motor.
  • the tetrafluoroethylene-propylene copolymer has a fluorine content of 50 to 60% by mass, a central value of Mooney viscosity (ML 1 + 4 100 ° C.) of 90 to 160, and a glass transition point of 0 ° C. or less. Can do.
  • the filler may be carbon black having an average particle size of 10 nm to 300 nm.
  • the filler may have an average particle diameter of 5 nm to 50 nm and at least one selected from silica, talc and clay.
  • FIG. 1 is a perspective view schematically showing a compression process of carbon nanofibers used in a sealing member according to an embodiment of the present invention.
  • Drawing 2 is a figure showing typically the manufacturing method of the sealing member by the open roll method concerning one embodiment of the present invention.
  • Drawing 3 is a figure showing typically the manufacturing method of the sealing member by the open roll method concerning one embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a method for manufacturing a seal member by an open roll method according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a tensile fatigue test of the seal member according to the embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a high-pressure wear test of the seal member according to the embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing a compression process of carbon nanofibers used in a sealing member according to an embodiment of the present invention.
  • Drawing 2 is a figure showing typically the manufacturing method of the sealing member by the open roll method
  • FIG. 7 is a cross-sectional view schematically showing a logging tool for seabed use according to an embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view schematically showing the logging apparatus of FIG. 7 according to one embodiment of the present invention.
  • FIG. 9 is an X-X ′ cross-sectional view schematically showing a mud motor of the logging apparatus of FIG. 8.
  • FIG. 10 is a cross-sectional view schematically showing an underground logging tool according to an embodiment of the present invention.
  • the seal member according to one embodiment of the present invention includes carbon nanofibers with respect to tetrafluoroethylene-propylene copolymer (FEPM), and breaks in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz. The number of times is 10 times or more.
  • FEPM tetrafluoroethylene-propylene copolymer
  • the carbon nanofibers used in the present embodiment can have an average diameter (fiber diameter) of 10 nm to 110 nm, and can further have an average diameter of 10 nm to 20 nm or an average diameter of 60 nm to 110 nm. Since the carbon nanofiber has a relatively small average diameter, the specific surface area is large, the surface reactivity with the matrix FEPM is improved, and the carbon nanofiber in the FEPM tends to be poorly dispersed. Carbon nanofibers are expected to have moderate flexibility with a microcell structure formed so as to surround the matrix material with carbon nanofibers when the diameter is 10 nm or more. Conversely, when the diameter is 110 nm or less, the microcell structure is large.
  • the micro cell structure formed by the carbon nanofibers can be formed so as to surround the matrix material by a network structure in which the carbon nanofibers are stretched in three dimensions.
  • Carbon nanofibers having an average diameter of 60 nm to 110 nm can further be 70 nm to 100 nm.
  • carbon nanofibers having an average diameter of 60 nm to 110 nm can be subjected to low-temperature heat treatment in order to improve the reactivity with FEPM on the surface. The low temperature heat treatment will be described later.
  • the average diameter of carbon nanofibers can be measured by observation with an electron microscope.
  • the average diameter and the average length of the carbon nanofibers are, for example, 5,000 times or more from an electron microscope (the magnification can be appropriately changed depending on the size of the carbon nanofibers), and the diameters of 200 or more locations. And the length can be measured and calculated as the arithmetic average value.
  • Carbon nanofibers can be blended in an amount of 5 to 30 parts by mass with respect to 100 parts by mass of FEPM.
  • FEPM carbon nanofibers having an average diameter of 10 nm to 20 nm
  • 5 to 30 parts by mass can be blended with 100 parts by mass of FEPM
  • carbon nanofibers having an average diameter of 60 to 110 nm when a fiber is used, 10 to 30 parts by mass can be blended with 100 parts by mass of FEPM.
  • Carbon nanofibers, particularly when carbon nanofibers with an average diameter of 10 nm to 20 nm are used are 5 parts by mass or more, and when carbon nanofibers with an average diameter of 60 nm to 110 nm are used, 10 parts by mass or more are transferred to FEPM.
  • a nano-sized cell structure can be formed by blending, there is a tendency that the wear resistance is improved, and if the blending amount is 30 parts by mass or less, the elongation at break (EB) is Since it is relatively high, it tends to be easy to mount a seal member on a part based on excellent workability. Moreover, the compounding quantity of carbon nanofiber can be reduced by mix
  • the carbon nanofiber having an average diameter of 10 nm to 20 nm can be blended in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of FEPM, and the average diameter is 60 nm to
  • the carbon nanofibers of 110 nm can be blended in an amount of 4 to 30 parts by mass with respect to 100 parts by mass of FEPM.
  • “parts by mass” indicates “phr” unless otherwise specified, and “phr” is an abbreviation for “parts per hundred of resin or rubber” and represents the percentage of external additives such as additives to rubber and the like. It is.
  • the carbon nanofiber may be a relatively rigid fiber having an average stiffness value of 3 to 12 before being blended with the tetrafluoroethylene-propylene copolymer (FEPM).
  • FEPM tetrafluoroethylene-propylene copolymer
  • carbon nanofibers having an average diameter of 10 nm to 20 nm can have an average value of stiffness of 3 to 5
  • carbon nanofibers having an average diameter of 60 nm to 110 nm have an average value of stiffness of 9 to Can be twelve.
  • Stiffness refers to the rigidity of carbon nanofibers, and is obtained by measuring and calculating the length and diameter of almost unbent portions of many carbon nanofibers taken with a microscope. Sometimes referred to as the bending index.
  • the bent portion of the carbon nanofiber is a defect of the fiber, and appears as a white line crossing the fiber in the width direction with an electron microscope.
  • the rigidity is defined as Lx ⁇ D, and the arithmetic average value is calculated. Therefore, carbon nanofibers with low rigidity are bent at short intervals, and carbon nanofibers with high rigidity are long straight portions and are not bent.
  • the length Lx of the linear portion of the carbon nanofiber is measured in a state where the photographic data of the carbon nanofiber photographed at 10,000 to 50,000 times is enlarged to 2 to 10 times, for example.
  • a bent portion (defect) that crosses the fiber in the width direction can be confirmed.
  • the distance between adjacent bent portions (defects) thus confirmed is measured by measuring a plurality of, for example, 200 or more locations as the length Lx of the linear portion of the carbon nanofiber.
  • Carbon nanofibers are so-called multi-walled carbon nanotubes (MWNT: multi-wall carbon nanotubes) having a cylindrical shape formed by winding one surface (graphene sheet) of graphite with a carbon hexagonal mesh surface, and an average diameter of 10 nm to 20 nm.
  • Examples of carbon nanofibers include VGCF-X (VGCF: registered trademark of Showa Denko KK) manufactured by Showa Denko, Baytubes of Bayer MaterialScience, NC-7000 of Nanosyl, and the like.
  • Examples of carbon nanofibers having an average diameter of 60 nm to 110 nm include VGCF-S from Showa Denko.
  • a carbon material partially having a carbon nanotube structure can also be used. In addition to the name “carbon nanotube”, it may be called “graphite fibril nanotube” or “vapor-grown carbon fiber”.
  • Carbon nanofibers can be obtained by a vapor deposition method.
  • the vapor phase growth method is also called a catalytic chemical vapor deposition (CCVD), in which a gas such as a hydrocarbon is pyrolyzed in the presence of a metal catalyst in the presence of a metal-based catalyst to perform untreated first carbon nano-particles.
  • CCVD catalytic chemical vapor deposition
  • a method of manufacturing a fiber will be described in more detail.
  • an organic compound such as benzene or toluene is used as a raw material
  • an organic transition metal compound such as ferrocene or nickelcene is used as a metal catalyst, and these are used together with a carrier gas at a high temperature such as 400 ° C.
  • a reaction furnace set to a reaction temperature of ⁇ 1000 ° C
  • a floating reaction method floating reaction method
  • a catalyst-supporting reaction method substrate reaction method in which metal-containing particles supported on ceramics are brought into contact with a carbon-containing compound at a high temperature to generate carbon nanofibers on a substrate
  • Carbon nanofibers having an average diameter of 10 nm to 20 nm can be obtained by a catalyst-supporting reaction method, and carbon nanofibers having an average diameter of 60 nm to 110 nm can be obtained by a floating flow reaction method.
  • the diameter of the carbon nanofiber can be adjusted by, for example, the size of the metal-containing particles and the reaction time.
  • Carbon nanofibers having an average diameter of 10 nm to 20 nm can have a nitrogen adsorption specific surface area of 10 m 2 / g to 500 m 2 / g, and more preferably 100 m 2 / g to 350 m 2 / g, It can be 150 m 2 / g to 300 m 2 / g.
  • Carbon nanofibers having an average diameter of 60 nm to 110 nm and low-temperature heat treatment can be obtained by low-temperature heat treatment of so-called untreated carbon nanofibers obtained by vapor phase growth.
  • untreated carbon nanofibers can be heat-treated at a temperature higher than the reaction temperature in the vapor phase growth method at 1100 ° C. to 1600 ° C.
  • the temperature of this heat treatment can be further 1200 ° C. to 1500 ° C., in particular 1400 ° C. to 1500 ° C.
  • the surface structure of the carbon nanofibers can be adjusted and surface defects can be reduced.
  • the surface reactivity with FEPM is improved, and the dispersion of carbon nanofibers in the matrix material can be further improved.
  • the carbon nanofibers low-temperature heat treatment for example, the ratio of the peak intensity D of around 1300 cm -1 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy (D / G) is 0.9 More than 1.0 and less than 1.6, and further 1.0 to 1.4, particularly 1.0 to 1.2 when the temperature of the heat treatment is 1400 ° C. to 1500 ° C. it can.
  • the absorption peak intensity D of around 1300 cm -1 is the absorption based on defects in the crystal that forms the carbon nanofibers
  • the absorption peak intensity G of around 1600 cm -1 is carbon nanofiber Absorption based on crystals that form
  • the carbon nanofibers subjected to low-temperature heat treatment having a ratio (D / G) of the peak intensity D to the peak intensity G within the above range have a non-crystalline portion on the surface, and thus have good wettability with FEPM. Since the carbon nanofibers subjected to low-temperature heat treatment have relatively few defects, the strength of the carbon nanofibers can be sufficient.
  • carbon nanofibers manufactured by vapor phase growth are heat treated at 2000 ° C. to 3200 ° C. in an inert gas atmosphere to perform so-called graphitization (crystallization) treatment. Impurities such as amorphous deposits and remaining catalytic metals deposited on the surface are removed.
  • the graphitized carbon nanofiber has a relatively low reactivity with FEPM on the surface thereof.
  • Carbon nanofibers having an average diameter of 10 nm to 20 nm and carbon nanofibers having an average diameter of 60 nm to 110 nm and subjected to low-temperature heat treatment can be used as they are without performing such graphitization treatment.
  • the surface of the carbon nanofiber not subjected to the graphitization treatment has a moderately non-crystalline portion, so that the wettability with FEPM tends to be good.
  • FIG. 1 is a perspective view schematically showing a compression process of carbon nanofibers used for a seal member according to an embodiment of the present invention.
  • the carbon nanofiber can be further compressed.
  • the carbon nanofibers can be granulated by the compression treatment.
  • the carbon nanofibers produced by the vapor phase growth method include carbon nanofibers having branched portions as they are, and the compression treatment can be performed at a high pressure for cutting the carbon nanofibers at least from the branched portions. .
  • carbon nanofibers 60 that are raw materials are inserted between a plurality of, for example, at least two rolls 72 and 74 that continuously rotate in the direction of the arrow in the figure, and shearing force and compression force are applied to the carbon nanofibers.
  • a dry compression granulator 70 such as a roll press machine or a roller compactor (roll type high pressure compression molding machine) can be employed.
  • a dry compression granulator 70 By putting a plurality of carbon nanofibers 60 manufactured by the vapor phase growth method into a dry compression granulator 70 and compressing them, an aggregate of a plurality of carbon nanofibers 80 subjected to the compression process can be obtained.
  • the roll press machine normally uses a smooth roll in which pockets are not engraved on the outer peripheral surface of the roll or a roll in which pockets are engraved. In this embodiment, a smooth roll is used in order to apply a compressive force evenly to the carbon nanofibers. be able to.
  • the distance between the two rolls is set to 0 mm, that is, the rolls are in contact with each other, and a predetermined compression force F, for example, 980 to 2940 N / cm can be applied between the two rolls, and further 1500 to 2500 N / Cm is preferred.
  • the compressive force F can be set to an appropriate pressure while confirming the presence or absence of a branched portion in the obtained carbon nanofiber assembly 80 with an electron microscope or the like. If it is 980 N / cm or more, the carbon nanofiber which has a branch part can be cut
  • Such compression treatment can be performed a plurality of times, for example, about twice in order to homogenize the entire carbon nanofiber.
  • a binder such as water is often blended to bind powder
  • the compression treatment in the present embodiment is a dry granulation that does not use a binder for binding carbon nanofibers to each other. Can be. This is because if a binder is used, it may be difficult to disperse the carbon nanofibers in a later step, and a step of removing the binder may be further required.
  • the pulverizer at this time for example, rotates the rotary blade at high speed and crushes the aggregate of carbon nanofibers 80 by the shearing force, and uses a screen to adjust the size only through the aggregate of carbon nanofibers 80 having an appropriate size or less. It can be performed.
  • the size of the aggregates of the carbon nanofibers 80 varies greatly only by the compression treatment, but the particle size of the aggregates of the carbon nanofibers 80 is adjusted to an appropriate size by further crushing in this way, so that the matrix material It is possible to prevent the carbon nanofiber aggregates from being biased when kneaded.
  • the carbon nanofibers are cut at the branching portions, and the desired bulk density that does not become soft becomes easy to handle during processing.
  • the carbon nanofibers can be granulated into a plate-like carbon nanofiber aggregate. .
  • tetrafluoroethylene-propylene copolymer is a binary copolymer mainly composed of tetrafluoroethylene and propylene.
  • the product name Aflas manufactured by Asahi Glass Co., Ltd. can be mentioned.
  • tetrafluoroethylene-propylene copolymer is abbreviated as FEPM.
  • FEPM is slightly inferior in wear resistance to hydrogenated acrylonitrile-butadiene rubber (HNBR), but is excellent in high temperature characteristics. For example, in an environment of 175 ° C. or more, which deteriorates with a seal material for a logging device, particularly HNBR.
  • FEPM can be used in a high temperature environment of 175 ° C. to 200 ° C.
  • FEPM is superior in chemical resistance compared to FKM, and therefore can be used in an environment where chemical resistance that cannot be used in FKM is required.
  • the FEPM used in this embodiment can have a fluorine content of 50 to 60 mass%, a Mooney viscosity (ML 1 + 4 100 ° C.) of 90 to 160, and a glass transition point of 0 ° C. or less.
  • the fluorine content is 50% by mass or more, the heat resistance is excellent, and when the fluorine content is 60% by mass or less, the chemical resistance such as alkali resistance, acid resistance, and chlorine resistance is excellent.
  • Mooney viscosity (ML 1 + 4 100 ° C.)
  • basic required performances such as tensile strength (TB) and compression set (CS) can be obtained, and Mooney viscosity (ML 1 + 4 100 ° C.).
  • Mooney viscosity (ML 1 + 4 100 ° C.).
  • the center value of is 160 or less, it has an appropriate viscosity and can be processed.
  • exploration of underground resources may be conducted under the seabed, but the seabed has a high pressure of about 4 ° C due to its high pressure. If the glass transition point of FEPM is 0 ° C or less, the seal member from the seabed to the hot exploration zone Can be used as
  • the filler has an average particle size of 5 nm to 300 nm.
  • As the filler at least one of carbon black, silica, clay, talc and the like that can be used as an elastomer filler can be selected.
  • Carbon black may have an average particle size of 10 nm to 300 nm.
  • Silica, talc and clay may have an average particle size of 5 nm to 50 nm.
  • the filler in this embodiment does not contain carbon nanofibers.
  • the matrix region of the FEPM can be divided into minute sizes by the filler, and the matrix region divided into the minute sizes may be reinforced with carbon nanofibers.
  • the compounding quantity of carbon nanofiber can be decreased by mix
  • the aspect ratio of the filler is about 10 times or more that of the carbon nanofibers, and the compounding amount of the carbon nanofibers is, for example, 4.5 parts by mass to 5 parts by mixing 50 parts by mass of the filler from the experimental results. Can be reduced.
  • the sealing member can contain 0.5 to 30 parts by mass of carbon nanofibers with respect to 100 parts by mass of FEPM. However, depending on the type of carbon nanofibers or the presence or absence of fillers, The amount can be changed as appropriate.
  • a method for producing a seal member according to an embodiment of the present invention is obtained by mixing carbon nanofibers with FEPM and uniformly dispersing the carbon nanofibers in the FEPM with a shearing force. Obtaining a composite material.
  • the seal member can be obtained by molding a carbon fiber composite material into a desired shape. In this step, as the carbon nanofiber, a carbon nanofiber aggregate obtained by compression treatment can be used. This process will be described in detail with reference to FIGS.
  • FIGS. 2 to 4 are views schematically showing a method for manufacturing a seal member by an open roll method according to an embodiment of the present invention.
  • the first roll 10 and the second roll 20 in the two-roll open roll 2 are arranged at a predetermined distance d, for example, 0.5 mm to 1.5 mm. 2 to 4, it rotates in the direction indicated by the arrow at the rotational speeds V1 and V2 by forward rotation or reverse rotation.
  • the FEPM 30 wound around the first roll 10 is masticated, and the FEPM molecular chain is appropriately cut to generate free radicals.
  • the free radicals of FEPM generated by mastication are likely to be combined with carbon nanofibers.
  • the carbon nanofibers 80 and a filler (not shown) as necessary are put into the bank 34 of the FEPM 30 wound around the first roll 10 and kneaded.
  • the temperature of the FEPM 30 in this kneading can be, for example, 100 ° C. to 200 ° C., and further can be 150 ° C. to 200 ° C.
  • the FEPM is likely to enter the gap between the carbon nanofibers 80 by kneading the FEPM 30 and the carbon nanofibers 80 at a relatively high temperature as compared with the thin type.
  • the step of mixing FEPM 30 and carbon nanofiber 80 is not limited to the open roll method, and for example, a closed kneading method or a multi-screw extrusion kneading method can be used.
  • the roll interval d between the first roll 10 and the second roll 20 is set to, for example, 0.5 mm or less, more preferably 0 to 0.5 mm, and the mixture 36 is Insert into the open roll 2 and perform thinning once to several times.
  • the thinning can be performed about 1 to 10 times.
  • the ratio of the surface speeds (V1 / V2) in thinness is 1.05 to 3.00. Further, it is preferably 1.05 to 1.2. By using such a surface velocity ratio, a desired shear force can be obtained.
  • the carbon fiber composite material 50 extruded from between the narrow rolls as described above is greatly deformed as shown in FIG.
  • the carbon fiber composite material 50 obtained through thinning is rolled with a roll and dispensed into a sheet having a predetermined thickness.
  • the roll temperature is set to a relatively low temperature of, for example, 0 to 50 ° C., more preferably 5 to 30 ° C., and the measured temperature of the FEPM 30 is also 0. Can be adjusted to ⁇ 50 ° C.
  • a high shearing force acts on the FEPM 30, and the aggregated carbon nanofibers 80 are separated from each other so as to be pulled out one by one to the FEPM molecule and dispersed in the FEPM 30.
  • the FEPM 30 has elasticity, viscosity, and chemical interaction with the carbon nanofibers 80, the carbon nanofibers 80 can be easily dispersed.
  • the carbon fiber composite material 50 excellent in the dispersibility and dispersion stability of carbon nanofiber 80 (it is hard to re-aggregate carbon nanofiber) can be obtained.
  • FEPM and carbon nanofibers are mixed with an open roll, viscous FEPMs penetrate into each other of carbon nanofibers, and specific parts of FEPM are chemically interacted with carbon nanofibers. Binds to highly active moieties. For example, when the surface of the carbon nanofiber is not graphitized or has a moderately high activity by low-temperature heat treatment or the like, it is particularly easy to bind to the FEPM molecule.
  • a strong shearing force acts on FEPM, the carbon nanofibers move with the movement of FEPM molecules, and the aggregated carbon nanofibers are separated by the restoring force of FEPM due to elasticity after shearing, Will be dispersed in the FEPM.
  • the carbon fiber composite material when the carbon fiber composite material is extruded from between narrow rolls, the carbon fiber composite material is deformed thicker than the roll interval by the restoring force due to the elasticity of FEPM.
  • the deformation can be presumed to cause the carbon fiber composite material subjected to a strong shear force to flow more complicatedly and disperse the carbon nanofibers in the FEPM. And once disperse
  • distributed carbon nanofiber is prevented from reaggregating by the chemical interaction with FEPM, and can have favorable dispersion stability.
  • the step of dispersing carbon nanofibers in FEPM by shearing force is not limited to the open roll method, and a closed kneading method or a multi-screw extrusion kneading method can also be used. In short, in this step, it is sufficient that a shearing force capable of separating the aggregated carbon nanofibers can be applied to the FEPM.
  • the open roll method is preferable because it can measure and manage not only the roll temperature but also the actual temperature of the mixture.
  • a cross-linking agent can be mixed with the dispensed carbon fiber composite material before mixing, mixing, or after passing through the FEPM and carbon nanotubes, and the cross-linked carbon fiber composite material can be crosslinked. it can.
  • the seal member is molded into a desired shape, for example, endless by a rubber molding process, such as an injection molding method, a transfer molding method, a press molding method, an extrusion molding method, or a calendering method, in which a carbon fiber composite material is generally employed. Can be obtained at The seal member can be made of a crosslinked carbon fiber composite material.
  • a compounding agent usually used in FEPM processing can be added.
  • a well-known thing can be used as a compounding agent.
  • the compounding agent include a crosslinking agent, a vulcanizing agent, a vulcanization accelerator, a vulcanization retarder, a softening agent, a plasticizer, a curing agent, a reinforcing agent, a filler, an antiaging agent, and a coloring agent.
  • these compounding agents can be added to the FEPM at an appropriate time during the mixing process.
  • peroxide can be used as the cross-linking agent.
  • the crosslinking agent can be blended into the uncrosslinked carbon fiber composite material after passing through.
  • the seal member can be excellent in physical properties at high temperatures and excellent in wear resistance by reinforcing FEPM with carbon nanofibers. Therefore, the seal member can be used as both a static seal member and a dynamic seal member, but can be used particularly as a dynamic seal member.
  • the sealing member may have a known form, for example, may be endless, a so-called O-ring, a square seal having a rectangular cross-sectional shape, a so-called D-ring having a D-shaped cross-section, and a cross-sectional shape X So-called X-rings, so-called E-rings with a cross-sectional shape of E, so-called V-rings with a cross-sectional shape of V-shaped, U-rings with a cross-sectional shape of U-shape, L-rings with a cross-sectional shape of L-shape Can be adopted.
  • the seal member may be a stator or a rotor of a fluid drive motor such as a mud motor.
  • FIG. 5 is a diagram schematically showing a tensile fatigue test of the seal member according to the embodiment of the present invention.
  • the tensile fatigue test of the seal member in the present embodiment is a strip-shaped test of the cross-linked carbon fiber composite material manufactured in (IV) 10 mm long ⁇ 4 mm wide ⁇ 1 mm thick. Cut into a piece 100, insert a notch 106 having a depth of 1 mm in the width direction from the center of the long side 102 of the test piece 100, and hold the vicinity of the short sides 104, 104 at both ends of the test piece 100 with chucks 110, 110.
  • a tensile load (0 N / mm to 2 N / mm) is repeatedly applied in the direction of the arrow T in FIG. 5 under the condition of a frequency of 1 Hz, and it can be broken or the number of repetitions up to 1 million can be measured.
  • the cut 106 of the test piece 100 can be formed by cutting to a depth of 1 mm with a razor blade.
  • the seal member contains carbon nanofibers with respect to tetrafluoroethylene-propylene copolymer (FEPM), and the number of breaks in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz is 10 times or more. Further, the sealing member may have a number of breaks of 30 or more in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz.
  • FEPM tetrafluoroethylene-propylene copolymer
  • the wear resistance of the seal member is affected by the thickness of the carbon nanofiber, the wettability of the surface, or the presence or absence of a filler.
  • the sealing member is filled with 0.5 to 30 parts by mass of carbon nanofibers having an average diameter of 10 nm to 20 nm and an average particle diameter of 5 to 300 nm with respect to 100 parts by mass of tetrafluoroethylene-propylene copolymer (FEPM).
  • the compounding amount of the carbon nanofiber and the filler can satisfy the following formulas (1) and (2).
  • the compounding amount of the carbon nanofibers having an average diameter of 10 nm to 20 nm can be 1 part by mass to 30 parts by mass, and particularly 5 parts by mass to 30 parts by mass.
  • Wt 0.09W1 + W2 (1) 5 ⁇ Wt ⁇ 30 (2)
  • W2 Compounding amount (parts by mass) of carbon nanofibers.
  • the seal member is composed of 4 parts by mass to 30 parts by mass of carbon nanofibers having an average diameter of 60 nm to 110 nm and 100 parts by mass of tetrafluoroethylene-propylene copolymer (FEPM), and filler 0 having an average particle diameter of 5 nm to 300 nm.
  • the compounding amount of the carbon nanofibers and the filler can satisfy the following formulas (3) and (4). Further, when carbon nanofibers having an average diameter of 60 nm to 110 nm are carbon nanofibers subjected to low-temperature heat treatment, the blending amount of carbon nanofibers can be further 5 to 30 parts by mass, particularly 10 parts by mass to It can be 30 parts by mass.
  • Wt 0.1W1 + W2 (3) 10 ⁇ Wt ⁇ 30 (4)
  • W2 Compounding amount (parts by mass) of carbon nanofibers.
  • the compression set after 70% compression at 25 ° C. and 200 hours can be 0% to 90%, and further 30% to 85%. %.
  • the carbon nanofibers having a mean diameter of 60 nm to 110 nm are heat-treated at a low temperature, the sealing member has a compression set of 0% to 40% after being compressed by 25% and after 70 hours at 200 ° C. Furthermore, it can be 20% to 40%, in particular 30% to 40%.
  • the compression set at this time is measured under the above conditions based on JIS-K6262.
  • the specimen can have a diameter of 29.0 ⁇ 0.5 mm and a thickness of 12.5 ⁇ 0.5 mm. Seal members containing carbon nanofibers having an average diameter of 60 nm to 110 nm tend to be strong against static sag.
  • FIG. 6 is a diagram schematically showing a wear test of the seal member according to the embodiment of the present invention.
  • the high-pressure wear test of the seal member is performed using a DIN wear tester 120, and the crosslinked carbon fiber composite material sample produced in the above (IV) is cut into a disk-shaped test piece 126 and weighted. 129 can be pressed against the surface of the disk-shaped grindstone 128 that rotates the test piece 126 with a predetermined load to be worn.
  • the test piece 126 is disposed in the water 124 of the water tank 122, and the temperature rise of the test piece 126 due to frictional heat can be suppressed.
  • the disk-shaped test piece 126 can have a diameter of 8 mm and a thickness of 6 mm, and the weight 129 can press the test piece 126 against the disk-shaped grindstone 128 with a load of 49.0 N using, for example, 5 kgf.
  • the surface of the water can have a roughness of # 100, the water 124 in the water tank 122 can be set to room temperature to 80 ° C., and the distance that the test piece 126 and the disc-shaped grindstone 128 rub can be 20 m. Otherwise, the mass (g) of the test piece before and after the abrasion test can be measured in the same manner as the DIN-53516 abrasion test.
  • the seal member has a wear amount Wa of 0.010 cm 3 / N ⁇ m to 0.070 cm 3 / N ⁇ m in a high-pressure wear test at 25 ° C., and the wear amount Wa can satisfy the following formula (5). . Further, the seal member, the wear amount Wa is able is 0.020cm 3 / N ⁇ m ⁇ 0.065cm 3 / N ⁇ m, in particular 0.020cm 3 / N ⁇ m ⁇ 0.060cm 3 / N ⁇ m.
  • Wa (g 2 ⁇ g 1 ) / (P ⁇ L ⁇ d) (5) g 1 : Mass of the test piece before wear (g) g 2 : Mass of the test piece after wear (g) P: Set weight of weight (N) L: Wear distance (m) d: Specific gravity (g / cm 3 ).
  • the carbon fiber composite material for molding the seal member includes FEPM and carbon nanofibers produced by a vapor growth method uniformly dispersed in the FEPM.
  • the uncrosslinked carbon fiber composite material has a characteristic relaxation time (T2′HE / 150 ° C.) of 500 to 1500 ⁇ sec, measured at 150 ° C. by the Hahn echo method using pulsed NMR and at 1 H of the observation nucleus. Furthermore, it can be 500 to 1400 ⁇ sec, and particularly 500 to 1300 ⁇ sec. Note that “HE” in the characteristic relaxation time (T2′HE) is a notation used to distinguish from “SE” in the solid echo method described later.
  • the carbon fiber composite material in which carbon nanofibers are dispersed represents the force that the carbon nanofibers bind to the matrix FEPM molecules
  • (T2'HE / 150 ° C) is a blending amount of carbon nanofibers compared to the FEPM alone. It becomes small according to. Therefore, even in the case of a carbon fiber composite material in which carbon nanofibers are mixed, if the carbon nanofibers are not uniformly dispersed, it is difficult to constrain the FEPM molecules as a whole. It is considered that (T2′HE / 150 ° C.) is not significantly different from that of FEPM alone.
  • the uncrosslinked carbon fiber composite material has a characteristic relaxation time (T2′SE / 150 ° C.) of 0 to 1000 ⁇ sec, measured at 150 ° C. by a solid echo method using pulsed NMR and at an observation nucleus of 1 H. Furthermore, the characteristic relaxation time (T2′SE / 150 ° C.) can be 0 to 800 ⁇ sec, and the characteristic relaxation time (T2′SE / 150 ° C.) can be 5 to 500 ⁇ sec.
  • the characteristic relaxation time (T2′SE) by the solid echo method is a measure showing the non-uniformity of the magnetic field due to the carbon nanofibers, and represents the average relaxation time of a multicomponent system.
  • Carbon fiber composite material in which carbon nanofibers are dispersed causes magnetic field inhomogeneity due to the uniform dispersion of carbon nanofibers, and the characteristic relaxation time (T2'SE / 150 ° C) by solid echo method at 150 ° C is FEPM. It becomes smaller according to the compounding quantity of carbon nanofiber than a simple substance.
  • FEPM FEPM
  • An interfacial phase is formed.
  • the interfacial phase is considered to be similar to a bound rubber formed around carbon black when, for example, an elastomer and carbon black are kneaded.
  • Such an interfacial phase is coated and protected with carbon nanofibers, and FEPM divided into nanometer sizes surrounded by an interfacial phase in which the interfacial phases are chained by blending a predetermined amount or more of carbon nanofibers.
  • a sealing material can be used for the oil field use with which severe conditions were equipped.
  • this sealant not only has high mechanical properties at a high temperature of 175 ° C. or higher, but also maintains high mechanical properties even at a relatively low temperature of 25 ° C. or lower and a high pressure of 5000 psi or higher, or This is because it has high wear resistance, low friction, high gas resistance against H 2 S, CH 4 or CO 2 , high chemical resistance, or high thermal conductivity.
  • the oil field application will be described in detail below.
  • Oil field use can be used for an oil field apparatus (Oilfield Apparatus), for example.
  • the seal member of the oil field device can be used for a static seal member and a dynamic seal member.
  • a rotary machine such as a motor
  • a reciprocating machine such as a piston.
  • a high effect can be obtained in the dynamic seal member.
  • a typical embodiment of the oil field apparatus will be described below.
  • the logging equipment is used for physical properties such as formations and oil reservoirs in and around excavated boreholes, geometric properties of wells or casings (bore diameter, orientation, slope, etc.), flow of oil reservoirs, etc.
  • Examples of the logging device for oil field use include the subsea use shown in FIG. 7 and the underground use shown in FIG.
  • the logging equipment includes wireline logging (Wireline logging / logging), mud logging (Mud logging), etc., and logging logging (LWD: Logging Willing Drilling) where measuring equipment is equipped in the drilling assembly.
  • MWD Measurement While Drilling
  • FIG. 7 is a cross-sectional view schematically showing a logging tool for seabed use according to an embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view schematically showing the logging apparatus of FIG. 7 according to one embodiment of the present invention.
  • FIG. 9 is an X-X ′ cross-sectional view schematically showing a mud motor of the logging apparatus of FIG. 8.
  • FIG. 10 is a cross-sectional view schematically showing an underground logging tool according to an embodiment of the present invention.
  • the exploration of underground resources by the measuring equipment installed in the drilling assembly in the ocean is, for example, a well 156 composed of a vertical hole or a horizontal hole provided in the seabed 154 from the platform 150 floating in the sea 152.
  • a bottom hole assembly (BHA) 160 is entered as a logging device, and the underground geological structure and the like are searched for, for example, the presence or absence of petroleum as a target material.
  • the hole bottom assembly 160 is fixed to the tip of a long drill string 153 extending from the platform 150, for example, and has a plurality of modules.
  • a drill bit 162 in order from the tip, a drill bit 162, a rotary operation system (RSS: A rotary steerable system 164, a mud motor 166, a measurement module 168 during excavation, and a logging module 170 during excavation may be connected.
  • the drill bit 162 can advance excavation by rotation at the bottom portion 156 a of the well 156.
  • the rotation operation system 164 can apply the seal member of one embodiment of the present invention.
  • the rotary operation system 164 requires a seal member having high wear resistance at, for example, a maximum of about 210 ° C., and a seal member having high chemical resistance against exposure to various muddy water.
  • Conventional seal members tend to fail due to rubber wear and tear. In particular, in harsh chemical environments, the problem tended to be serious.
  • Sealing members for rotary steerable systems such as those shown in US 2006/0157283 are required to function at high sliding speeds ( ⁇ 100 mm / sec)
  • the above problems of seal members tended to be exacerbated by the degradation of elastomeric properties at temperature and the wear characteristics of drilling fluids.
  • the seal member of one embodiment of the present invention for the seal member of the rotary operation system 164, in addition to the above-described characteristics of the seal member, high wear resistance for sealing from a drilling mud containing particles.
  • the above problems can be solved by the performance, the better chemical resistance to a wide range of drilling fluids, and the better mechanical properties at high temperatures that reduce tearing.
  • the rotation operation system 164 includes a non-rotating cylindrical casing 164a, a transmission shaft 164b that passes through the casing 164a and transmits the rotational force of the mud motor 166 to the drill bit 162, and the transmission shaft 164b within the casing 164a. And a seal member 164c that is rotatably supported.
  • the seal member 164c can be, for example, an endless O-ring fitted in an annular groove provided in the housing 164a, and has a function of sealing with the surface of the rotating transmission shaft 164b.
  • this seal member 164c is the seal member obtained in (IV) above, it has excellent wear resistance even in a severe underground environment at a high temperature, for example, up to about 200 ° C., so that the sealing function can be maintained for a long time. it can.
  • the use of such seal members is found, for example, in US Patent Application Publication No. 2006/0157283 and US Pat. No. 7,188,685, which are incorporated herein in their entirety. More specifically, FIG. 5 of US 2006/0157283 shows a sealing member 38 on the piston 36 that seals the hole 30 of the biasing device of the rotary variable assembly. U.S. Pat. No. 7,188,685 shows a biasing device.
  • the mud motor 166 shown in FIG. 9 is also referred to as a downhole motor, and is a fluid drive motor for rotating the drill bit 162 using the fluid force of muddy water as power.
  • the mud motor 166 may be a mud motor for excursion of well-balanced wells (for wellwell drilling applications), and the seal member of one embodiment of the present invention can be applied.
  • the mud motor 166 has, for example, a seal member having a high temperature characteristic of about 150 ° C. to 200 ° C. at maximum, a seal member capable of functioning under extreme wear conditions, or chemical resistance for handling various excavation muds. A sealing member is required.
  • the sealing member of the conventional mud motor is, for example, insufficient sealing due to expansion of the sealing member, cracks and dropping of a large fragment of the sealing member body (chunking phenomenon), insufficient sealing due to wear at high temperature, and sealing due to the wear action of the sealing member. There was a tendency for local heating and further degradation of the members.
  • the seal member of one embodiment of the present invention for the seal member of the mud motor 166 in addition to the above-described characteristics of the seal member, tearing and dropping are reduced due to superior mechanical characteristics at high temperatures.
  • the above-mentioned problems can be solved by resistance to a wide range of drilling fluids with excellent chemical resistance and reduction of locally heated portions due to better thermal conductivity.
  • the mud motor 166 has a cylindrical casing 166a, a tubular stator 166 fixed to the inner peripheral surface of the casing 166a, and a rotor 166c rotatably disposed inside the stator 166d.
  • On the inner peripheral surface 166d of the stator 166b for example, five spiral grooves extend from the rotary operation system 164 side to the measuring module 168 side during excavation.
  • the seal member according to the embodiment of the present invention obtained in (IV) can be used.
  • the outer peripheral surface 166e of the metal rotor 166c has, for example, four spirally protruding threads and is disposed along the groove of the inner peripheral surface 166d of the stator 166b.
  • the inner peripheral surface 166d of the stator 166b and the outer peripheral surface 166e of the rotor 166c are partly in contact as shown in FIG. 9, and a flow path for flowing muddy water is formed in the gap 166f between the inner peripheral surface 166d and the outer peripheral surface 166e. .
  • the rotor 166c can eccentrically rotate in the stator 166b, for example, in the direction of the arrows in FIGS.
  • the inner peripheral surface 166d of the stator 166b and the outer peripheral surface 166e of the rotor 166c are in contact with each other and rotate eccentrically by muddy water, the inner peripheral surface 166d of the stator 166b functions in the same manner as a so-called seal member. Therefore, since the wear resistance is excellent even in the harsh underground environment as described above, the rotor 166c of the mud motor 166 can be driven to rotate for a long time.
  • the mud motor 166 has been described as the fluid drive motor. However, the fluid drive motor can be applied to other fluid drive motors that have the same structure and are driven using a fluid.
  • the rotor may be formed of the seal member obtained in (IV), and the stator may be formed of, for example, metal.
  • Use of such seal members is found, for example, in US Patent Application Publication No. 2006/0216178 and US Patent No. 6,604,922, which are incorporated herein in their entirety. More specifically, FIG. 3 of US Patent Application Publication No. 2006/0216178 shows a sealing member as an elastomeric stator (lining) that seals the rotor and generates drilling torque on the rotor. The mud flows between the stator and the rotor.
  • FIG. 4 also shows a seal member as an elastomer sleeve attached to the rotor, which seals the stator. Similarly, FIG.
  • FIG. 5 shows a sealing member as an elastomer sleeve on a rotor that seals the stator.
  • FIG. 4 of US Pat. No. 6,604,922 shows that the elastic layer of the liner attached to the stator has a sealing function, and this elastic layer functions as a sealing member.
  • FIG. 13 shows that the rotor lining made of an elastomer layer has a sealing function, and this elastomer layer functions as a sealing member.
  • a measurement instrument during excavation (not shown) is arranged in a chamber 168a provided on a wall portion of a pipe having a thick wall called a drill collar.
  • the measuring instrument during excavation includes various sensors, for example, measuring bottom hole data such as heading, inclination, bit direction, load, torque, temperature, pressure, etc., and transmitting these measurement data to the ground in real time. Can do.
  • a logging instrument during excavation (not shown) is arranged in a chamber 170a provided on a wall portion of a pipe having a thick wall called a drill collar.
  • the logging tool during excavation includes various sensors, for example, can measure specific resistance, porosity, sonic velocity, gamma ray, etc., and acquire physical logging data. Can be transmitted.
  • the measurement module 168 during excavation and the logging module 170 during excavation use the seal member of the embodiment of the present invention obtained in (IV) in the chambers 168a and 170a in order to protect various sensors from muddy water. it can.
  • the exploration of underground resources on the ground surface 155 using the measurement equipment installed in the drilling assembly includes, for example, a platform and derrick assembly 151 disposed above a borehole 156, and a derrick assembly.
  • a well bottom assembly (BHA: bottom hole assembly) 160 is provided as a well logging device arranged in a well 156 constituted by vertical holes and horizontal holes provided underground from 151.
  • the derrick assembly 151 can include, for example, a hook 151a, a rotary swivel 151b, a kelly 151c, and a rotary table 151d.
  • the hole bottom assembly 160 is fixed to the tip of a long drill string 153 extending from the derrick assembly 151, for example.
  • the hole bottom assembly 160 is basically the same as the logging tool for seabed use described with reference to FIGS. 8 to 10 and therefore will not be described here.
  • the seal member of the embodiment can be employed.
  • the hole bottom assembly 160 demonstrates the example which has the drill bit 162, the rotation operation system 164, the mud motor 166, the measurement module 168 during excavation, and the logging module 170 during excavation as one Embodiment. However, it is not limited to this, and can be selected and combined according to the logging application.
  • Oil field use is not limited to the above logging tool.
  • the seal member of one embodiment of the present invention can be applied to a downhole tractor used for wireline logging.
  • a downhole tractor is Schlumberger MaxTRAC or TuffTRAC (both are trademarks of Schlumberger).
  • Such a downhole tractor requires a reciprocating seal member having high wear resistance at a maximum of about 175 ° C. for long-term operation and reliability.
  • the sealing members required a high degree of polishing on the surface of the sealing piston in the downhole tractor. By polishing the seal member in this way, it has led to a high yield of the surface of the piston or cylinder that has been mirror-finished during manufacture.
  • Conventional seal members made of ordinary elastomer have been worn out, leaked, have reduced device life, and have failed. Further, the seal member may be used at a high sliding speed of 2000 ft / hour at the maximum. Sealing members used in downhole tractors function in the presence of hydraulic oil on both sides or in the presence of hydraulic oil on one side and possibly in the presence of mud or fluid containing particles on the other side There is a need.
  • the sliding seal member function sufficiently over a sliding distance larger than the towing distance.
  • the seal member is required to function reliably over a cumulative sliding distance of up to 20,000 feet.
  • the seal member will typically experience a differential pressure of up to 200 psi.
  • the above-described problems can be solved by the characteristics of the above-described seal member.
  • the processing on the surface of the sealing piston and the cylinder is eased, and the manufacturing cost can be reduced.
  • Excellent wear resistance also helps with a longer life and reliable sealing function. Further, a long life is possible due to low friction.
  • FIGS. 9A and 10A of this US patent show a seal member on the piston.
  • FIGS. 9B, 10B and 12 of this patent show a sealing member on the piston that seals the tubing and housing.
  • FIG. 16B of this US patent also shows a seal member on the rod.
  • the seal member of one embodiment of the present invention can be applied to formation testing and oil reservoir fluid sampling equipment (Formation testing and reservoir fluid sampling tool).
  • formation testing and oil reservoir fluid sampling equipment include, for example, Schlumberger's Modular Formation Dynamics Tester (MDT: Trademark of Schlumberger).
  • MDT Modular Formation Dynamics Tester
  • Such a geological survey and oil reservoir fluid sampling device requires a seal member having high wear resistance in the pump-out module and other pistons.
  • formation inspection and oil reservoir fluid sampling instruments require seal members with high wear resistance and high temperature properties up to about 210 ° C. to seal wells.
  • the conventional seal member is a piston of the displacement unit of the pump-out module.
  • a large number of reciprocating motions move, extract, and supply the oil reservoir fluid, and perform sampling, instrument operation, analysis, I was doing.
  • Conventional piston seal members using normal seal members tend to wear out and fail after a limited life. This problem was noticeable at higher temperatures. Also, the presence of particles in the fluid accelerated wear and breakage of the seal member.
  • the above-mentioned problems can be solved by using the seal member according to the embodiment of the present invention for the geological examination and the oil reservoir fluid sampling device due to the characteristics of the seal member.
  • a seal member having high wear resistance at high temperatures can improve the life.
  • a seal member having low frictional properties can reduce wear and improve life.
  • a seal member having high mechanical properties at high temperatures can improve the life and reliability.
  • the sealing member having high chemical resistance can be used for exposure to oil wells and fluids at high temperatures.
  • FIG. 2 of US Pat. No. 6,058,773 shows a reciprocating seal member on a shuttle piston in a transfer unit (DU) provided in a pump-out module.
  • FIGS. 2, 3, and 4 of US Pat. No. 3,653,436 show an elastomeric member that seals the surface of a well lined with a mud cake.
  • in-situ fluid sampling bottles In situ fluid sampling bottles
  • in-situ fluid analysis / sampling bottles In situ fluid analysis and sampling bottles
  • Such equipment can be used, for example, for geological inspection and oil reservoir fluid sampling equipment and wireline logging.
  • Such in-situ fluid sampling bottles and in-situ fluid analysis / sampling bottles require a seal member that allows high pressure use at low and high temperatures.
  • such in-situ fluid sampling bottles and in-situ fluid analysis / sampling bottles require a seal member having high chemical resistance when exposed to various produced fluids.
  • in-situ fluid sampling bottles and in-situ fluid analysis / sampling bottles require a gas-resistant seal member.
  • FIG. 7 of US Pat. No. 6,058,773 shows a sealing member on a piston in a sample bottle.
  • FIG. 2 of US Pat. No. 4,860,581 shows a sealing member on a piston in the sample bottle.
  • FIG. 1 of US Pat. No. 6,467,544 shows a seal valve.
  • the seal member of one embodiment of the present invention can be applied to in-situ fluid analysis equipment (IFA: In Situ Fluid Analysis tool).
  • IFA In situ Fluid Analysis tool
  • Such an in-situ fluid analysis instrument requires a seal member having high wear resistance and gas resistance for downhole PVT.
  • PVT means analyzing pressure, volume, and temperature.
  • the in-situ fluid analyzer requires a seal member having high chemical resistance for handling the produced fluid.
  • the in-situ fluid analysis instrument requires a flow line fixed seal member having high pressure, high temperature characteristics up to about 210 ° C. and high gas resistance. A flow line is an area exposed to sampled fluid.
  • the in-situ fluid analysis instrument needs to collect the oil reservoir fluid sample, reduce the pressure, start gas generation, and determine the bubble point.
  • the depressurization was very rapid, for example, greater than 3000 psi / min, and an abrupt depressurization could occur in the seal member directly connected to the PVT sample chamber.
  • the seal member had to be able to withstand over 200 PVT cycles.
  • the seal member for downhole PVT sometimes fails to function due to the gas due to sudden pressure reduction. Therefore, the downhole PVT cannot be performed at 210 ° C. with a conventional commercially available sealing member. In the conventional sealing member, in the flow line, a defect due to expansion and water bubble formation due to gas permeation may occur.
  • a sealing member having excellent mechanical properties at high pressure and high temperature can reduce the expansion tendency.
  • the seal member in which the voids in the seal member are reduced by the carbon nanofiber can improve the gas resistance. By improving the material characteristics of the seal member, it is possible to improve resistance to expansion and sudden pressure reduction.
  • a sealing member having excellent chemical resistance can improve chemical resistance against a wide range of produced fluids.
  • FIG. 7 of US 2009/0078412 shows a seal member on a valve
  • FIG. 5 shows a seal member on a piston seal device
  • FIG. 21a of US Pat. No. 6,758,090 shows a seal member on the valve and piston.
  • U.S. Pat. No. 4,782,695 shows a seal member between a needle and a PVT processing chamber.
  • U.S. Pat. No. 7,461,547 shows a seal member on a valve for isolating fluid in a PVCU as a seal member of a piston sleeve device in a PVCU (pressure volume control unit) for PVT analysis.
  • the seal member of one embodiment of the present invention is applied to all devices used for wireline logging, logging during drilling, well testing, perforation, and sampling operations. be able to. Such devices require, for example, a sealing member that enables high pressure sealing at low and high temperatures.
  • a seal member that functions in a wide temperature range from low temperature to high temperature is required, and when the seal member does not function normally at low temperatures, Leakage and equipment failure could occur.
  • the seal member in sampling in a cold water region such as the deep sea region or the North Sea, the seal member has to function in a wide temperature range from a low temperature to a high temperature. This is because, in such a water area, the sample collected in the ground is hot, but the temperature of the sample carried to the ground surface decreases to the ground surface temperature.
  • the sealing member is insufficiently sealed at high pressure and low temperature, there is a possibility that sample leakage or loss and other problems may occur.
  • the sealing member according to an embodiment of the present invention for such a device, in addition to the above-described characteristics of the sealing member, high-temperature high-temperature due to excellent low-temperature sealing properties and superior mechanical characteristics at high temperatures.
  • the above-mentioned problems can be solved by the excellent hermeticity in.
  • the seal member of one embodiment of the present invention can be applied to a side wall coring tool.
  • Such side wall coring equipment includes, for example, a seal member having low friction and high wear resistance, a seal member having a long life and high sealing reliability, a seal member having a high temperature characteristic of about 200 ° C. at maximum, or A seal member having a Delta P of 100 psi or less (low speed sliding) is required.
  • Delta P is a pressure difference between both sides of the seal member of the piston. For example, when the seal member has low friction, the Delta P becomes small, that is, the piston can be moved with a small pressure difference.
  • Such a side wall coring device sometimes stops the coring when, for example, the sealing member causes adhesion or an increase in frictional force.
  • the sealing member causes adhesion or an increase in frictional force.
  • it was required to rotate and slide the drill bit by engaging with the seal member while cutting the formation.
  • low sealing friction in the seal member was important.
  • a low friction seal member can reduce power consumption for core drilling operations and actuation / movement.
  • the low friction seal member can reduce the tendency of sticking and rolling and improve the efficiency of core excavation work.
  • the seal member having high wear resistance can improve the sealing life in a fluid having wear properties.
  • FIGS. 4 and 5 of US Patent Publication No. 2009/0133932 show a seal member on a coring bit of a coring assembly driven by a motor.
  • FIGS. 3B, 7 and 8 of U.S. Pat. No. 4,714,119 show a seal member on a drill bit that is driven to mine a core from a borehole by a motor at up to 2000 rpm.
  • 7,191,831 show a seal member between a coring bit and a coring assembly driven by a motor, and the parts denoted by reference numerals 201 to 204 in FIGS. High efficiency can be achieved by using a low friction seal member such as the seal member of this embodiment between the boundary of FIG.
  • a telemetry / power generation tool for drilling application can be applied to the seal member of one embodiment of the present invention.
  • Such telemetry / power generation equipment requires, for example, a rotating seal member having high wear resistance, a rotating / sliding seal member having low friction, and a seal member having a high temperature characteristic of about 175 ° C. at the maximum.
  • Such a telemetry / power generation device for example, a mud pulse telemetry device as disclosed in US Pat. No. 7,083,008, uses a well seal fluid ( Protection from drilling mud was required. However, since particles are contained in the well fluid, there is a tendency for wear and tear of the seal member to increase. In addition, due to insufficient sealing due to wear and wear of the seal member, there was a possibility that equipment failure would occur if muddy water entered. Also, the telemetry and power generation device disclosed in US Pat. No. 7,083,008 operates using a sliding seal member on the piston that compensates the internal hydraulic pressure with an external fluid, and wear of the seal member Due to wear, expansion, and sticking, there is a possibility that equipment failure occurs due to intrusion of external fluid.
  • the seal member according to one embodiment of the present invention for telemetry / power generation equipment, in addition to the above-described characteristics of the seal member, the wear resistance and the low friction property of the seal member are improved, thereby improving reliability.
  • the above-mentioned problems can be solved by obtaining a high work and a longer seal life.
  • FIG. 2 of US Pat. No. 7,083,008 shows a rotary seal member in a rotor-to-rotor seal member / bearing assembly
  • FIG. 3a shows oil and well fluid (mud) in a pressure compensation chamber
  • Fig. 5 shows a sliding seal member on a compensating piston to be separated.
  • the seal member according to an embodiment of the present invention is also applied to an expansion packer used to isolate a part of a well for sampling and geological inspection. Can do.
  • the seal member in such an expansion packer needs to have high wear strength and high temperature characteristics in order to enable repeated operations of expansion and contraction at a plurality of positions in the well.
  • the seal member in the conventional packer does not have the desired high-temperature characteristics, and thus has a tendency to deteriorate / decrease in the sealing function. Also, the conventional packer sealing members tend not to meet the desired life.
  • the seal member of one embodiment of the present invention for an expansion packer, the seal member has better wear resistance and higher high temperature characteristics, thereby improving the life and reliability of the packer member. can do.
  • FIGS. 1A, 1B, and 1C of US Pat. No. 7,578,342 show that the seal member expands to seal the blast hole and isolate the member indicated at 16. ing.
  • the elastomer seal member (packer member) in FIG. 4A or the members denoted by reference numerals 712 and 812 in FIGS. 7 and 8 indicate the seal members.
  • FIG. 1 of US Pat. No. 4,860,581 shows an expansion packer member that seals a well.
  • U.S. Patent No. 7,392,851 shows an expansion packer member.
  • This solution was dried at 100 ° C. with stirring to obtain catalyst powder.
  • the catalyst powder was placed in an alumina boat and placed in a tubular electric furnace.
  • the reaction tube of the electric furnace was a quartz tube having an inner diameter of 3 cm and a length of 1.5 m, and the length direction in the central part was 600 mm, and a boat in which catalyst powder was put in the central part of the heating area was arranged.
  • a mixed gas of ethylene and argon was circulated for 30 minutes to obtain carbon nanotubes having an average diameter of 15 nm. Graphitization of carbon nanofibers is not performed.
  • the carbon nanofiber is a photograph taken with an electron microscope (SEM) at 1.0 kV and 10,000 times to 100,000 times, and is a length of a substantially straight portion where the fiber is not bent.
  • the fiber diameter D is measured, and the result is used to calculate the stiffness index at 200 locations for each fiber type by Lx / D, and the stiffness index is divided by the number of measurement locations (200) to obtain the average stiffness The degree index was determined.
  • Untreated carbon nanofibers having an average diameter of 87 nm were produced by the floating flow reaction method.
  • the manufacturing conditions were as follows. A spray nozzle is attached to the top of a vertical heating furnace (inner diameter 17.0 cm, length 150 cm). The furnace wall temperature (reaction temperature) is raised to and maintained at 1000 ° C., and 20 g / min of a benzene liquid raw material containing 4% by weight of ferrocene is supplied from the spray nozzle at a flow rate of hydrogen gas of 100 L / min. To be sprayed directly.
  • the shape of the spray at this time is a conical side surface (trumpet shape or umbrella shape), and the apex angle of the nozzle is 60 °.
  • ferrocene is pyrolyzed to produce iron fine particles, which become seeds, which generate and grow carbon nanofibers from the carbon produced by pyrolysis of benzene, and the carbon nanofibers are spaced every 5 minutes. And continuously produced for 1 hour.
  • Carbon nanofibers (MWCNT-2) heat-treated at low temperature have an average diameter of 87 nm, a frequency maximum diameter of 90 nm, a stiffness index of 9.9, a surface oxygen concentration of 2.1 atm%, a Raman peak ratio (D / G) of 1.12,
  • the nitrogen adsorption specific surface area was 30 m 2 / g.
  • the carbon nanofiber (MWNT-2) subjected to low-temperature heat treatment was granulated by roll treatment in order to improve handling properties in the manufacturing process.
  • the roll treatment is a roll press machine that is a dry compression granulator having two rolls of carbon nanofibers (roll diameter is 150 mm, rolls are smooth rolls, roll interval is 0 mm, set compression force between rolls (linear pressure) ) 1960 N / cm, gear ratio 1: 1.3, roll rotation speed 3 rpm) and granulated into a plate-like lump (carbon nanofiber aggregate) having a diameter of about 2 to 3 cm.
  • the particle size was adjusted by crushing through a crushing granulator (rotating speed: 15 rpm, screen: 5 mm) having a rotary blade.
  • the mixture was wound around an open roll (roll temperature: 10 to 20 ° C., roll interval: 0.3 mm), and thinning was repeated 5 times. At this time, the surface speed ratio of the two rolls was set to 1.1. Furthermore, the carbon fiber composite material obtained by setting the roll gap to 1.1 mm and passing through was put and dispensed. The separated sheets were compression molded at 120 ° C. for 2 minutes to obtain uncrosslinked carbon fiber composite material samples of Examples 1 to 7 and Comparative Examples 2 to 4 having a thickness of 1 mm.
  • the carbon fiber composite material obtained by passing through the thin film was mixed with 2 parts by weight of peroxide (indicated as “PO” in Tables 1 and 2) and triallyl isocyanurate (in Tables 1 and 2 as “TAIC”). Sheets added and dispensed were formed by press vulcanization (170 ° C./20 minutes) and secondary vulcanization (200 ° C./4 hours), and Examples 1 to 7 having a thickness of 1 mm and Comparative Example 2 ⁇ 6 sheet-like crosslinked carbon fiber composite material samples were obtained. In Comparative Example 1, neither carbon nanofiber nor carbon black was blended, but the same kneading process was performed.
  • FEPM is a ternary tetramer made by Asahi Glass Co., Ltd. having a fluorine content of 57 mass%, a Mooney viscosity (ML 1 + 4 100 ° C.) of 95, and a glass transition point of ⁇ 3 ° C. It was a fluoroethylene-propylene copolymer (FEPM).
  • MT-CB was MT grade carbon black having an arithmetic average diameter of 200 nm.
  • the measurement by the solid echo method was performed using pulse method NMR. This measurement was performed using “JMN-MU25” manufactured by JEOL Ltd. The measurement is performed under the conditions of an observation nucleus of 1 H, a resonance frequency of 25 MHz, a 90 ° pulse width of 2 ⁇ sec, and an attenuation curve is measured by a pulse sequence (90 ° x-Pi-90 ° y) of the solid echo method. The characteristic relaxation time (T2′SE) at 150 ° C. of the carbon fiber composite material sample was detected. The measurement results are shown in Table 1.
  • the crosslinked carbon fiber composite material samples of Examples 1 to 7 and Comparative Examples 1 to 4 were cut into test pieces having a diameter of 29.0 ⁇ 0.5 mm and a thickness of 12.5 ⁇ 0.5 mm, and compression set (JIS K6262) was measured.
  • the compression set was performed at 200 ° C. for 70 hours at 25% compression.
  • the carbon fiber composite material samples of the crosslinked bodies of Examples 1 to 7 and Comparative Examples 1 to 4 were cut into JIS K 6252 angle-shaped test pieces without incision, and using an autograph AG-X manufactured by Shimadzu Corporation, a tensile speed of 500 mm / Min is measured in accordance with JIS K 6252, the maximum tear force (N) is measured, and the measurement result is divided by the thickness of the test piece to measure the tear strength (N / mm).
  • the area surrounded by the load-displacement curve of the tear test was taken as the tear energy, with the measured load (N) on the vertical axis and the stroke displacement (mm) on the horizontal axis on the horizontal axis.
  • the crosslinked carbon fiber composite material samples of Examples 1 to 7 and Comparative Examples 1 to 4 were cut into strip-shaped test pieces of 10 mm ⁇ width 4 mm ⁇ thickness 1 mm as shown in FIG.
  • a notch with a depth of 1 mm is made in the width direction from the center of the side, and using a TMA / SS6100 testing machine manufactured by SII, repeated tensile loads (at 150 ° C., maximum tensile stress 2 N / mm, frequency 1 Hz) in an air atmosphere 0 N / mm to 2 N / mm), and the test piece breaks or the number of pulls up to 1 million times is measured.
  • Tables 1 and 2 “Tensile fatigue life (times)” is shown. It was. In addition, when it did not break even when the number of tensions reached 1 million times, it was described in Tables 1 and 2 as “1 million interruptions”.
  • the crosslinked carbon fiber composite material samples of Examples 1, 2, 5 to 7 and Comparative Example 4 were cut into a disk-shaped test piece having a diameter of 8 mm and a thickness of 6 mm, and tested at a load of 49.0 N using a 5 kgf weight.
  • the mass (g) of the test piece before and after the wear test was measured in the same manner as the DIN-53516 wear test except that the wear distance was 20 m and pressed against a # 100 disk-shaped grindstone rotating the piece in water of 25 ° C.
  • the amount of wear Wa (g 2 ⁇ g 1 ) / (P ⁇ L ⁇ d) was obtained by calculation and listed as “DIN wear” in Tables 1 and 2.
  • the unit of the wear amount Wa is cm 3 / N ⁇ m.
  • the mass of g 1 is a front wear test piece (g)
  • the mass of g 2 are after the abrasion test specimen (g)
  • P is the weight of the set load (49N)
  • L is the wear length (m)
  • d is Specific gravity (g / cm 3 ).
  • volume change dV is the volume expansion after the test, and is a test for evaluating gas resistance, and is described as “volume expansion (%)” in Tables 1 and 2.
  • Va (Wa ⁇ Ww) / dt.
  • Vb of the test piece after the test was also calculated.
  • Wa is the weight of the test piece in the air before the test
  • Ww is the weight of the test piece in the water before the test
  • dt is the specific gravity of water corrected by the water temperature. The measurement results are shown in Tables 1 and 2.
  • the crosslinked carbon fiber composite material samples of Examples 1 to 7 of the present invention have a higher number of tensile fatigue lives than those of Comparative Examples 1 to 4, and have a high temperature (150 (° C.).
  • the crosslinked carbon fiber composite material samples of Examples 1, 2, and 5 to 7 of the present invention had a smaller DIN wear amount than that of Comparative Example 4 and excellent wear resistance.
  • the carbon fiber composite material sample of the crosslinked body of Examples 1 and 5 has small volume expansion compared with the comparative example 4, and is excellent in gas resistance.

Abstract

Disclosed is a sealing member comprising a tetrafluoroethylene-propylene copolymer (FEPM) and carbon nanofibers. The sealing member has a number of cycles to fracture of 10 or more in a tensile fatigue test at 150˚C, a maximum tensile stress of 2 N/mm and a frequency of 1 Hz. The sealing member has excellent heat resistance and abrasion resistance.

Description

シール部材Seal member
 本発明は、シール部材に関する。 The present invention relates to a seal member.
 本発明者等が先に提案した炭素繊維複合材料の製造方法によれば、エラストマーを用いることで、これまで困難とされていたカーボンナノファイバーの分散性を改善し、エラストマーにカーボンナノファイバーを均一に分散させることができた(例えば、特開2005−97525号公報参照)。このような炭素繊維複合材料の製造方法によれば、エラストマーとカーボンナノファイバーを混練し、剪断力によって凝集性の強いカーボンナノファイバーの分散性を向上させている。より具体的には、エラストマーとカーボンナノファイバーとを混合すると、粘性を有するエラストマーがカーボンナノファイバーの相互に侵入し、かつ、エラストマーの特定の部分が化学的相互作用によってカーボンナノファイバーの活性の高い部分と結合し、この状態で、分子長が適度に長く、分子運動性の高い(弾性を有する)エラストマーとカーボンナノファイバーとの混合物に強い剪断力が作用すると、エラストマーの変形に伴ってカーボンナノファイバーも移動し、さらに剪断後の弾性によるエラストマーの復元力によって、凝集していたカーボンナノファイバーが分離されて、エラストマー中に分散していた。このように、マトリックスへのカーボンナノファイバーの分散性を向上させることで、高価なカーボンナノファイバーを効率よく複合材料のフィラーとして用いることができるようになった。 According to the method for producing a carbon fiber composite material previously proposed by the present inventors, by using an elastomer, the dispersibility of the carbon nanofiber, which has been considered difficult so far, is improved, and the carbon nanofiber is uniformly distributed in the elastomer. (See, for example, JP-A-2005-97525). According to such a method for producing a carbon fiber composite material, an elastomer and carbon nanofibers are kneaded, and dispersibility of carbon nanofibers having high cohesiveness is improved by shearing force. More specifically, when the elastomer and the carbon nanofiber are mixed, the viscous elastomer penetrates into the carbon nanofiber, and a specific part of the elastomer has high activity of the carbon nanofiber due to chemical interaction. In this state, when a strong shearing force is applied to a mixture of an elastomer having high molecular mobility (elasticity) and carbon nanofibers, the carbon nanofibers are deformed as the elastomer is deformed. The fibers also moved, and the aggregated carbon nanofibers were separated and dispersed in the elastomer by the restoring force of the elastomer due to elasticity after shearing. Thus, by improving the dispersibility of the carbon nanofibers in the matrix, expensive carbon nanofibers can be used efficiently as fillers for composite materials.
 本発明の目的は、耐熱性及び耐摩耗性に優れたシール部材を提供することにある。 An object of the present invention is to provide a seal member excellent in heat resistance and wear resistance.
 本発明にかかるシール部材は、
 テトラフルオロエチレン−プロピレン共重合体(FEPM)に対し、カーボンナノファイバーを含み、
 150℃、最大引張応力2N/mm、周波数1Hzの引張疲労試験における破断回数が10回以上である。
The sealing member according to the present invention is
For tetrafluoroethylene-propylene copolymer (FEPM), including carbon nanofibers,
The number of breaks in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz is 10 times or more.
 本発明にかかるシール部材において、
 前記テトラフルオロエチレン−プロピレン共重合体(FEPM)100質量部に対し、前記カーボンナノファイバー0.5質量部~30質量部と、平均粒径5nm~300nmの充填剤0質量部~50質量部と、を含み、
 前記カーボンナノファイバーは、平均直径が10nm~20nmであり、
 前記カーボンナノファイバーと前記充填剤の配合量は、下記式(1)及び(2)を満たすことができる。
 Wt=0.09W1+W2  (1)
 5≦Wt≦30     (2)
 W1:充填剤の配合量(質量部)
 W2:カーボンナノファイバーの配合量(質量部)。
In the sealing member according to the present invention,
With respect to 100 parts by mass of the tetrafluoroethylene-propylene copolymer (FEPM), 0.5 part by mass to 30 parts by mass of the carbon nanofiber, and 0 part by mass to 50 parts by mass of a filler having an average particle diameter of 5 nm to 300 nm; Including,
The carbon nanofiber has an average diameter of 10 nm to 20 nm,
The compounding quantity of the said carbon nanofiber and the said filler can satisfy | fill following formula (1) and (2).
Wt = 0.09W1 + W2 (1)
5 ≦ Wt ≦ 30 (2)
W1: Blending amount of filler (parts by mass)
W2: Compounding amount (parts by mass) of carbon nanofibers.
 本発明にかかるシール部材において、
 150℃、最大引張応力2N/mm、周波数1Hzの引張疲労試験における破断回数が1,000回以上であることができる。
In the sealing member according to the present invention,
The number of breaks in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz can be 1,000 times or more.
 本発明にかかるシール部材において、
 前記テトラフルオロエチレン−プロピレン共重合体(FEPM)100質量部に対し、前記カーボンナノファイバー4質量部~30質量部と、平均粒径5nm~300nmの充填剤0質量部~60質量部と、を含み、
 前記カーボンナノファイバーは、平均直径が60nm~110nmであり、
 前記カーボンナノファイバーと前記充填剤の配合量は、下記式(3)及び(4)を満たすことができる。
 Wt=0.1W1+W2  (3)
 10≦Wt≦30    (4)
 W1:充填剤の配合量(質量部)
 W2:カーボンナノファイバーの配合量(質量部)。
In the sealing member according to the present invention,
4 parts by mass to 30 parts by mass of the carbon nanofibers and 0 part by mass to 60 parts by mass of a filler having an average particle diameter of 5 nm to 300 nm with respect to 100 parts by mass of the tetrafluoroethylene-propylene copolymer (FEPM). Including
The carbon nanofiber has an average diameter of 60 nm to 110 nm,
The compounding quantity of the said carbon nanofiber and the said filler can satisfy | fill following formula (3) and (4).
Wt = 0.1W1 + W2 (3)
10 ≦ Wt ≦ 30 (4)
W1: Blending amount of filler (parts by mass)
W2: Compounding amount (parts by mass) of carbon nanofibers.
 本発明にかかるシール部材において、
 25%圧縮して200℃で70時間後の圧縮永久ひずみが0%~40%であることができる。
In the sealing member according to the present invention,
The compression set after 25 hours of compression and 70 hours at 200 ° C. can be 0% to 40%.
 本発明にかかるシール部材において、
 25℃の高圧摩耗試験における摩耗量Waが0.010cm/N・m~0.070cm/N・mであり、
 前記摩耗量Waは、下記式(5)を満たすことができる。
 Wa=(g−g)/(P・L・d)  (5)
 g:摩耗前の試験片の質量(g)
 g:摩耗後の試験片の質量(g)
 P:おもりの設定荷重(N)
 L:摩耗距離(m)
 d:比重(g/cm)。
In the sealing member according to the present invention,
The wear amount Wa in a high-pressure wear test at 25 ° C. is 0.010 cm 3 / N · m to 0.070 cm 3 / N · m,
The wear amount Wa can satisfy the following formula (5).
Wa = (g 2 −g 1 ) / (P · L · d) (5)
g 1 : Mass of the test piece before wear (g)
g 2 : Mass of the test piece after wear (g)
P: Set weight of weight (N)
L: Wear distance (m)
d: Specific gravity (g / cm 3 ).
 本発明にかかるシール部材において、
 前記シール部材は、油田装置に用いられることができる。
In the sealing member according to the present invention,
The seal member can be used in an oil field device.
 本発明にかかるシール部材において、
 前記油田装置は、坑井内において検層を行う検層装置であることができる。
In the sealing member according to the present invention,
The oil field device may be a logging device that performs logging in a well.
 本発明にかかるシール部材において、
 前記シール部材は、前記油田装置内に配置された無端状のシール部材であることができる。
In the sealing member according to the present invention,
The seal member may be an endless seal member disposed in the oil field device.
 本発明にかかるシール部材において、
 前記シール部材は、前記油田装置内に配置された流体駆動モータのステータであることができる。
In the sealing member according to the present invention,
The seal member may be a stator of a fluid drive motor disposed in the oil field device.
 本発明にかかるシール部材において、
 前記流体駆動モータはマッドモータであることができる。
In the sealing member according to the present invention,
The fluid drive motor may be a mud motor.
 本発明にかかるシール部材において、
 前記シール部材は、前記油田装置内に配置された流体駆動モータのロータであることができる。
In the sealing member according to the present invention,
The seal member may be a rotor of a fluid drive motor disposed in the oil field device.
 本発明にかかるシール部材において、
 前記流体駆動モータはマッドモータであることができる。
In the sealing member according to the present invention,
The fluid drive motor may be a mud motor.
 本発明にかかるシール部材において、
 前記テトラフルオロエチレン−プロピレン共重合体(FEPM)は、フッ素含有量が50~60質量%、ムーニー粘度(ML1+4100℃)の中心値が90~160、ガラス転移点が0℃以下であることができる。
In the sealing member according to the present invention,
The tetrafluoroethylene-propylene copolymer (FEPM) has a fluorine content of 50 to 60% by mass, a central value of Mooney viscosity (ML 1 + 4 100 ° C.) of 90 to 160, and a glass transition point of 0 ° C. or less. Can do.
 本発明にかかるシール部材において、
 前記カーボンナノファイバーは、前記テトラフルオロエチレン−プロピレン共重合体(FEPM)に配合される前の段階において、剛直度=Lx÷D(Lx:カーボンナノファイバーの隣り合う欠陥と欠陥との間の距離、D:カーボンナノファイバーの直径)で定義される剛直度の平均値が3~12であることができる。
In the sealing member according to the present invention,
Before the carbon nanofibers are blended with the tetrafluoroethylene-propylene copolymer (FEPM), rigidity = Lx ÷ D (Lx: distance between adjacent defects of the carbon nanofibers) , D: the diameter of the carbon nanofiber), the average value of the stiffness can be 3-12.
 本発明にかかるシール部材において、
 前記充填剤は、平均粒径が10nm~300nmのカーボンブラックであることができる。
In the sealing member according to the present invention,
The filler may be carbon black having an average particle size of 10 nm to 300 nm.
 本発明にかかるシール部材において、
 前記充填剤は、平均粒径が5nm~50nmであって、かつ、シリカ、タルク及びクレーから選ばれる少なくとも一つであることができる。
In the sealing member according to the present invention,
The filler may have an average particle diameter of 5 nm to 50 nm and at least one selected from silica, talc and clay.
図1は、本発明の一実施形態にかかるシール部材に用いるカーボンナノファイバーの圧縮処理を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a compression process of carbon nanofibers used in a sealing member according to an embodiment of the present invention. 図2は、本発明の一実施形態にかかるオープンロール法によるシール部材の製造方法を模式的に示す図である。Drawing 2 is a figure showing typically the manufacturing method of the sealing member by the open roll method concerning one embodiment of the present invention. 図3は、本発明の一実施形態にかかるオープンロール法によるシール部材の製造方法を模式的に示す図である。Drawing 3 is a figure showing typically the manufacturing method of the sealing member by the open roll method concerning one embodiment of the present invention. 図4は、本発明の一実施形態にかかるオープンロール法によるシール部材の製造方法を模式的に示す図である。FIG. 4 is a diagram schematically showing a method for manufacturing a seal member by an open roll method according to an embodiment of the present invention. 図5は、本発明の一実施形態にかかるシール部材の引張疲労試験を模式的に示す図である。FIG. 5 is a diagram schematically showing a tensile fatigue test of the seal member according to the embodiment of the present invention. 図6は、本発明の一実施形態にかかるシール部材の高圧摩耗試験を模式的に示す図である。FIG. 6 is a diagram schematically showing a high-pressure wear test of the seal member according to the embodiment of the present invention. 図7は、本発明の一実施形態にかかる海底用途の検層装置を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a logging tool for seabed use according to an embodiment of the present invention. 図8は、本発明の一実施形態にかかる図7の検層装置を模式的に示す部分断面図である。FIG. 8 is a partial cross-sectional view schematically showing the logging apparatus of FIG. 7 according to one embodiment of the present invention. 図9は、図8の検層装置のマッドモータを模式的に示すX−X’断面図である。FIG. 9 is an X-X ′ cross-sectional view schematically showing a mud motor of the logging apparatus of FIG. 8. 図10は、本発明の一実施形態にかかる地下用途の検層装置を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an underground logging tool according to an embodiment of the present invention.
 以下、本発明の実施形態について詳細に説明する。
本発明の一実施形態にかかるシール部材は、テトラフルオロエチレン−プロピレン共重合体(FEPM)に対し、カーボンナノファイバーを含み、150℃、最大引張応力2N/mm、周波数1Hzの引張疲労試験における破断回数が10回以上である。
Hereinafter, embodiments of the present invention will be described in detail.
The seal member according to one embodiment of the present invention includes carbon nanofibers with respect to tetrafluoroethylene-propylene copolymer (FEPM), and breaks in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz. The number of times is 10 times or more.
 (I)カーボンナノファイバー
カーボンナノファイバーについて説明する。
本実施の形態に用いるカーボンナノファイバーは、平均直径(繊維径)が10nm~110nmであることができ、さらに平均直径が10nm~20nmもしくは平均直径が60nm~110nmであることができる。カーボンナノファイバーは、その平均直径が比較的細いため、比表面積が大きく、マトリックスであるFEPMとの表面反応性が向上し、FEPM中におけるカーボンナノファイバーの分散不良を改善しやすい傾向がある。カーボンナノファイバーは、直径が10nm以上ではカーボンナノファイバーによってマトリックス材料を囲むように形成された微小セル構造が小さすぎず適度な柔軟性を有すると予測され、逆に110nm以下では微小セル構造が大きすぎず耐摩耗性の効果を有すると予測される。カーボンナノファイバーによって形成される微小セル構造は、カーボンナノファイバーが3次元に張り巡らされた網目構造によってマトリックス材料を囲むように形成されることができる。平均直径が60nm~110nmのカーボンナノファイバーは、さらに70nm~100nmであることができる。また、平均直径が60nm~110nmのカーボンナノファイバーは、その表面のFEPMとの反応性を向上させるために、低温熱処理することができる。低温熱処理については、後述する。
(I) Carbon nanofiber The carbon nanofiber will be described.
The carbon nanofibers used in the present embodiment can have an average diameter (fiber diameter) of 10 nm to 110 nm, and can further have an average diameter of 10 nm to 20 nm or an average diameter of 60 nm to 110 nm. Since the carbon nanofiber has a relatively small average diameter, the specific surface area is large, the surface reactivity with the matrix FEPM is improved, and the carbon nanofiber in the FEPM tends to be poorly dispersed. Carbon nanofibers are expected to have moderate flexibility with a microcell structure formed so as to surround the matrix material with carbon nanofibers when the diameter is 10 nm or more. Conversely, when the diameter is 110 nm or less, the microcell structure is large. However, it is expected to have an effect of wear resistance. The micro cell structure formed by the carbon nanofibers can be formed so as to surround the matrix material by a network structure in which the carbon nanofibers are stretched in three dimensions. Carbon nanofibers having an average diameter of 60 nm to 110 nm can further be 70 nm to 100 nm. In addition, carbon nanofibers having an average diameter of 60 nm to 110 nm can be subjected to low-temperature heat treatment in order to improve the reactivity with FEPM on the surface. The low temperature heat treatment will be described later.
 カーボンナノファイバーの平均直径は、電子顕微鏡による観察によって計測することができる。なお、本発明の詳細な説明においてカーボンナノファイバーの平均直径及び平均長さは、電子顕微鏡による例えば5,000倍の撮像(カーボンナノファイバーのサイズによって適宜倍率は変更できる)から200箇所以上の直径及び長さを計測し、その算術平均値として計算して得ることができる。 The average diameter of carbon nanofibers can be measured by observation with an electron microscope. In the detailed description of the present invention, the average diameter and the average length of the carbon nanofibers are, for example, 5,000 times or more from an electron microscope (the magnification can be appropriately changed depending on the size of the carbon nanofibers), and the diameters of 200 or more locations. And the length can be measured and calculated as the arithmetic average value.
 カーボンナノファイバーは、FEPM100質量部に対し、5質量部~30質量部を配合することができる。特に、平均直径が10nm~20nmのカーボンナノファイバーを用いた場合には、FEPM100質量部に対し、5質量部~30質量部を配合することができ、また、平均直径が60nm~110nmのカーボンナノファイバーを用いた場合には、FEPM100質量部に対し、10質量部~30質量部を配合することができる。カーボンナノファイバーは、特に平均直径が10nm~20nmのカーボンナノファイバーを用いた場合には5質量部以上または平均直径が60nm~110nmのカーボンナノファイバーを用いた場合には10質量部以上をFEPMへ配合することによって、ナノサイズのセル構造を形成することができると考えられるので、耐摩耗性が向上する傾向があり、また、30質量部以下の配合量であれば、破断伸び(EB)が比較的高いので加工性に優れるともとにシール部材を部品へ装着しやすい傾向がある。また、カーボンナノファイバー以外の充填剤を配合することによってカーボンナノファイバーの配合量を減らすことができる。充填剤を配合した場合には、平均直径が10nm~20nmのカーボンナノファイバーは、FEPM100質量部に対し、0.5質量部~30質量部を配合することができ、また、平均直径が60nm~110nmのカーボンナノファイバーは、FEPM100質量部に対し、4質量部~30質量部を配合することができる。ここで、「質量部」は、特に指定しない限り「phr」を示し、「phr」は、parts per hundred of resin or rubberの省略形であって、ゴム等に対する添加剤等の外掛百分率を表すものである。 Carbon nanofibers can be blended in an amount of 5 to 30 parts by mass with respect to 100 parts by mass of FEPM. In particular, when carbon nanofibers having an average diameter of 10 nm to 20 nm are used, 5 to 30 parts by mass can be blended with 100 parts by mass of FEPM, and carbon nanofibers having an average diameter of 60 to 110 nm. When a fiber is used, 10 to 30 parts by mass can be blended with 100 parts by mass of FEPM. Carbon nanofibers, particularly when carbon nanofibers with an average diameter of 10 nm to 20 nm are used, are 5 parts by mass or more, and when carbon nanofibers with an average diameter of 60 nm to 110 nm are used, 10 parts by mass or more are transferred to FEPM. Since it is considered that a nano-sized cell structure can be formed by blending, there is a tendency that the wear resistance is improved, and if the blending amount is 30 parts by mass or less, the elongation at break (EB) is Since it is relatively high, it tends to be easy to mount a seal member on a part based on excellent workability. Moreover, the compounding quantity of carbon nanofiber can be reduced by mix | blending fillers other than carbon nanofiber. When the filler is blended, the carbon nanofiber having an average diameter of 10 nm to 20 nm can be blended in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of FEPM, and the average diameter is 60 nm to The carbon nanofibers of 110 nm can be blended in an amount of 4 to 30 parts by mass with respect to 100 parts by mass of FEPM. Here, “parts by mass” indicates “phr” unless otherwise specified, and “phr” is an abbreviation for “parts per hundred of resin or rubber” and represents the percentage of external additives such as additives to rubber and the like. It is.
 カーボンナノファイバーは、テトラフルオロエチレン−プロピレン共重合体(FEPM)に配合される前の段階において、剛直度の平均値が3~12の比較的剛直な繊維であることができる。特に、平均直径が10nm~20nmのカーボンナノファイバーは剛直度の平均値が3~5であることができ、また、平均直径が60nm~110nmのカーボンナノファイバーは、剛直度の平均値が9~12であることができる。剛直度は、カーボンナノファイバーの剛直性を示すものであって、顕微鏡などで撮影した多数のカーボンナノファイバーの屈曲していないほぼ直線状部分の長さと直径とを測定し、計算することで得られ、屈曲指数と呼ぶこともある。カーボンナノファイバーの屈曲部分は、繊維の欠陥であって、電子顕微鏡で繊維を幅方向に横切る白い線として写る。カーボンナノファイバーの屈曲していないほぼ直線状部分の長さをLxとし、カーボンナノファイバーの直径をDとしたとき、剛直度はLx÷Dで定義され、その算術平均値を計算する。したがって、剛直度が小さいカーボンナノファイバーは短い間隔で折れ曲がることを示し、剛直度が大きいカーボンナノファイバーは直線状部分が長く、屈曲していないことを示す。カーボンナノファイバーの直線状部分の長さLxの測定は、1万~5万倍で撮影したカーボンナノファイバーの写真データを例えば2~10倍に拡大した状態で行なう。拡大表示した写真では、繊維を幅方向に横切る屈曲部分(欠陥)確認することができる。このようにして確認した隣接する屈曲部分(欠陥)の間隔を、カーボンナノファイバーの直線状部分の長さLxとして複数箇所、例えば200か所以上計測して行なう。 The carbon nanofiber may be a relatively rigid fiber having an average stiffness value of 3 to 12 before being blended with the tetrafluoroethylene-propylene copolymer (FEPM). Particularly, carbon nanofibers having an average diameter of 10 nm to 20 nm can have an average value of stiffness of 3 to 5, and carbon nanofibers having an average diameter of 60 nm to 110 nm have an average value of stiffness of 9 to Can be twelve. Stiffness refers to the rigidity of carbon nanofibers, and is obtained by measuring and calculating the length and diameter of almost unbent portions of many carbon nanofibers taken with a microscope. Sometimes referred to as the bending index. The bent portion of the carbon nanofiber is a defect of the fiber, and appears as a white line crossing the fiber in the width direction with an electron microscope. When the length of the substantially straight portion of the carbon nanofiber that is not bent is Lx and the diameter of the carbon nanofiber is D, the rigidity is defined as Lx ÷ D, and the arithmetic average value is calculated. Therefore, carbon nanofibers with low rigidity are bent at short intervals, and carbon nanofibers with high rigidity are long straight portions and are not bent. The length Lx of the linear portion of the carbon nanofiber is measured in a state where the photographic data of the carbon nanofiber photographed at 10,000 to 50,000 times is enlarged to 2 to 10 times, for example. In the enlarged photograph, a bent portion (defect) that crosses the fiber in the width direction can be confirmed. The distance between adjacent bent portions (defects) thus confirmed is measured by measuring a plurality of, for example, 200 or more locations as the length Lx of the linear portion of the carbon nanofiber.
 カーボンナノファイバーは、炭素六角網面のグラファイトの1枚面(グラフェンシート)を巻いて筒状にした形状を有するいわゆる多層カーボンナノチューブ(MWNT:マルチウォールカーボンナノチューブ)であり、平均直径が10nm~20nmのカーボンナノファイバーとしては、例えば昭和電工社製のVGCF−X(VGCF:昭和電工社の登録商標)、バイエルマテリアルサイエンス社のバイチューブ(Baytubes)、ナノシル(Nanocyl)社のNC−7000などを挙げることができ、平均直径が60nm~110nmのカーボンナノファイバーとしては、例えば昭和電工社のVGCF−Sなどを挙げることができる。また、部分的にカーボンナノチューブの構造を有する炭素材料も使用することができる。なお、カーボンナノチューブという名称の他にグラファイトフィブリルナノチューブ、気相成長炭素繊維といった名称で称されることもある。 Carbon nanofibers are so-called multi-walled carbon nanotubes (MWNT: multi-wall carbon nanotubes) having a cylindrical shape formed by winding one surface (graphene sheet) of graphite with a carbon hexagonal mesh surface, and an average diameter of 10 nm to 20 nm. Examples of carbon nanofibers include VGCF-X (VGCF: registered trademark of Showa Denko KK) manufactured by Showa Denko, Baytubes of Bayer MaterialScience, NC-7000 of Nanosyl, and the like. Examples of carbon nanofibers having an average diameter of 60 nm to 110 nm include VGCF-S from Showa Denko. A carbon material partially having a carbon nanotube structure can also be used. In addition to the name “carbon nanotube”, it may be called “graphite fibril nanotube” or “vapor-grown carbon fiber”.
 カーボンナノファイバーは、気相成長法によって得ることができる。気相成長法は、触媒気相合成法(Catalytic Chemical Vapor Deposition:CCVD)とも呼ばれ、炭化水素等のガスを金属系触媒の存在下で気相熱分解させて未処理の第1のカーボンナノファイバーを製造する方法である。より詳細に気相成長法を説明すると、例えば、ベンゼン、トルエン等の有機化合物を原料とし、フェロセン、ニッケルセン等の有機遷移金属化合物を金属系触媒として用い、これらをキャリアーガスとともに高温例えば400℃~1000℃の反応温度に設定された反応炉に導入し、浮遊状態あるいは反応炉壁に第1のカーボンナノファイバーを生成させる浮遊流動反応法(Floating Reaction Method)や、あらかじめアルミナ、酸化マグネシウム等のセラミックス上に担持された金属含有粒子を炭素含有化合物と高温で接触させてカーボンナノファイバーを基板上に生成させる触媒担持反応法(Substrate Reaction Method)等を用いることができる。平均直径が10nm~20nmのカーボンナノファイバーは触媒担持反応法によって得ることができ、平均直径が60nm~110nmのカーボンナノファイバーは浮遊流動反応法によって得ることができる。カーボンナノファイバーの直径は、例えば金属含有粒子の大きさや反応時間などで調節することができる。平均直径が10nm~20nmのカーボンナノファイバーは、窒素吸着比表面積が10m/g~500m/gであることができ、さらに100m/g~350m/gであることができ、特に、150m/g~300m/gであることができる。 Carbon nanofibers can be obtained by a vapor deposition method. The vapor phase growth method is also called a catalytic chemical vapor deposition (CCVD), in which a gas such as a hydrocarbon is pyrolyzed in the presence of a metal catalyst in the presence of a metal-based catalyst to perform untreated first carbon nano-particles. A method of manufacturing a fiber. The vapor phase growth method will be described in more detail. For example, an organic compound such as benzene or toluene is used as a raw material, an organic transition metal compound such as ferrocene or nickelcene is used as a metal catalyst, and these are used together with a carrier gas at a high temperature such as 400 ° C. It is introduced into a reaction furnace set to a reaction temperature of ~ 1000 ° C, and a floating reaction method (floating reaction method) in which the first carbon nanofibers are generated in a floating state or on the reaction furnace wall, or in advance such as alumina, magnesium oxide, etc. A catalyst-supporting reaction method (substrate reaction method) in which metal-containing particles supported on ceramics are brought into contact with a carbon-containing compound at a high temperature to generate carbon nanofibers on a substrate can be used. Carbon nanofibers having an average diameter of 10 nm to 20 nm can be obtained by a catalyst-supporting reaction method, and carbon nanofibers having an average diameter of 60 nm to 110 nm can be obtained by a floating flow reaction method. The diameter of the carbon nanofiber can be adjusted by, for example, the size of the metal-containing particles and the reaction time. Carbon nanofibers having an average diameter of 10 nm to 20 nm can have a nitrogen adsorption specific surface area of 10 m 2 / g to 500 m 2 / g, and more preferably 100 m 2 / g to 350 m 2 / g, It can be 150 m 2 / g to 300 m 2 / g.
 平均直径が60nm~110nmであって低温熱処理したカーボンナノファイバーは、気相成長法によって得られたいわゆる未処理のカーボンナノファイバーを低温熱処理することによって得ることができる。この低温熱処理は、未処理のカーボンナノファイバーを、前記気相成長法における反応温度より高温であって、かつ、1100℃~1600℃で熱処理することができる。この熱処理の温度は、さらに1200℃~1500℃であることができ、特に1400℃~1500℃であることができる。低温熱処理の温度が気相成長法の反応温度より高温であることで、カーボンナノファイバーの表面構造を整え、表面の欠陥を減少させることができる。また、この低温熱処理温度を1100℃~1600℃とすることで、FEPMとの表面反応性が向上し、マトリックス材料中におけるカーボンナノファイバーの分散不良をより改善することができる。このように低温熱処理したカーボンナノファイバーは、例えば、ラマン散乱分光法によって測定される1600cm−1付近のピーク強度Gに対する1300cm−1付近のピーク強度Dの比(D/G)が0.9を超えかつ1.6未満であることができ、さらに1.0~1.4であることができ、特に熱処理の温度が1400℃~1500℃の場合は1.0~1.2であることができる。低温熱処理したカーボンナノファイバーのラマンスペクトルにおいて、1300cm−1付近の吸収ピーク強度Dはカーボンナノファイバーを形成する結晶内の欠陥に基づく吸収であり、1600cm−1付近の吸収ピーク強度Gはカーボンナノファイバーを形成する結晶に基づく吸収である。このため、ピーク強度Dとピーク強度Gとの比(D/G)が小さい程、カーボンナノファイバーの結晶化程度が高いことを示す。したがって、ピーク強度Gに対するピーク強度Dの比(D/G)が小さいほどグラファイト化(黒鉛化)度が高く、表面に欠陥の少ないカーボンナノファイバーを意味する。したがって、前記範囲のピーク強度Gに対するピーク強度Dの比(D/G)を有する低温熱処理したカーボンナノファイバーは、適度に表面に非結晶部分が存在するため、FEPMとの濡れ性が良好であり、比較的欠陥も少ないので低温熱処理したカーボンナノファイバーの強度も十分であることができる。 Carbon nanofibers having an average diameter of 60 nm to 110 nm and low-temperature heat treatment can be obtained by low-temperature heat treatment of so-called untreated carbon nanofibers obtained by vapor phase growth. In this low-temperature heat treatment, untreated carbon nanofibers can be heat-treated at a temperature higher than the reaction temperature in the vapor phase growth method at 1100 ° C. to 1600 ° C. The temperature of this heat treatment can be further 1200 ° C. to 1500 ° C., in particular 1400 ° C. to 1500 ° C. When the temperature of the low-temperature heat treatment is higher than the reaction temperature of the vapor phase growth method, the surface structure of the carbon nanofibers can be adjusted and surface defects can be reduced. Further, by setting the low-temperature heat treatment temperature to 1100 ° C. to 1600 ° C., the surface reactivity with FEPM is improved, and the dispersion of carbon nanofibers in the matrix material can be further improved. Thus the carbon nanofibers low-temperature heat treatment, for example, the ratio of the peak intensity D of around 1300 cm -1 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy (D / G) is 0.9 More than 1.0 and less than 1.6, and further 1.0 to 1.4, particularly 1.0 to 1.2 when the temperature of the heat treatment is 1400 ° C. to 1500 ° C. it can. In the Raman spectrum of the carbon nanofibers low-temperature heat treatment, the absorption peak intensity D of around 1300 cm -1 is the absorption based on defects in the crystal that forms the carbon nanofibers, the absorption peak intensity G of around 1600 cm -1 is carbon nanofiber Absorption based on crystals that form For this reason, the smaller the ratio (D / G) between the peak intensity D and the peak intensity G, the higher the degree of crystallization of the carbon nanofibers. Therefore, the smaller the ratio of the peak intensity D to the peak intensity G (D / G), the higher the degree of graphitization (graphitization), and the carbon nanofibers with fewer defects on the surface. Accordingly, the carbon nanofibers subjected to low-temperature heat treatment having a ratio (D / G) of the peak intensity D to the peak intensity G within the above range have a non-crystalline portion on the surface, and thus have good wettability with FEPM. Since the carbon nanofibers subjected to low-temperature heat treatment have relatively few defects, the strength of the carbon nanofibers can be sufficient.
 通常、気相成長法によって製造されたカーボンナノファイバーを不活性ガス雰囲気中において2000℃~3200℃で熱処理していわゆる黒鉛化(結晶化)処理して、気相成長の際にカーボンナノファイバーの表面に沈積したアモルファス状の堆積物や残留している触媒金属などの不純物を除去する。黒鉛化処理したカーボンナノファイバーは、その表面におけるFEPMとの反応性が比較的低い。平均直径が10nm~20nmのカーボンナノファイバー及び平均直径が60nm~110nmであって低温熱処理したカーボンナノファイバーは、このような黒鉛化処理を行わずにそのまま用いることができる。このように黒鉛化処理を行わないカーボンナノファイバーの表面は、適度に非結晶部分が存在するため、FEPMとの濡れ性が良好となる傾向がある。 Usually, carbon nanofibers manufactured by vapor phase growth are heat treated at 2000 ° C. to 3200 ° C. in an inert gas atmosphere to perform so-called graphitization (crystallization) treatment. Impurities such as amorphous deposits and remaining catalytic metals deposited on the surface are removed. The graphitized carbon nanofiber has a relatively low reactivity with FEPM on the surface thereof. Carbon nanofibers having an average diameter of 10 nm to 20 nm and carbon nanofibers having an average diameter of 60 nm to 110 nm and subjected to low-temperature heat treatment can be used as they are without performing such graphitization treatment. As described above, the surface of the carbon nanofiber not subjected to the graphitization treatment has a moderately non-crystalline portion, so that the wettability with FEPM tends to be good.
 図1は、本発明の一実施形態にかかるシール部材に用いるカーボンナノファイバーの圧縮処理を模式的に示す斜視図である。カーボンナノファイバーは、さらに圧縮処理することができる。圧縮処理によって、カーボンナノファイバーは造粒されることができる。また、気相成長法によって製造されたカーボンナノファイバーは、そのままでは分岐部を有するカーボンナノファイバーを含み、圧縮処理は、カーボンナノファイバーを少なくとも分岐部から切断するための高い圧力で行うことができる。圧縮処理は、図中の矢印方向に連続回転する複数例えば少なくとも2本のロール72,74間に原料であるカーボンナノファイバー60を投入して、剪断力と圧縮力とをカーボンナノファイバーに加えることによって行う、例えばロールプレス機やローラーコンパクター(ロール式高圧圧縮成形機)のような乾式圧縮造粒機70を採用することができる。気相成長法によって製造された複数のカーボンナノファイバー60を乾式圧縮造粒機70に投入して圧縮処理することで、圧縮処理された複数のカーボンナノファイバー80の集合体を得ることができる。ロールプレス機は、通常ロール外周面にポケットを刻まない平滑ロールまたはポケットを刻んだロール等を使用するが、本実施の形態においてはカーボンナノファイバーに均等に圧縮力を加えるために平滑ロールを用いることができる。また、2本のロールの間隔は0mmすなわちロール同士が接触するように設定され、さらに2本のロール間には所定の圧縮力F例えば980~2940N/cmを与えることができ、さらに1500~2500N/cmを与えることが好ましい。圧縮力Fは、得られたカーボンナノファイバー集合体80における分岐部の有無を電子顕微鏡などで確認しながら適当な圧力に設定することができる。980N/cm以上であれば分岐部を有するカーボンナノファイバーを分岐部で切断することができる。このような圧縮処理は、カーボンナノファイバー全体の均質化のため、複数回例えば2回程度行うことができる。造粒機では、一般に粉体を結合するために水などのバインダーを配合することが多いが、本実施の形態における圧縮処理は、カーボンナノファイバー同士を結合するためのバインダーを用いない乾式造粒であることができる。バインダーを用いると、後工程でカーボンナノファイバーを分散させにくくする虞があり、バインダーを除去する工程がさらに必要になることがあるためである。なお、乾式圧縮造粒機70によって2本のロール間で圧縮して板状(フレーク)のカーボンナノファイバー80の集合体に成形した後、さらに粉砕機などで破砕し、所望の大きさに整粒したカーボンナノファイバー80の集合体をつくることができる。このときの粉砕機は、例えば回転刃を高速回転させてその剪断力によりカーボンナノファイバー80の集合体を破砕し、スクリーンを用いて適当なサイズ以下のカーボンナノファイバー80の集合体だけを通して整粒を行うことができる。圧縮処理だけではカーボンナノファイバー80の集合体の大きさにばらつきが大きいが、このようにさらに破砕することでカーボンナノファイバー80の集合体の粒径が適度な大きさに整えられるため、マトリックス材料と混練した時のカーボンナノファイバーの集合体の偏りを防ぐことができる。この圧縮処理によってカーボンナノファイバーが分岐部で切断され、ふわりとしない所望の嵩密度になって加工時の取り扱いが容易になり、例えば板状のカーボンナノファイバー集合体に造粒されることができる。 FIG. 1 is a perspective view schematically showing a compression process of carbon nanofibers used for a seal member according to an embodiment of the present invention. The carbon nanofiber can be further compressed. The carbon nanofibers can be granulated by the compression treatment. Further, the carbon nanofibers produced by the vapor phase growth method include carbon nanofibers having branched portions as they are, and the compression treatment can be performed at a high pressure for cutting the carbon nanofibers at least from the branched portions. . In the compression treatment, carbon nanofibers 60 that are raw materials are inserted between a plurality of, for example, at least two rolls 72 and 74 that continuously rotate in the direction of the arrow in the figure, and shearing force and compression force are applied to the carbon nanofibers. For example, a dry compression granulator 70 such as a roll press machine or a roller compactor (roll type high pressure compression molding machine) can be employed. By putting a plurality of carbon nanofibers 60 manufactured by the vapor phase growth method into a dry compression granulator 70 and compressing them, an aggregate of a plurality of carbon nanofibers 80 subjected to the compression process can be obtained. The roll press machine normally uses a smooth roll in which pockets are not engraved on the outer peripheral surface of the roll or a roll in which pockets are engraved. In this embodiment, a smooth roll is used in order to apply a compressive force evenly to the carbon nanofibers. be able to. The distance between the two rolls is set to 0 mm, that is, the rolls are in contact with each other, and a predetermined compression force F, for example, 980 to 2940 N / cm can be applied between the two rolls, and further 1500 to 2500 N / Cm is preferred. The compressive force F can be set to an appropriate pressure while confirming the presence or absence of a branched portion in the obtained carbon nanofiber assembly 80 with an electron microscope or the like. If it is 980 N / cm or more, the carbon nanofiber which has a branch part can be cut | disconnected by a branch part. Such compression treatment can be performed a plurality of times, for example, about twice in order to homogenize the entire carbon nanofiber. In a granulator, generally a binder such as water is often blended to bind powder, but the compression treatment in the present embodiment is a dry granulation that does not use a binder for binding carbon nanofibers to each other. Can be. This is because if a binder is used, it may be difficult to disperse the carbon nanofibers in a later step, and a step of removing the binder may be further required. In addition, after compressing between two rolls by the dry compression granulator 70 and forming into an aggregate of plate-like (flakes) carbon nanofibers 80, it is further crushed by a pulverizer or the like and adjusted to a desired size. An aggregate of the granulated carbon nanofibers 80 can be produced. The pulverizer at this time, for example, rotates the rotary blade at high speed and crushes the aggregate of carbon nanofibers 80 by the shearing force, and uses a screen to adjust the size only through the aggregate of carbon nanofibers 80 having an appropriate size or less. It can be performed. The size of the aggregates of the carbon nanofibers 80 varies greatly only by the compression treatment, but the particle size of the aggregates of the carbon nanofibers 80 is adjusted to an appropriate size by further crushing in this way, so that the matrix material It is possible to prevent the carbon nanofiber aggregates from being biased when kneaded. By this compression treatment, the carbon nanofibers are cut at the branching portions, and the desired bulk density that does not become soft becomes easy to handle during processing. For example, the carbon nanofibers can be granulated into a plate-like carbon nanofiber aggregate. .
 (II)テトラフルオロエチレン−プロピレン共重合体
テトラフルオロエチレン−プロピレン共重合体は、テトラフルオロエチレンとプロピレンとを主成分とする2元系の共重合体である。例えば、旭硝子社製の商品名アフラスなどをあげることができる。以下の説明では、テトラフルオロエチレン−プロピレン共重合体をFEPMと省略する。FEPMは、水素化アクリロニトリル−ブタジエンゴム(HNBR)に比べ耐摩耗性に多少劣るものの高温特性に優れることから、例えば検層装置のシール材、特にHNBRでは劣化してしまう175℃以上の環境下においてシール部材として用いることができる。FEPMは、175℃~200℃の高温の環境においても使用可能である。また、FEPMは、FKMに比べ、耐薬品性に優れるため、FKMでは使えない耐薬品性が要求される環境でも使用することができる。本実施の形態に用いるFEPMは、フッ素含有量が50~60質量%、ムーニー粘度(ML1+4100℃)の中心値が90~160、ガラス転移点が0℃以下であることができる。フッ素含有量が50質量%以上であると耐熱性に優れ、フッ素含有量が60質量%以下であれば耐アルカリ性、耐酸性、耐塩素性などの耐薬品性に優れる。また、ムーニー粘度(ML1+4100℃)の中心値が90以上であると引張強さ(TB)や圧縮永久ひずみ(CS)などの基本要求性能を有することができ、ムーニー粘度(ML1+4100℃)の中心値が160以下であれば適度な粘度を有するので加工することができる。例えば地下資源探査は海底の地下で行われることがあるが、海底は高圧のため4℃程度の水温であり、FEPMのガラス転移点が0℃以下であれば海底から高温の探査帯までシール部材として使用することができる。
(II) Tetrafluoroethylene-propylene copolymer The tetrafluoroethylene-propylene copolymer is a binary copolymer mainly composed of tetrafluoroethylene and propylene. For example, the product name Aflas manufactured by Asahi Glass Co., Ltd. can be mentioned. In the following description, tetrafluoroethylene-propylene copolymer is abbreviated as FEPM. FEPM is slightly inferior in wear resistance to hydrogenated acrylonitrile-butadiene rubber (HNBR), but is excellent in high temperature characteristics. For example, in an environment of 175 ° C. or more, which deteriorates with a seal material for a logging device, particularly HNBR. It can be used as a seal member. FEPM can be used in a high temperature environment of 175 ° C. to 200 ° C. In addition, FEPM is superior in chemical resistance compared to FKM, and therefore can be used in an environment where chemical resistance that cannot be used in FKM is required. The FEPM used in this embodiment can have a fluorine content of 50 to 60 mass%, a Mooney viscosity (ML 1 + 4 100 ° C.) of 90 to 160, and a glass transition point of 0 ° C. or less. When the fluorine content is 50% by mass or more, the heat resistance is excellent, and when the fluorine content is 60% by mass or less, the chemical resistance such as alkali resistance, acid resistance, and chlorine resistance is excellent. Further, when the median value of Mooney viscosity (ML 1 + 4 100 ° C.) is 90 or more, basic required performances such as tensile strength (TB) and compression set (CS) can be obtained, and Mooney viscosity (ML 1 + 4 100 ° C.). If the center value of) is 160 or less, it has an appropriate viscosity and can be processed. For example, exploration of underground resources may be conducted under the seabed, but the seabed has a high pressure of about 4 ° C due to its high pressure. If the glass transition point of FEPM is 0 ° C or less, the seal member from the seabed to the hot exploration zone Can be used as
 (III)充填剤
充填剤は、平均粒径が5nm~300nmである。充填剤としては、エラストマーの充填剤として用いることのできるカーボンブラック、シリカ、クレー、タルクなどから少なくともひとつを選択することができる。カーボンブラックは、平均粒径が10nm~300nmであることができる。シリカ、タルク及びクレーは、平均粒径が5nm~50nmであることができる。本実施形態における充填剤にはカーボンナノファイバーは含まれない。
(III) Filler The filler has an average particle size of 5 nm to 300 nm. As the filler, at least one of carbon black, silica, clay, talc and the like that can be used as an elastomer filler can be selected. Carbon black may have an average particle size of 10 nm to 300 nm. Silica, talc and clay may have an average particle size of 5 nm to 50 nm. The filler in this embodiment does not contain carbon nanofibers.
 充填剤をFEPMに配合することによって、FEPMのマトリックス領域を充填剤によって微小サイズに分割することができ、その微小サイズに分割されたマトリックス領域はカーボンナノファイバーによって補強すればよいので、充填剤を配合することでカーボンナノファイバーの配合量を少なくすることができる。 By blending the filler into the FEPM, the matrix region of the FEPM can be divided into minute sizes by the filler, and the matrix region divided into the minute sizes may be reinforced with carbon nanofibers. The compounding quantity of carbon nanofiber can be decreased by mix | blending.
 また、充填剤のアスペクト比は、カーボンナノファイバーのおよそ10倍以上であり、実験結果から充填剤を例えば50質量部配合することでカーボンナノファイバーの配合量を例えば4.5質量部~5質量部削減することができる。 Further, the aspect ratio of the filler is about 10 times or more that of the carbon nanofibers, and the compounding amount of the carbon nanofibers is, for example, 4.5 parts by mass to 5 parts by mixing 50 parts by mass of the filler from the experimental results. Can be reduced.
 シール部材は、カーボンナノファイバーをFEPM100質量部に対して0.5質量部~30質量部含むことができるが、カーボンナノファイバーの種類によって、あるいは充填剤の配合の有無によって、カーボンナノファイバーの配合量を適宜変更することができる。 The sealing member can contain 0.5 to 30 parts by mass of carbon nanofibers with respect to 100 parts by mass of FEPM. However, depending on the type of carbon nanofibers or the presence or absence of fillers, The amount can be changed as appropriate.
 平均直径が10nm~20nmのカーボンナノファイバーを用いる場合には、FEPM100質量部に対し、カーボンナノファイバー0.5質量部~30質量部と、平均粒径5nm~300nmの充填剤0質量部~50質量部と、を含むことができる。このとき、シール部材におけるカーボンナノファイバーと充填剤との配合量は、充填剤の配合量(質量部)をW1とし、カーボンナノファイバーの配合量(質量部)をW2としたとき、式(1):Wt=0.09W1+W2及び式(2):5≦Wt≦30を満たすことができる。したがって、充填剤を含まない場合には平均直径が10nm~20nmのカーボンナノファイバーを最低でも5質量部含むことができ、カーボンナノファイバーを0.5質量部とする場合は充填剤を50質量部含むことができる。 When carbon nanofibers having an average diameter of 10 nm to 20 nm are used, 0.5 parts by mass to 30 parts by mass of carbon nanofibers and 0 part by mass to 50 parts by weight of filler having an average particle diameter of 5 nm to 300 nm with respect to 100 parts by mass of FEPM. A mass part. At this time, the compounding amount of the carbon nanofiber and the filler in the sealing member is expressed by the formula (1) when the compounding amount (part by mass) of the filler is W1 and the compounding amount (mass part) of the carbon nanofiber is W2. ): Wt = 0.09W1 + W2 and formula (2): 5 ≦ Wt ≦ 30 can be satisfied. Therefore, when the filler is not included, carbon nanofibers having an average diameter of 10 nm to 20 nm can be included at least 5 parts by mass. When the carbon nanofiber is 0.5 parts by mass, the filler is 50 parts by mass. Can be included.
 また、平均直径が60nm~110nmのカーボンナノファイバーを用いる場合には、FEPM100質量部に対し、カーボンナノファイバー4質量部~30質量部と、平均粒径5nm~300nmの充填剤0質量部~60質量部と、を含むことができる。このとき、シール部材におけるカーボンナノファイバーと充填剤との配合量は、充填剤の配合量(質量部)をW1とし、カーボンナノファイバーの配合量(質量部)をW2としたとき、式(3):Wt=0.1W1+W2及び式(4):10≦Wt≦30を満たすことができる。したがって、充填剤を含まない場合には平均直径が60nm~110nmのカーボンナノファイバーを最低でも10質量部含むことができ、カーボンナノファイバーを4質量部とする場合は充填剤を60質量部含むことができる。 When carbon nanofibers having an average diameter of 60 nm to 110 nm are used, 4 parts by mass to 30 parts by mass of carbon nanofibers and 0 part by mass to 60 parts by mass of filler having an average particle diameter of 5 nm to 300 nm with respect to 100 parts by mass of FEPM. A mass part. At this time, the compounding amount of the carbon nanofiber and the filler in the sealing member is expressed by the formula (3) when the compounding amount (part by mass) of the filler is W1 and the compounding amount (mass part) of the carbon nanofiber is W2. ): Wt = 0.1W1 + W2 and formula (4): 10 ≦ Wt ≦ 30 can be satisfied. Therefore, when the filler is not included, carbon nanofibers having an average diameter of 60 nm to 110 nm can be included at least 10 parts by mass. When the carbon nanofiber is 4 parts by mass, 60 parts by mass of filler is included. Can do.
 (IV)シール部材の製造方法
本発明の一実施の形態にかかるシール部材の製造方法は、カーボンナノファイバーを、FEPMに混合し、かつ、剪断力で該FEPM中に均一に分散して炭素繊維複合材料を得る工程を含む。シール部材は、炭素繊維複合材料を所望の形状に成形することで得られる。本工程では、カーボンナノファイバーは、圧縮処理して得られたカーボンナノファイバー集合体を用いることができる。本工程について図2~図4を用いて詳細に説明する。
(IV) Method for Producing Seal Member A method for producing a seal member according to an embodiment of the present invention is obtained by mixing carbon nanofibers with FEPM and uniformly dispersing the carbon nanofibers in the FEPM with a shearing force. Obtaining a composite material. The seal member can be obtained by molding a carbon fiber composite material into a desired shape. In this step, as the carbon nanofiber, a carbon nanofiber aggregate obtained by compression treatment can be used. This process will be described in detail with reference to FIGS.
 図2~図4は、本発明の一実施形態にかかるオープンロール法によるシール部材の製造方法を模式的に示す図である。
図2~図4に示すように、2本ロールのオープンロール2における第1のロール10と第2のロール20とは、所定の間隔d、例えば0.5mm~1.5mmの間隔で配置され、図2~図4において矢印で示す方向に回転速度V1,V2で正転あるいは逆転で回転する。まず、図2に示すように、第1のロール10に巻き付けられたFEPM30の素練りを行ない、FEPM分子鎖を適度に切断してフリーラジカルを生成する。素練りによって生成されたFEPMのフリーラジカルがカーボンナノファイバーと結びつきやすい状態となる。
2 to 4 are views schematically showing a method for manufacturing a seal member by an open roll method according to an embodiment of the present invention.
As shown in FIGS. 2 to 4, the first roll 10 and the second roll 20 in the two-roll open roll 2 are arranged at a predetermined distance d, for example, 0.5 mm to 1.5 mm. 2 to 4, it rotates in the direction indicated by the arrow at the rotational speeds V1 and V2 by forward rotation or reverse rotation. First, as shown in FIG. 2, the FEPM 30 wound around the first roll 10 is masticated, and the FEPM molecular chain is appropriately cut to generate free radicals. The free radicals of FEPM generated by mastication are likely to be combined with carbon nanofibers.
 次に、図3に示すように、第1のロール10に巻き付けられたFEPM30のバンク34に、カーボンナノファイバー80及び必要に応じて図示していない充填剤を投入し、混練する。この混練におけるFEPM30の温度は、例えば100℃~200℃であることができ、さらに150℃~200℃であることができる。このように、薄通しに比べて比較的高温でFEPM30とカーボンナノファイバー80とが混練されることでカーボンナノファイバー80の隙間にFEPMが侵入しやすくなると考えられる。FEPM30とカーボンナノファイバー80とを混合する工程は、オープンロール法に限定されず、例えば密閉式混練法あるいは多軸押出し混練法を用いることもできる。 Next, as shown in FIG. 3, the carbon nanofibers 80 and a filler (not shown) as necessary are put into the bank 34 of the FEPM 30 wound around the first roll 10 and kneaded. The temperature of the FEPM 30 in this kneading can be, for example, 100 ° C. to 200 ° C., and further can be 150 ° C. to 200 ° C. Thus, it is considered that the FEPM is likely to enter the gap between the carbon nanofibers 80 by kneading the FEPM 30 and the carbon nanofibers 80 at a relatively high temperature as compared with the thin type. The step of mixing FEPM 30 and carbon nanofiber 80 is not limited to the open roll method, and for example, a closed kneading method or a multi-screw extrusion kneading method can be used.
 さらに、図4に示すように、第1のロール10と第2のロール20とのロール間隔dを、例えば0.5mm以下、より好ましくは0~0.5mmの間隔に設定し、混合物36をオープンロール2に投入して薄通しを1回~複数回行なう。薄通しの回数は、例えば1回~10回程度行なうことができる。第1のロール10の表面速度をV1、第2のロール20の表面速度をV2とすると、薄通しにおける両者の表面速度比(V1/V2)は、1.05~3.00であることができ、さらに1.05~1.2であることが好ましい。このような表面速度比を用いることにより、所望の剪断力を得ることができる。このように狭いロール間から押し出された炭素繊維複合材料50は、FEPM30の弾性による復元力で図4のように大きく変形し、その際にFEPM30と共にカーボンナノファイバー80が大きく移動する。薄通しして得られた炭素繊維複合材料50は、ロールで圧延されて所定厚さのシート状に分出しされる。この薄通しの工程では、できるだけ高い剪断力を得るために、ロール温度を例えば0~50℃、より好ましくは5~30℃の比較的低い温度に設定して行われ、FEPM30の実測温度も0~50℃に調整されることができる。このようにして得られた剪断力により、FEPM30に高い剪断力が作用し、凝集していたカーボンナノファイバー80がFEPM分子に1本ずつ引き抜かれるように相互に分離し、FEPM30中に分散される。特に、FEPM30は、弾性と、粘性と、カーボンナノファイバー80との化学的相互作用と、を有するため、カーボンナノファイバー80を容易に分散することができる。そして、カーボンナノファイバー80の分散性および分散安定性(カーボンナノファイバーが再凝集しにくいこと)に優れた炭素繊維複合材料50を得ることができる。 Furthermore, as shown in FIG. 4, the roll interval d between the first roll 10 and the second roll 20 is set to, for example, 0.5 mm or less, more preferably 0 to 0.5 mm, and the mixture 36 is Insert into the open roll 2 and perform thinning once to several times. For example, the thinning can be performed about 1 to 10 times. When the surface speed of the first roll 10 is V1 and the surface speed of the second roll 20 is V2, the ratio of the surface speeds (V1 / V2) in thinness is 1.05 to 3.00. Further, it is preferably 1.05 to 1.2. By using such a surface velocity ratio, a desired shear force can be obtained. The carbon fiber composite material 50 extruded from between the narrow rolls as described above is greatly deformed as shown in FIG. 4 due to the restoring force due to the elasticity of the FEPM 30, and the carbon nanofibers 80 move together with the FEPM 30 at that time. The carbon fiber composite material 50 obtained through thinning is rolled with a roll and dispensed into a sheet having a predetermined thickness. In this thinning process, in order to obtain as high a shearing force as possible, the roll temperature is set to a relatively low temperature of, for example, 0 to 50 ° C., more preferably 5 to 30 ° C., and the measured temperature of the FEPM 30 is also 0. Can be adjusted to ~ 50 ° C. Due to the shearing force thus obtained, a high shearing force acts on the FEPM 30, and the aggregated carbon nanofibers 80 are separated from each other so as to be pulled out one by one to the FEPM molecule and dispersed in the FEPM 30. . In particular, since the FEPM 30 has elasticity, viscosity, and chemical interaction with the carbon nanofibers 80, the carbon nanofibers 80 can be easily dispersed. And the carbon fiber composite material 50 excellent in the dispersibility and dispersion stability of carbon nanofiber 80 (it is hard to re-aggregate carbon nanofiber) can be obtained.
 より具体的には、オープンロールでFEPMとカーボンナノファイバーとを混合すると、粘性を有するFEPMがカーボンナノファイバーの相互に侵入し、かつ、FEPMの特定の部分が化学的相互作用によってカーボンナノファイバーの活性の高い部分と結合する。カーボンナノファイバーの表面が例えば黒鉛化しない場合や低温熱処理などによって適度に活性が高いと、特にFEPM分子と結合し易く好ましい。次に、FEPMに強い剪断力が作用すると、FEPM分子の移動に伴ってカーボンナノファイバーも移動し、さらに剪断後の弾性によるFEPMの復元力によって、凝集していたカーボンナノファイバーが分離されて、FEPM中に分散されることになる。本実施の形態によれば、炭素繊維複合材料が狭いロール間から押し出された際に、FEPMの弾性による復元力で炭素繊維複合材料はロール間隔より厚く変形する。その変形は、強い剪断力の作用した炭素繊維複合材料をさらに複雑に流動させ、カーボンナノファイバーをFEPM中に分散させると推測できる。そして、一旦分散したカーボンナノファイバーは、FEPMとの化学的相互作用によって再凝集することが防止され、良好な分散安定性を有することができる。 More specifically, when FEPM and carbon nanofibers are mixed with an open roll, viscous FEPMs penetrate into each other of carbon nanofibers, and specific parts of FEPM are chemically interacted with carbon nanofibers. Binds to highly active moieties. For example, when the surface of the carbon nanofiber is not graphitized or has a moderately high activity by low-temperature heat treatment or the like, it is particularly easy to bind to the FEPM molecule. Next, when a strong shearing force acts on FEPM, the carbon nanofibers move with the movement of FEPM molecules, and the aggregated carbon nanofibers are separated by the restoring force of FEPM due to elasticity after shearing, Will be dispersed in the FEPM. According to the present embodiment, when the carbon fiber composite material is extruded from between narrow rolls, the carbon fiber composite material is deformed thicker than the roll interval by the restoring force due to the elasticity of FEPM. The deformation can be presumed to cause the carbon fiber composite material subjected to a strong shear force to flow more complicatedly and disperse the carbon nanofibers in the FEPM. And once disperse | distributed carbon nanofiber is prevented from reaggregating by the chemical interaction with FEPM, and can have favorable dispersion stability.
 FEPMにカーボンナノファイバーを剪断力によって分散させる工程は、前記オープンロール法に限定されず、密閉式混練法あるいは多軸押出し混練法を用いることもできる。要するに、この工程では、凝集したカーボンナノファイバーを分離できる剪断力をFEPMに与えることができればよい。特に、オープンロール法は、ロール温度の管理だけでなく、混合物の実際の温度を測定し管理することができるため、好ましい。FEPMとカーボンナノチューブとの混合前、混合中、あるいは薄通し後の分出しされた炭素繊維複合材料に、架橋剤を混合することができ、架橋して架橋体の炭素繊維複合材料とすることができる。 The step of dispersing carbon nanofibers in FEPM by shearing force is not limited to the open roll method, and a closed kneading method or a multi-screw extrusion kneading method can also be used. In short, in this step, it is sufficient that a shearing force capable of separating the aggregated carbon nanofibers can be applied to the FEPM. In particular, the open roll method is preferable because it can measure and manage not only the roll temperature but also the actual temperature of the mixture. A cross-linking agent can be mixed with the dispensed carbon fiber composite material before mixing, mixing, or after passing through the FEPM and carbon nanotubes, and the cross-linked carbon fiber composite material can be crosslinked. it can.
 シール部材は、炭素繊維複合材料を一般に採用されるゴムの成形加工例えば、射出成形法、トランスファー成形法、プレス成形法、押出成形法、カレンダー加工法などによって所望の形状例えば無端状に成形することで得ることができる。シール部材は、架橋された炭素繊維複合材料からなることができる。 The seal member is molded into a desired shape, for example, endless by a rubber molding process, such as an injection molding method, a transfer molding method, a press molding method, an extrusion molding method, or a calendering method, in which a carbon fiber composite material is generally employed. Can be obtained at The seal member can be made of a crosslinked carbon fiber composite material.
 本実施の形態にかかる炭素繊維複合材料の製造方法において、通常、FEPMの加工で用いられる配合剤を加えることができる。配合剤としては公知のものを用いることができる。配合剤としては、例えば、架橋剤、加硫剤、加硫促進剤、加硫遅延剤、軟化剤、可塑剤、硬化剤、補強剤、充填剤、老化防止剤、着色剤などを挙げることができる。これらの配合剤は、混合の過程の適切な時期にFEPMに投入することができる。架橋剤としては、例えばパーオキサイドを用いることができ、例えばカーボンナノファイバーをFEPMへ混合する前、カーボンナノファイバーと一緒、あるいはカーボンナノファイバーとFEPMを混合した後に投入することができ、例えばスコーチ防止のために架橋剤は薄通し後の未架橋の炭素繊維複合材料に配合することができる。 In the method for producing a carbon fiber composite material according to the present embodiment, a compounding agent usually used in FEPM processing can be added. A well-known thing can be used as a compounding agent. Examples of the compounding agent include a crosslinking agent, a vulcanizing agent, a vulcanization accelerator, a vulcanization retarder, a softening agent, a plasticizer, a curing agent, a reinforcing agent, a filler, an antiaging agent, and a coloring agent. it can. These compounding agents can be added to the FEPM at an appropriate time during the mixing process. For example, peroxide can be used as the cross-linking agent. For example, before mixing the carbon nanofibers into the FEPM, together with the carbon nanofibers, or after mixing the carbon nanofibers and the FEPM, it can be added, for example, to prevent scorch. For this purpose, the crosslinking agent can be blended into the uncrosslinked carbon fiber composite material after passing through.
 (V)シール部材
シール部材は、FEPMをカーボンナノファイバーによって補強することによって、高温における物性に優れ、しかも耐摩耗性に優れることができる。そのため、シール部材は、静的シール部材及び動的シール部材のどちらにも使用することができるが、特に動的シール部材として使用することができる。シール部材は、公知の形態を有することができ、例えば無端状であることができ、いわゆるOリングや、断面形状が矩形の角シール、断面形状がD字状のいわゆるDリング、断面形状がX字状のいわゆるXリング、断面形状がE字状のいわゆるEリング、断面形状がV字状のいわゆるVリング、断面形状がU字状のUリング、断面形状がL字状のLリングなどを採用することができる。また、シール部材は、例えばマッドモータなどの流体駆動用モータのステータもしくはロータとすることができる。
(V) Seal member The seal member can be excellent in physical properties at high temperatures and excellent in wear resistance by reinforcing FEPM with carbon nanofibers. Therefore, the seal member can be used as both a static seal member and a dynamic seal member, but can be used particularly as a dynamic seal member. The sealing member may have a known form, for example, may be endless, a so-called O-ring, a square seal having a rectangular cross-sectional shape, a so-called D-ring having a D-shaped cross-section, and a cross-sectional shape X So-called X-rings, so-called E-rings with a cross-sectional shape of E, so-called V-rings with a cross-sectional shape of V-shaped, U-rings with a cross-sectional shape of U-shape, L-rings with a cross-sectional shape of L-shape Can be adopted. The seal member may be a stator or a rotor of a fluid drive motor such as a mud motor.
 図5は、本発明の一実施形態にかかるシール部材の引張疲労試験を模式的に示す図である。
図5に示すように、本実施の形態におけるシール部材の引張疲労試験は、前記(IV)で製造した架橋体の炭素繊維複合材料を長さ10mm×幅4mm×厚さ1mmの短冊状の試験片100に切り出し、その試験片100の長辺102の中心から幅方向へ深さ1mmの切込み106を入れ、試験片100の両端の短辺104,104付近をチャック110,110にて保持して、大気雰囲気中、周波数1Hzの条件で図5の矢印T方向に繰り返し引っ張り荷重(0N/mm~2N/mm)をかけ、破断するかあるいは100万回までの繰り返し回数を測定することができる。試験片100の切込み106は、カミソリ刃によって1mmの深さに切込むことで形成することができる。ゴム組成物の耐摩耗性試験は、これまでも幾つかの測定方法が提案されていたが、このような引張疲労試験によって耐摩耗性の評価を行うことができると考えられる。ゴム組成物が摩擦によって摩耗する現象は、被接触面にゴム組成物が引きちぎられるようにして起こると考えられるので、試験片に切込み106を入れて引張疲労試験を行い、破断するまでの回数が多ければシール部材の耐摩耗性が良好であると推測できる。シール部材は、テトラフルオロエチレン−プロピレン共重合体(FEPM)に対し、カーボンナノファイバーを含み、150℃、最大引張応力2N/mm、周波数1Hzの引張疲労試験における破断回数が10回以上である。シール部材は、さらに、150℃、最大引張応力2N/mm、周波数1Hzの引張疲労試験における破断回数が30回以上であることができる。
FIG. 5 is a diagram schematically showing a tensile fatigue test of the seal member according to the embodiment of the present invention.
As shown in FIG. 5, the tensile fatigue test of the seal member in the present embodiment is a strip-shaped test of the cross-linked carbon fiber composite material manufactured in (IV) 10 mm long × 4 mm wide × 1 mm thick. Cut into a piece 100, insert a notch 106 having a depth of 1 mm in the width direction from the center of the long side 102 of the test piece 100, and hold the vicinity of the short sides 104, 104 at both ends of the test piece 100 with chucks 110, 110. In the air atmosphere, a tensile load (0 N / mm to 2 N / mm) is repeatedly applied in the direction of the arrow T in FIG. 5 under the condition of a frequency of 1 Hz, and it can be broken or the number of repetitions up to 1 million can be measured. The cut 106 of the test piece 100 can be formed by cutting to a depth of 1 mm with a razor blade. Although several measurement methods have been proposed so far for the abrasion resistance test of the rubber composition, it is considered that the abrasion resistance can be evaluated by such a tensile fatigue test. The phenomenon that the rubber composition wears due to friction is considered to occur as the rubber composition is torn on the contacted surface. Therefore, the test piece is notched 106 and a tensile fatigue test is performed. If the number is large, it can be estimated that the wear resistance of the seal member is good. The seal member contains carbon nanofibers with respect to tetrafluoroethylene-propylene copolymer (FEPM), and the number of breaks in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz is 10 times or more. Further, the sealing member may have a number of breaks of 30 or more in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz.
 また、シール部材の耐摩耗性は、カーボンナノファイバーの太さや表面の濡れ性あるいは充填剤の配合の有無によって影響を受けることが推測できる。シール部材は、テトラフルオロエチレン−プロピレン共重合体(FEPM)100質量部に対し、平均直径が10nm~20nmのカーボンナノファイバー0.5質量部~30質量部と、平均粒径5nm~300nmの充填剤0質量部~50質量部と、を含み、カーボンナノファイバーと前記充填剤の配合量は、下記式(1)及び(2)を満たすことができる。さらに、平均直径が10nm~20nmのカーボンナノファイバーの配合量は、1質量部~30質量部であることができ、特に5質量部~30質量部であることができる。
Wt=0.09W1+W2  (1)
5≦Wt≦30     (2)
W1:充填剤の配合量(質量部)
W2:カーボンナノファイバーの配合量(質量部)。
Further, it can be estimated that the wear resistance of the seal member is affected by the thickness of the carbon nanofiber, the wettability of the surface, or the presence or absence of a filler. The sealing member is filled with 0.5 to 30 parts by mass of carbon nanofibers having an average diameter of 10 nm to 20 nm and an average particle diameter of 5 to 300 nm with respect to 100 parts by mass of tetrafluoroethylene-propylene copolymer (FEPM). The compounding amount of the carbon nanofiber and the filler can satisfy the following formulas (1) and (2). Furthermore, the compounding amount of the carbon nanofibers having an average diameter of 10 nm to 20 nm can be 1 part by mass to 30 parts by mass, and particularly 5 parts by mass to 30 parts by mass.
Wt = 0.09W1 + W2 (1)
5 ≦ Wt ≦ 30 (2)
W1: Blending amount of filler (parts by mass)
W2: Compounding amount (parts by mass) of carbon nanofibers.
 シール部材は、テトラフルオロエチレン−プロピレン共重合体(FEPM)100質量部に対し、平均直径が60nm~110nmのカーボンナノファイバー4質量部~30質量部と、平均粒径5nm~300nmの充填剤0質量部~60質量部と、を含み、カーボンナノファイバーと前記充填剤の配合量は、下記式(3)及び(4)を満たすことができる。また、平均直径が60nm~110nmのカーボンナノファイバーが低温熱処理したカーボンナノファイバーであるとき、カーボンナノファイバーの配合量は、さらに5質量部~30質量部であることができ、特に10質量部~30質量部であることができる。
Wt=0.1W1+W2  (3)
10≦Wt≦30    (4)
W1:充填剤の配合量(質量部)
W2:カーボンナノファイバーの配合量(質量部)。
The seal member is composed of 4 parts by mass to 30 parts by mass of carbon nanofibers having an average diameter of 60 nm to 110 nm and 100 parts by mass of tetrafluoroethylene-propylene copolymer (FEPM), and filler 0 having an average particle diameter of 5 nm to 300 nm. The compounding amount of the carbon nanofibers and the filler can satisfy the following formulas (3) and (4). Further, when carbon nanofibers having an average diameter of 60 nm to 110 nm are carbon nanofibers subjected to low-temperature heat treatment, the blending amount of carbon nanofibers can be further 5 to 30 parts by mass, particularly 10 parts by mass to It can be 30 parts by mass.
Wt = 0.1W1 + W2 (3)
10 ≦ Wt ≦ 30 (4)
W1: Blending amount of filler (parts by mass)
W2: Compounding amount (parts by mass) of carbon nanofibers.
 シール部材は、平均直径が10nm~20nmのカーボンナノファイバーであるとき、25%圧縮して200℃で70時間後の圧縮永久ひずみが0%~90%であることができ、さらに30%~85%であることができる。シール部材は、平均直径が60nm~110nmのカーボンナノファイバーが低温熱処理したカーボンナノファイバーであるとき、25%圧縮して200℃で70時間後の圧縮永久ひずみが0%~40%であることができ、さらに20%~40%であることができ、特に30%~40%であることができる。このときの圧縮永久ひずみは、JIS−K6262に基づいて前記条件で測定するものとする。試験片は、直径29.0±0.5mm、厚さ12.5±0.5mmであることができる。平均直径が60nm~110nmのカーボンナノファイバーを配合したシール部材は、静的へたりに強い傾向がある。 When the sealing member is a carbon nanofiber having an average diameter of 10 nm to 20 nm, the compression set after 70% compression at 25 ° C. and 200 hours can be 0% to 90%, and further 30% to 85%. %. When the carbon nanofibers having a mean diameter of 60 nm to 110 nm are heat-treated at a low temperature, the sealing member has a compression set of 0% to 40% after being compressed by 25% and after 70 hours at 200 ° C. Furthermore, it can be 20% to 40%, in particular 30% to 40%. The compression set at this time is measured under the above conditions based on JIS-K6262. The specimen can have a diameter of 29.0 ± 0.5 mm and a thickness of 12.5 ± 0.5 mm. Seal members containing carbon nanofibers having an average diameter of 60 nm to 110 nm tend to be strong against static sag.
 図6は、本発明の一実施形態にかかるシール部材の摩耗試験を模式的に示す図である。
図6に示すように、シール部材の高圧摩耗試験は、DIN摩耗試験機120を用いて行い、前記(IV)で製造した架橋体の炭素繊維複合材料サンプルを円盤状試験片126に切り出し、おもり129を用いて所定荷重で試験片126を回転する円盤形砥石128の表面に押しつけて摩耗させることができる。試験片126は水槽122の水124の中に配置され、摩擦熱による試験片126の温度上昇を抑えることができる。円盤状試験片126は直径8mm、厚さ6mmであることができ、おもり129は例えば5kgfを用いて49.0Nの荷重で試験片126を円盤形砥石128に押しつけることができ、円盤形砥石128の表面は#100の粗さであることができ、水槽122の水124は室温~80℃に設定することができ、試験片126と円盤形砥石128とが摩擦する距離を20mとすることができ、その他はDIN−53516摩耗試験と同様にして、摩耗試験前後の試験片の質量(g)を計測することができる。
FIG. 6 is a diagram schematically showing a wear test of the seal member according to the embodiment of the present invention.
As shown in FIG. 6, the high-pressure wear test of the seal member is performed using a DIN wear tester 120, and the crosslinked carbon fiber composite material sample produced in the above (IV) is cut into a disk-shaped test piece 126 and weighted. 129 can be pressed against the surface of the disk-shaped grindstone 128 that rotates the test piece 126 with a predetermined load to be worn. The test piece 126 is disposed in the water 124 of the water tank 122, and the temperature rise of the test piece 126 due to frictional heat can be suppressed. The disk-shaped test piece 126 can have a diameter of 8 mm and a thickness of 6 mm, and the weight 129 can press the test piece 126 against the disk-shaped grindstone 128 with a load of 49.0 N using, for example, 5 kgf. The surface of the water can have a roughness of # 100, the water 124 in the water tank 122 can be set to room temperature to 80 ° C., and the distance that the test piece 126 and the disc-shaped grindstone 128 rub can be 20 m. Otherwise, the mass (g) of the test piece before and after the abrasion test can be measured in the same manner as the DIN-53516 abrasion test.
 シール部材は、25℃の高圧摩耗試験における摩耗量Waが0.010cm/N・m~0.070cm/N・mであり、摩耗量Waは、下記式(5)を満たすことができる。さらに、シール部材は、摩耗量Waが0.020cm/N・m~0.065cm/N・mであることができ、特に0.020cm/N・m~0.060cm/N・mであることができる。
Wa=(g−g)/(P・L・d)  (5)
:摩耗前の試験片の質量(g)
:摩耗後の試験片の質量(g)
P:おもりの設定荷重(N)
L:摩耗距離(m)
d:比重(g/cm)。
The seal member has a wear amount Wa of 0.010 cm 3 / N · m to 0.070 cm 3 / N · m in a high-pressure wear test at 25 ° C., and the wear amount Wa can satisfy the following formula (5). . Further, the seal member, the wear amount Wa is able is 0.020cm 3 / N · m ~ 0.065cm 3 / N · m, in particular 0.020cm 3 / N · m ~ 0.060cm 3 / N · m.
Wa = (g 2 −g 1 ) / (P · L · d) (5)
g 1 : Mass of the test piece before wear (g)
g 2 : Mass of the test piece after wear (g)
P: Set weight of weight (N)
L: Wear distance (m)
d: Specific gravity (g / cm 3 ).
 シール部材を成形するための炭素繊維複合材料は、FEPMと、該FEPM中に均一に分散した気相成長法によって製造されたカーボンナノファイバーと、を含む。未架橋体の炭素繊維複合材料は、パルス法NMRを用いてハーンエコー法によって150℃、観測核がHで測定した、特性緩和時間(T2’HE/150℃)が500~1500μ秒であることができ、さらに500~1400μ秒であることができ、特に500~1300μ秒であることができる。なお、特性緩和時間(T2’HE)における「HE」は、後述するソリッドエコー法の「SE」と区別するために用いた表記である。ハーンエコー法による特性緩和時間(T2’HE)は、FEPMの分子運動性を示す尺度であって、多成分系の平均的緩和時間を表す。したがって、特性緩和時間(T2’HE)は、ハーンエコー法によって検出された複数の緩和時間の平均値であり、「1/T2’HE=fa/T2a+fb/T2b+fc/T2c・・・」と表すことができる。カーボンナノファイバーが分散した炭素繊維複合材料は、マトリックスであるFEPM分子をカーボンナノファイバーが拘束する力を表すと言え、(T2’HE/150℃)がFEPM単体に比べてカーボンナノファイバーの配合量に応じて小さくなる。したがって、カーボンナノファイバーを混合した炭素繊維複合材料であっても、カーボンナノファイバーが均一に分散していない場合にはFEPM分子を全体に拘束しにくいため、150℃におけるハーンエコー法による特性緩和時間(T2’HE/150℃)がFEPM単体と大きく変わらないと考えられる。 The carbon fiber composite material for molding the seal member includes FEPM and carbon nanofibers produced by a vapor growth method uniformly dispersed in the FEPM. The uncrosslinked carbon fiber composite material has a characteristic relaxation time (T2′HE / 150 ° C.) of 500 to 1500 μsec, measured at 150 ° C. by the Hahn echo method using pulsed NMR and at 1 H of the observation nucleus. Furthermore, it can be 500 to 1400 μsec, and particularly 500 to 1300 μsec. Note that “HE” in the characteristic relaxation time (T2′HE) is a notation used to distinguish from “SE” in the solid echo method described later. The characteristic relaxation time (T2′HE) by the Hahn-echo method is a scale indicating the molecular mobility of FEPM and represents the average relaxation time of a multicomponent system. Therefore, the characteristic relaxation time (T2′HE) is an average value of a plurality of relaxation times detected by the Hahn-echo method, and is expressed as “1 / T2′HE = fa / T2a + fb / T2b + fc / T2c. Can do. It can be said that the carbon fiber composite material in which carbon nanofibers are dispersed represents the force that the carbon nanofibers bind to the matrix FEPM molecules, and (T2'HE / 150 ° C) is a blending amount of carbon nanofibers compared to the FEPM alone. It becomes small according to. Therefore, even in the case of a carbon fiber composite material in which carbon nanofibers are mixed, if the carbon nanofibers are not uniformly dispersed, it is difficult to constrain the FEPM molecules as a whole. It is considered that (T2′HE / 150 ° C.) is not significantly different from that of FEPM alone.
 未架橋体の炭素繊維複合材料は、パルス法NMRを用いてソリッドエコー法によって150℃、観測核がHで測定した、特性緩和時間(T2’SE/150℃)が0~1000μ秒であることができ、さらに特性緩和時間(T2’SE/150℃)が0~800μ秒であることができ、特性緩和時間(T2’SE/150℃)5~500μ秒であることができる。ソリッドエコー法による特性緩和時間(T2’SE)は、カーボンナノファイバーによる磁場の不均一性を示す尺度であって、多成分系の平均的緩和時間を表す。したがって、特性緩和時間(T2’SE)は、ハーンエコー法によって検出された複数の緩和時間の平均値であり、「1/T2’SE=fa/T2a+fb/T2b+fc/T2c・・・」と表すことができる。カーボンナノファイバーが分散した炭素繊維複合材料は、カーボンナノファイバーが均一に分散することで磁場の不均一性が起こり、150℃におけるソリッドエコー法による特性緩和時間(T2’SE/150℃)がFEPM単体に比べてカーボンナノファイバーの配合量に応じて小さくなる。また、カーボンナノファイバーを混合した炭素繊維複合材料であっても、カーボンナノファイバーが均一に分散していない場合には磁場の不均一性があまり導入されず、したがって150℃におけるソリッドエコー法による特性緩和時間(T2’SE/150℃)がFEPM単体とほとんど変わらないと考えられる。 The uncrosslinked carbon fiber composite material has a characteristic relaxation time (T2′SE / 150 ° C.) of 0 to 1000 μsec, measured at 150 ° C. by a solid echo method using pulsed NMR and at an observation nucleus of 1 H. Furthermore, the characteristic relaxation time (T2′SE / 150 ° C.) can be 0 to 800 μsec, and the characteristic relaxation time (T2′SE / 150 ° C.) can be 5 to 500 μsec. The characteristic relaxation time (T2′SE) by the solid echo method is a measure showing the non-uniformity of the magnetic field due to the carbon nanofibers, and represents the average relaxation time of a multicomponent system. Therefore, the characteristic relaxation time (T2′SE) is an average value of a plurality of relaxation times detected by the Hahn echo method, and is expressed as “1 / T2′SE = fa / T2a + fb / T2b + fc / T2c. Can do. Carbon fiber composite material in which carbon nanofibers are dispersed causes magnetic field inhomogeneity due to the uniform dispersion of carbon nanofibers, and the characteristic relaxation time (T2'SE / 150 ° C) by solid echo method at 150 ° C is FEPM. It becomes smaller according to the compounding quantity of carbon nanofiber than a simple substance. In addition, even when carbon nanofibers are mixed with carbon nanofibers, non-uniformity of the magnetic field is not introduced when carbon nanofibers are not uniformly dispersed. It is considered that the relaxation time (T2′SE / 150 ° C.) is almost the same as that of FEPM alone.
 また、カーボンナノファイバーの周囲には、FEPMの一部が混練中に分子鎖切断され、それによって生成されたフリーラジカルがカーボンナノファイバーの表面をアタックして吸着したFEPM分子の凝集体と考えられる界面相が形成される。界面相は、例えばエラストマーとカーボンブラックとを混練した際にカーボンブラックの周囲に形成されるバウンドラバーに類似するものと考えられる。このような界面相は、カーボンナノファイバーを被覆して保護し、また、カーボンナノファイバーを所定量以上配合することで界面相同士が連鎖した界面相に囲まれてナノメートルサイズに分割されたFEPMの小さなセルを形成すると推定される。このような小さなセルが炭素繊維複合材料の全体にほぼ均質に形成されることで、単に2つの材料を複合したことによる効果を超えた効果を期待することができる。 Further, around the carbon nanofibers, a part of FEPM is considered to be an aggregate of FEPM molecules in which molecular chains are broken during kneading, and free radicals generated thereby attack and adsorb the surface of the carbon nanofibers. An interfacial phase is formed. The interfacial phase is considered to be similar to a bound rubber formed around carbon black when, for example, an elastomer and carbon black are kneaded. Such an interfacial phase is coated and protected with carbon nanofibers, and FEPM divided into nanometer sizes surrounded by an interfacial phase in which the interfacial phases are chained by blending a predetermined amount or more of carbon nanofibers. Are estimated to form small cells. By forming such small cells almost uniformly throughout the carbon fiber composite material, it is possible to expect an effect that exceeds the effect of simply combining the two materials.
 さらに、本発明の一実施形態によれば、シール材は、過酷な条件な備えた油田用途に使用可能である。上述のように、このシール材は、175℃以上の高温における高い機械的特性を備えるだけでなく、25℃以下の比較的低温や5000psi以上の高圧でも高い機械的特性を維持したり、又は、高い耐摩耗性、低い摩擦性、HS、CH又はCOに対する高い耐ガス性、高い耐薬品性、若しくは、高い熱伝導性を有していたりするからである。以下に、油田用途を詳述する。 Furthermore, according to one Embodiment of this invention, a sealing material can be used for the oil field use with which severe conditions were equipped. As described above, this sealant not only has high mechanical properties at a high temperature of 175 ° C. or higher, but also maintains high mechanical properties even at a relatively low temperature of 25 ° C. or lower and a high pressure of 5000 psi or higher, or This is because it has high wear resistance, low friction, high gas resistance against H 2 S, CH 4 or CO 2 , high chemical resistance, or high thermal conductivity. The oil field application will be described in detail below.
 (VI)油田用途
油田用途のシール部材は、例えば、油田装置(Oilfield Apparatus)に用いることができる。油田装置のシール部材は、静的シール部材及び動的シール部材に用いることができ、例えば、検層装置(logging tool)やモータのような回転機械やピストンのような往復動機械などに用いる場合には動的シール部材において高い効果を得ることができる。油田装置の代表的な実施形態について以下に説明する。
(VI) Oil field use The seal member for oil field use can be used for an oil field apparatus (Oilfield Apparatus), for example. The seal member of the oil field device can be used for a static seal member and a dynamic seal member. For example, when used for a logging machine, a rotary machine such as a motor, or a reciprocating machine such as a piston. A high effect can be obtained in the dynamic seal member. A typical embodiment of the oil field apparatus will be described below.
 検層装置は、例えば掘削された坑井(borehole)内及び坑井周辺の地層、油層などの物理的特性や坑井あるいはケーシングの幾何学的特性(孔径、方位、傾斜等)、油層の流れの挙動などを深度毎に記録するための装置であって、例えば油田(oilfield)において用いることができる。油田用途の検層装置としては、例えば、図7に示す海底(subsea)用途と、図10に示す地下(underground)用途と、を挙げることができる。検層装置には、ワイヤーライン検層(Wireline log/logging)や泥水検層(Mud logging)などがあり、測定機器が掘削アッセンブリーに装備されている掘削中検層(LWD:Logging While Drilling)や掘削中測定(MWD:Measurement While Drilling)などがある。これらの検層装置は、地中の深い位置で作業するため、周囲環境はシール部材にとって苛酷になり、高温特に175℃以上にさらされた状態で摩擦に耐えて液密状態を保たなければならない場合があり、HNBRの複合材よりも高い耐熱性が要求されることがある。 For example, the logging equipment is used for physical properties such as formations and oil reservoirs in and around excavated boreholes, geometric properties of wells or casings (bore diameter, orientation, slope, etc.), flow of oil reservoirs, etc. Is a device for recording the behavior of each at every depth, and can be used, for example, in an oil field. Examples of the logging device for oil field use include the subsea use shown in FIG. 7 and the underground use shown in FIG. The logging equipment includes wireline logging (Wireline logging / logging), mud logging (Mud logging), etc., and logging logging (LWD: Logging Willing Drilling) where measuring equipment is equipped in the drilling assembly. There are measurements during excavation (MWD: Measurement While Drilling). Since these logging devices work at a deep depth in the ground, the surrounding environment becomes severe for the seal member, and it is necessary to withstand friction and maintain a liquid-tight state in a state exposed to high temperature, particularly 175 ° C. or more. In some cases, heat resistance higher than that of the HNBR composite material may be required.
 図7~図10を用いて、検層装置に用いられる本発明の一実施形態のシール部材について説明する。図7は、本発明の一実施形態にかかる海底用途の検層装置を模式的に示す断面図である。図8は、本発明の一実施形態にかかる図7の検層装置を模式的に示す部分断面図である。図9は、図8の検層装置のマッドモータを模式的に示すX−X’断面図である。図10は、本発明の一実施形態にかかる地下用途の検層装置を模式的に示す断面図である。 7 to 10, the seal member according to an embodiment of the present invention used in the logging apparatus will be described. FIG. 7 is a cross-sectional view schematically showing a logging tool for seabed use according to an embodiment of the present invention. FIG. 8 is a partial cross-sectional view schematically showing the logging apparatus of FIG. 7 according to one embodiment of the present invention. FIG. 9 is an X-X ′ cross-sectional view schematically showing a mud motor of the logging apparatus of FIG. 8. FIG. 10 is a cross-sectional view schematically showing an underground logging tool according to an embodiment of the present invention.
 図7に示すように、海洋における、掘削アッセンブリーに装備された測定機器による地下資源の探査は、例えば海152に浮くプラットホーム150から海底154に設けられた縦穴や横穴などで構成される坑井156内に検層装置として例えば穴底組立体(BHA:bottom hole assembly)160を進入させ、地中の地質構造などを探査し、目標物質である例えば石油の有無を探査する。穴底組立体160は、例えばプラットホーム150から延びる長いドリル・ストリング(drill string)153の先端に固定され、複数のモジュールを有し、例えば、先端から順に、ドリルビット162、回転操作システム(RSS:rotary steerable system)164、マッドモータ(Mud moter)166、掘削中測定モジュール168、及び掘削中検層モジュール170を連結して有することができる。ドリルビット162は、坑井156の坑底部156aにおいて回転によって掘削を進めることができる。 As shown in FIG. 7, the exploration of underground resources by the measuring equipment installed in the drilling assembly in the ocean is, for example, a well 156 composed of a vertical hole or a horizontal hole provided in the seabed 154 from the platform 150 floating in the sea 152. For example, a bottom hole assembly (BHA) 160 is entered as a logging device, and the underground geological structure and the like are searched for, for example, the presence or absence of petroleum as a target material. The hole bottom assembly 160 is fixed to the tip of a long drill string 153 extending from the platform 150, for example, and has a plurality of modules. For example, in order from the tip, a drill bit 162, a rotary operation system (RSS: A rotary steerable system 164, a mud motor 166, a measurement module 168 during excavation, and a logging module 170 during excavation may be connected. The drill bit 162 can advance excavation by rotation at the bottom portion 156 a of the well 156.
 図8に示す回転操作システム164は、ドリルビット162を回転させたまま一定の方向へビットを偏向させる図示しない偏向機構を有し、傾斜制御掘削を可能とするシステムである。回転操作システム164は、本発明の一実施形態のシール部材を適用することができる。回転操作システム164は、例えば最大約210℃において高い耐摩耗性をもったシール部材や、様々な泥水への暴露に対する高い耐薬品性を有するシール部材が必要である。従来のシール部材は、ゴムの摩耗及び断裂によって機能しなくなる傾向があった。特に、厳しい化学的環境においては、問題は深刻となる傾向があった。米国特許出願公開第2006/0157283号に示されているようなロータリー・ステアラブル・システムのためのシール部材は、高い摺動速度(~100mm/sec)で機能を果たすことが要求されるが、使用温度におけるエラストマーの特性低下及び掘削流体の摩耗特性により、シール部材の前記問題が助長される傾向があった。これに対して、本発明の一実施形態のシール部材を回転操作システム164のシール部材に用いることによって、上述のシール部材の特性に加えて、粒子を含む掘削マッドから密閉するための高い耐摩耗性、広範な掘削流体に対するより優れた耐薬品性、及び断裂を減少させる高温におけるより優れた機械的特性により、上記の諸課題を解決することができる。回転操作システム164は、回転しない円筒形の筐体164aと、筐体164a内を貫通してマッドモータ166の回転力をドリルビット162へ伝える伝達軸164bと、伝達軸164bを筐体164a内で回転可能に支持するシール部材164cとを有する。シール部材164cは、筐体164aに設けられた環状溝にはめ込まれた例えば無端状のOリングであることができ、回転する伝達軸164bの表面との間で密封する機能を有する。このシール部材164cが前記(IV)で得られたシール部材であることで、高温例えば200℃程度までの地下の過酷な環境においても耐摩耗性に優れるため、長時間密封機能を維持することができる。このようなシール部材の使用は、例えば、本明細書において全体として援用される米国特許出願公開第2006/0157283号と米国特許第7,188,685号とにおいて見られる。より詳細に述べると、米国特許出願公開第2006/0157283号の図5は、ロータリー可変アセンブリのバイアス装置の穴30を密閉するピストン36上のシール部材38を示している。米国特許第7,188,685号は、バイアス装置を示している。 8 is a system that has a deflection mechanism (not shown) that deflects the bit in a certain direction while rotating the drill bit 162, and enables tilt-controlled excavation. The rotation operation system 164 can apply the seal member of one embodiment of the present invention. The rotary operation system 164 requires a seal member having high wear resistance at, for example, a maximum of about 210 ° C., and a seal member having high chemical resistance against exposure to various muddy water. Conventional seal members tend to fail due to rubber wear and tear. In particular, in harsh chemical environments, the problem tended to be serious. Sealing members for rotary steerable systems such as those shown in US 2006/0157283 are required to function at high sliding speeds (~ 100 mm / sec) The above problems of seal members tended to be exacerbated by the degradation of elastomeric properties at temperature and the wear characteristics of drilling fluids. In contrast, by using the seal member of one embodiment of the present invention for the seal member of the rotary operation system 164, in addition to the above-described characteristics of the seal member, high wear resistance for sealing from a drilling mud containing particles. The above problems can be solved by the performance, the better chemical resistance to a wide range of drilling fluids, and the better mechanical properties at high temperatures that reduce tearing. The rotation operation system 164 includes a non-rotating cylindrical casing 164a, a transmission shaft 164b that passes through the casing 164a and transmits the rotational force of the mud motor 166 to the drill bit 162, and the transmission shaft 164b within the casing 164a. And a seal member 164c that is rotatably supported. The seal member 164c can be, for example, an endless O-ring fitted in an annular groove provided in the housing 164a, and has a function of sealing with the surface of the rotating transmission shaft 164b. Since this seal member 164c is the seal member obtained in (IV) above, it has excellent wear resistance even in a severe underground environment at a high temperature, for example, up to about 200 ° C., so that the sealing function can be maintained for a long time. it can. The use of such seal members is found, for example, in US Patent Application Publication No. 2006/0157283 and US Pat. No. 7,188,685, which are incorporated herein in their entirety. More specifically, FIG. 5 of US 2006/0157283 shows a sealing member 38 on the piston 36 that seals the hole 30 of the biasing device of the rotary variable assembly. U.S. Pat. No. 7,188,685 shows a biasing device.
 図9に示すマッドモータ166は、ダウンホール・モーターとも呼ばれ、泥水の流力を動力として、ドリルビット162を回転させるための流体駆動モータである。マッドモータ166は、例えば、偏距坑井掘削用(for deviated wellbore drilling applications)のマッドモータを挙げることができ、本発明の一実施形態のシール部材を適用することができる。マッドモータ166は、例えば、最大約150℃~200℃の高温特性を持ったシール部材、極度の摩耗条件下で機能することができるシール部材、あるいは様々な掘削マッドを取り扱うための耐薬品性を有するシール部材が必要である。従来のマッドモータのシール部材は、例えば、シール部材の膨張、クラック及びシール部材本体の大きな断片の脱落(チャンキング現象)による密閉不足、高温における摩耗による密閉不足、そしてシール部材の摩耗作用によるシール部材の局部加熱及びさらなる劣化が生じる傾向があった。これに対して、本発明の一実施形態のシール部材をマッドモータ166のシール部材に用いることによって、上述のシール部材の特性に加えて、高温におけるより優れた機械的特性により断裂及び脱落を減少させ、優れた耐薬品性による広範な掘削流体に対する耐性、より優れた熱伝導性による局部加熱部分の減少などにより、上記の諸課題を解決することができる。マッドモータ166は、円筒形の筐体166aと、筐体166aの内周面には管状のステータ166が固定され、ステータ166dの内側にはロータ166cが回転可能に配置されている。ステータ166bの内周面166dは、例えば5本の螺旋状の溝が回転操作システム164側から掘削中測定モジュール168側へと延びている。ステータ166bは、前記(IV)で得られた本発明の一実施形態のシール部材を用いることができる。例えば金属製のロータ166cの外周面166eは、例えば4本の螺旋状に突出したねじ山を有し、ステータ166bの内周面166dの溝に沿って配置されている。ステータ166bの内周面166dとロータ166cの外周面166eとは、図9のように一部で接触し、内周面166dと外周面166eとの隙間166fに泥水を流す流路が形成される。この隙間166fを流れる泥水とロータ166cの外周面166eが接触することによって、ロータ166cがステータ166b内を例えば図8,図9の矢印の方向へ偏心回転することができる。このとき、ステータ166bの内周面166dとロータ166cの外周面166eとは、接触し、かつ、泥水によって偏心回転するため、ステータ166bの内周面166dはいわゆるシール部材と同様に機能する。したがって、前記したような地下の過酷な環境においても耐摩耗性に優れるため、マッドモータ166のロータ166cを長時間回転駆動させることができる。なお、本実施の形態においては、流体駆動モータとしてマッドモータ166を用いて説明したが、同様の構造を有しかつ流体を用いて駆動する他の流体駆動モータに採用することができ、また、ロータを前記(IV)で得られたシール部材で形成し、ステータを例えば金属で形成することもできる。このようなシール部材の使用は、例えば、本明細書において全体として援用される米国特許出願公開第2006/0216178号と、米国特許第6,604,922号とにおいて見られる。より詳細に述べると、米国特許出願公開第2006/0216178号の図3は、ロータを密閉してロータ上に掘削トルクを発生するエラストマーステータ(ライニング)としてのシール部材を示している。マッドは、ステータとロータの間を流れる。また、同じく図4は、ステータを密閉する、ロータに取り付けられたエラストマースリーブとしてのシール部材を示している。同じく図5は、ステータを密閉するロータ上のエラストマースリーブとしてのシール部材を示している。米国特許第6,604,922号の図4は、ステータに取り付けられたライナーの弾性層は密閉機能を有することを示し、この弾性層がシール部材として機能する。同じく図13は、エラストマー層からなるロータライニングが密閉機能を有することを示し、このエラストマー層がシール部材として機能する。 The mud motor 166 shown in FIG. 9 is also referred to as a downhole motor, and is a fluid drive motor for rotating the drill bit 162 using the fluid force of muddy water as power. For example, the mud motor 166 may be a mud motor for excursion of well-balanced wells (for wellwell drilling applications), and the seal member of one embodiment of the present invention can be applied. The mud motor 166 has, for example, a seal member having a high temperature characteristic of about 150 ° C. to 200 ° C. at maximum, a seal member capable of functioning under extreme wear conditions, or chemical resistance for handling various excavation muds. A sealing member is required. The sealing member of the conventional mud motor is, for example, insufficient sealing due to expansion of the sealing member, cracks and dropping of a large fragment of the sealing member body (chunking phenomenon), insufficient sealing due to wear at high temperature, and sealing due to the wear action of the sealing member. There was a tendency for local heating and further degradation of the members. On the other hand, by using the seal member of one embodiment of the present invention for the seal member of the mud motor 166, in addition to the above-described characteristics of the seal member, tearing and dropping are reduced due to superior mechanical characteristics at high temperatures. The above-mentioned problems can be solved by resistance to a wide range of drilling fluids with excellent chemical resistance and reduction of locally heated portions due to better thermal conductivity. The mud motor 166 has a cylindrical casing 166a, a tubular stator 166 fixed to the inner peripheral surface of the casing 166a, and a rotor 166c rotatably disposed inside the stator 166d. On the inner peripheral surface 166d of the stator 166b, for example, five spiral grooves extend from the rotary operation system 164 side to the measuring module 168 side during excavation. As the stator 166b, the seal member according to the embodiment of the present invention obtained in (IV) can be used. For example, the outer peripheral surface 166e of the metal rotor 166c has, for example, four spirally protruding threads and is disposed along the groove of the inner peripheral surface 166d of the stator 166b. The inner peripheral surface 166d of the stator 166b and the outer peripheral surface 166e of the rotor 166c are partly in contact as shown in FIG. 9, and a flow path for flowing muddy water is formed in the gap 166f between the inner peripheral surface 166d and the outer peripheral surface 166e. . When the muddy water flowing through the gap 166f and the outer peripheral surface 166e of the rotor 166c come into contact with each other, the rotor 166c can eccentrically rotate in the stator 166b, for example, in the direction of the arrows in FIGS. At this time, since the inner peripheral surface 166d of the stator 166b and the outer peripheral surface 166e of the rotor 166c are in contact with each other and rotate eccentrically by muddy water, the inner peripheral surface 166d of the stator 166b functions in the same manner as a so-called seal member. Therefore, since the wear resistance is excellent even in the harsh underground environment as described above, the rotor 166c of the mud motor 166 can be driven to rotate for a long time. In the present embodiment, the mud motor 166 has been described as the fluid drive motor. However, the fluid drive motor can be applied to other fluid drive motors that have the same structure and are driven using a fluid. The rotor may be formed of the seal member obtained in (IV), and the stator may be formed of, for example, metal. Use of such seal members is found, for example, in US Patent Application Publication No. 2006/0216178 and US Patent No. 6,604,922, which are incorporated herein in their entirety. More specifically, FIG. 3 of US Patent Application Publication No. 2006/0216178 shows a sealing member as an elastomeric stator (lining) that seals the rotor and generates drilling torque on the rotor. The mud flows between the stator and the rotor. FIG. 4 also shows a seal member as an elastomer sleeve attached to the rotor, which seals the stator. Similarly, FIG. 5 shows a sealing member as an elastomer sleeve on a rotor that seals the stator. FIG. 4 of US Pat. No. 6,604,922 shows that the elastic layer of the liner attached to the stator has a sealing function, and this elastic layer functions as a sealing member. Similarly, FIG. 13 shows that the rotor lining made of an elastomer layer has a sealing function, and this elastomer layer functions as a sealing member.
 掘削中測定モジュール168は、ドリルカラー(drill collar)と呼ばれる厚い壁を有するパイプの壁部に設けられたチャンバー168a内に図示しない掘削中測定器具が配置されている。掘削中測定器具は、各種センサを含み、例えば、方位、傾斜、ビットの向き、荷重、トルク、温度、圧力等の坑底データを計測するとともに、これらの計測データをリアルタイムに地上へ伝送することができる。 In the excavation measurement module 168, a measurement instrument during excavation (not shown) is arranged in a chamber 168a provided on a wall portion of a pipe having a thick wall called a drill collar. The measuring instrument during excavation includes various sensors, for example, measuring bottom hole data such as heading, inclination, bit direction, load, torque, temperature, pressure, etc., and transmitting these measurement data to the ground in real time. Can do.
 掘削中検層モジュール170は、ドリルカラー(drill collar)と呼ばれる厚い壁を有するパイプの壁部に設けられたチャンバー170a内に図示しない掘削中検層器具が配置されている。掘削中検層器具は、各種センサを含み、例えば、比抵抗、孔隙率、音波速度及びガンマ線等を測定し、物理検層データを取得することができ、この物理検層データをリアルタイムに地上へ伝送することができる。 During the excavation logging module 170, a logging instrument during excavation (not shown) is arranged in a chamber 170a provided on a wall portion of a pipe having a thick wall called a drill collar. The logging tool during excavation includes various sensors, for example, can measure specific resistance, porosity, sonic velocity, gamma ray, etc., and acquire physical logging data. Can be transmitted.
 掘削中測定モジュール168及び掘削中検層モジュール170は、各種センサを泥水などから守るため、チャンバー168a,170a内において前記(IV)で得られた本発明の一実施形態のシール部材を用いることができる。 The measurement module 168 during excavation and the logging module 170 during excavation use the seal member of the embodiment of the present invention obtained in (IV) in the chambers 168a and 170a in order to protect various sensors from muddy water. it can.
 図10に示すように、地表155における、掘削アッセンブリーに装備された測定機器による地下資源の探査は、例えば坑井(borehole)156の上方に配置されたプラットホーム及びデリック組立体151と、デリック組立体151から地下に設けられた縦穴や横穴などで構成される坑井156内に配置された検層装置として例えば穴底組立体(BHA:bottom hole assembly)160と、を有する。デリック組立体151は、例えば、フック151aと、回転スイベル(rotary swivel)151bと、ケリー(kelly)151cと、回転テーブル151dと、を含むことができる。穴底組立体160は、例えばデリック組立体151から延びる長いドリル・ストリング(drill string)153の先端に固定される。ドリル・ストリング153の内部には、図示していないポンプから回転スイベル151bを介して泥水が送り込まれ、穴底組立体160の流体駆動モータを駆動させることができる。穴底組立体160については、基本的に図8~10において説明した海底用途の検層装置と同様であるので、ここでは説明を省略するが、地下用途の検層装置においても本発明の一実施形態のシール部材を採用することができる。なお、孔底組立体160は、一実施形態として、ドリルビット162と、回転操作システム164と、マッドモータ166と、掘削中測定モジュール168と、掘削中検層モジュール170と、を有する例について説明したが、これに限らず、検層用途に合わせて選択して組み合わせることができる。 As shown in FIG. 10, the exploration of underground resources on the ground surface 155 using the measurement equipment installed in the drilling assembly includes, for example, a platform and derrick assembly 151 disposed above a borehole 156, and a derrick assembly. For example, a well bottom assembly (BHA: bottom hole assembly) 160 is provided as a well logging device arranged in a well 156 constituted by vertical holes and horizontal holes provided underground from 151. The derrick assembly 151 can include, for example, a hook 151a, a rotary swivel 151b, a kelly 151c, and a rotary table 151d. The hole bottom assembly 160 is fixed to the tip of a long drill string 153 extending from the derrick assembly 151, for example. Inside the drill string 153, muddy water is fed from a pump (not shown) via the rotary swivel 151b, and the fluid drive motor of the hole bottom assembly 160 can be driven. The hole bottom assembly 160 is basically the same as the logging tool for seabed use described with reference to FIGS. 8 to 10 and therefore will not be described here. The seal member of the embodiment can be employed. In addition, the hole bottom assembly 160 demonstrates the example which has the drill bit 162, the rotation operation system 164, the mud motor 166, the measurement module 168 during excavation, and the logging module 170 during excavation as one Embodiment. However, it is not limited to this, and can be selected and combined according to the logging application.
 油田用途は、前記検層装置に限定されない。例えば、ワイヤーライン検層に用いられるダウンホール・トラクターに、本発明の一実施形態のシール部材を適用することができる。このようなダウンホール・トラクターの一例としては、シュルンベルジェ社のMaxTRAC又はTuffTRAC(いずれもシュルンベルジェ社の商標)がある。このようなダウンホール・トラクターは、高い耐摩耗性をもった往復動シール部材を、最大約175℃において、長期の運用年数と信頼性のために必要とする。 Oil field use is not limited to the above logging tool. For example, the seal member of one embodiment of the present invention can be applied to a downhole tractor used for wireline logging. An example of such a downhole tractor is Schlumberger MaxTRAC or TuffTRAC (both are trademarks of Schlumberger). Such a downhole tractor requires a reciprocating seal member having high wear resistance at a maximum of about 175 ° C. for long-term operation and reliability.
 これまでのシール部材は、ダウンホール・トラクターにあるシーリングピストンの表面に対して高度な研磨を必要としていた。このようにシール部材を研摩することで、製造の際に鏡面加工されたピストンやシリンダの表面の高い歩留まりにつながっていた。通常のエラストマーからなる従来のシール部材は、摩耗、漏洩、機器の寿命の低下、故障が発生していた。また、シール部材は、最大2000ft/hourの高い摺動速度で使用される場合もある。ダウンホール・トラクターに用いられるシール部材は、両側に油圧オイルが存在する状態又は一方の側に油圧オイルが存在し、他方の側に場合によっては粒子を含む泥水又は流体が存在する状態で機能する必要がある。また、トラクター作業においては、牽引距離よりも大きな摺動距離にわたって摺動シール部材が十分に機能することが必要となる。例えば、10,000フィートのトラクター作業では、シール部材は最大20,000フィート以下の累積摺動距離にわたって確実に機能することが求められる。さらに、シール部材は、通常、最大で200psiの差圧を受けることになる。 [To date, the sealing members required a high degree of polishing on the surface of the sealing piston in the downhole tractor. By polishing the seal member in this way, it has led to a high yield of the surface of the piston or cylinder that has been mirror-finished during manufacture. Conventional seal members made of ordinary elastomer have been worn out, leaked, have reduced device life, and have failed. Further, the seal member may be used at a high sliding speed of 2000 ft / hour at the maximum. Sealing members used in downhole tractors function in the presence of hydraulic oil on both sides or in the presence of hydraulic oil on one side and possibly in the presence of mud or fluid containing particles on the other side There is a need. In tractor work, it is necessary that the sliding seal member function sufficiently over a sliding distance larger than the towing distance. For example, in a 10,000 foot tractor operation, the seal member is required to function reliably over a cumulative sliding distance of up to 20,000 feet. In addition, the seal member will typically experience a differential pressure of up to 200 psi.
 これに対して、本発明の一実施形態のシール部材をダウンホール・トラクターに用いることによって、上述のシール部材の特性により、上記の諸課題を解決することができる。特に、密閉性のピストンや円筒の表面に対する加工が緩和され、製造費用を低減することができる。また、優れた耐摩耗性は、より長寿命かつ信頼できるシール機能に役立つことになる。さらに、長寿命は、低摩擦性によっても可能となる。 On the other hand, by using the seal member of one embodiment of the present invention for a downhole tractor, the above-described problems can be solved by the characteristics of the above-described seal member. In particular, the processing on the surface of the sealing piston and the cylinder is eased, and the manufacturing cost can be reduced. Excellent wear resistance also helps with a longer life and reliable sealing function. Further, a long life is possible due to low friction.
 このようなシール部材の使用は、例えば、本明細書において全体として援用される米国特許第6,179,055号において見られる。より詳細に述べると、この米国特許の図9A及び図10Aはピストン上のシール部材を示している。この特許の図9B,10B,12も同様である。この特許の図15,12,16Bは、管材及びハウジングを密封するピストン上のシール部材を示している。また、この米国特許の図16Bは、ロッド上のシール部材を示している。 The use of such seal members can be found, for example, in US Pat. No. 6,179,055, which is incorporated herein in its entirety. More specifically, FIGS. 9A and 10A of this US patent show a seal member on the piston. The same applies to FIGS. 9B, 10B and 12 of this patent. FIGS. 15, 12, and 16B of this patent show a sealing member on the piston that seals the tubing and housing. FIG. 16B of this US patent also shows a seal member on the rod.
 また、油田用途として、例えば、地層検査及び油層流体サンプリング機器(Formation testing and reservoir fluid sampling tool)にも、本発明の一実施形態のシール部材を適用することができる。このような機器は、例えば、シュルンベルジェ社のモジュラー・フォーメーション・ダイナミックス・テスター(MDT:シュルンベルジェ社の商標)を含む。このような地層検査及び油層流体サンプリング機器は、ポンプアウトモジュール及びその他ピストンにおいて、高い耐摩耗性を持ったシール部材を必要とする。また、地層検査及び油層流体サンプリング機器は、坑井を密封するために、高い耐摩耗性と最大約210℃の高温特性を持ったシール部材を必要とする。 In addition, as an oil field application, for example, the seal member of one embodiment of the present invention can be applied to formation testing and oil reservoir fluid sampling equipment (Formation testing and reservoir fluid sampling tool). Such devices include, for example, Schlumberger's Modular Formation Dynamics Tester (MDT: Trademark of Schlumberger). Such a geological survey and oil reservoir fluid sampling device requires a seal member having high wear resistance in the pump-out module and other pistons. In addition, formation inspection and oil reservoir fluid sampling instruments require seal members with high wear resistance and high temperature properties up to about 210 ° C. to seal wells.
 これまでのシール部材は、ポンプアウトモジュールの移動装置(displacement unit)のピストンにおいては、多数の往復動が、油層流体を移動し、抽出し、供給して、サンプリングと、機器作動と、分析とをしていた。通常のシール部材を使用した従来のピストンシール部材は摩耗し、限られた寿命後に機能しなくなる傾向があった。この問題は、より高い温度において顕著に発生した。また、流体中の粒子の存在は、シール部材の摩耗及び破損を加速した。 The conventional seal member is a piston of the displacement unit of the pump-out module. A large number of reciprocating motions move, extract, and supply the oil reservoir fluid, and perform sampling, instrument operation, analysis, I was doing. Conventional piston seal members using normal seal members tend to wear out and fail after a limited life. This problem was noticeable at higher temperatures. Also, the presence of particles in the fluid accelerated wear and breakage of the seal member.
 これに対して、本発明の一実施形態のシール部材を地層検査及び油層流体サンプリング機器に用いることによって、上述のシール部材の特性により、上記の諸課題を解決することができる。特に、高温において高い耐摩耗性を有するシール部材は、寿命を向上することができる。低摩擦性を有するシール部材は、摩耗の減少及び寿命を向上することができる。また、高温における高い機械的特性を有するシール部材は、寿命及び信頼性を向上することができる。さらに、高い耐薬品性を有するシール部材は、高温における油井及び流体へ暴露する使用もできる。 On the other hand, the above-mentioned problems can be solved by using the seal member according to the embodiment of the present invention for the geological examination and the oil reservoir fluid sampling device due to the characteristics of the seal member. In particular, a seal member having high wear resistance at high temperatures can improve the life. A seal member having low frictional properties can reduce wear and improve life. In addition, a seal member having high mechanical properties at high temperatures can improve the life and reliability. Furthermore, the sealing member having high chemical resistance can be used for exposure to oil wells and fluids at high temperatures.
 このようなシール部材の使用は、例えば、本明細書において全体として援用される米国特許第6,058,773号及び米国特許第3,653,436号において見られる。より詳細に述べると、米国特許第6,058,773号の図2は、ポンプアウトモジュールに設けられた移動装置(DU)内のシャトルピストン上の往復運シール部材を示している。また、米国特許第3,653,436号の図2、図3、図4は、マッドケーキでライニングされた坑井表面を密閉しているエラストマー部材を示している。 Such use of seal members can be found, for example, in US Pat. No. 6,058,773 and US Pat. No. 3,653,436, which are incorporated herein in their entirety. More specifically, FIG. 2 of US Pat. No. 6,058,773 shows a reciprocating seal member on a shuttle piston in a transfer unit (DU) provided in a pump-out module. FIGS. 2, 3, and 4 of US Pat. No. 3,653,436 show an elastomeric member that seals the surface of a well lined with a mud cake.
 また、油田用途として、例えば、その場流体サンプリングボトル(In situ fluid sampling bottles)及びその場流体分析・サンプリングボトル(In situ fluid analysis and sampling bottles)にも、本発明の一実施形態のシール部材を適用することができる。このような機器は、例えば、地層検査及び油層流体サンプリング機器やワイヤーライン検層に用いることができる。このようなその場流体サンプリングボトル及びその場流体分析・サンプリングボトルは、低温及び高温において、高圧での使用を可能とするシール部材を必要とする。また、このようなその場流体サンプリングボトル及びその場流体分析・サンプリングボトルは、産出された様々な流体に暴露された場合に、高い耐薬品性を有するシール部材を必要とする。さらに、このようなその場流体サンプリングボトル及びその場流体分析・サンプリングボトルは、耐ガス性を有するシール部材を必要とする。 In addition, as an oil field application, for example, in-situ fluid sampling bottles (In situ fluid sampling bottles) and in-situ fluid analysis / sampling bottles (In situ fluid analysis and sampling bottles) also include the seal member of one embodiment of the present invention. Can be applied. Such equipment can be used, for example, for geological inspection and oil reservoir fluid sampling equipment and wireline logging. Such in-situ fluid sampling bottles and in-situ fluid analysis / sampling bottles require a seal member that allows high pressure use at low and high temperatures. Further, such in-situ fluid sampling bottles and in-situ fluid analysis / sampling bottles require a seal member having high chemical resistance when exposed to various produced fluids. Furthermore, such in-situ fluid sampling bottles and in-situ fluid analysis / sampling bottles require a gas-resistant seal member.
 このようなその場流体サンプリングボトル及びその場流体分析・サンプリングボトルにおいて、油層流体は、高圧高温を有する現場の油層条件で回収されていた。これらのボトルを地表まで回収すると、温度が低下するけれども圧力は高いままであった。回収後、サンプルは他の貯蔵用、輸送用又は分析用の容器に移された。サンプルボトル内の摺動ピストン上のシール部材は、サンプルの回収中はサンプルの輸送中と同様に、以下に説明する重要な機能を担っていた。例えば、地表まで回収する際に高圧低温密封ができない場合の深海域等におけるサンプルのロス、回収時の地表におけるサンプルのロス、サンプルとの化学的な不適合性及びガス吸収による膨張によって生じる密閉不良によるサンプルのロス、ガス吸収したシール部材が膨張してピストンの摩擦と抗力が増加する、シール部材の過度の膨張によりサンプルをボトルから他の貯蔵場所又は分析装置に移す際に固着及び密閉不足又はその他の問題、及び作業時に複数のサンプルボトルが重ねて使用されことによる問題などがあった。回収時の地表におけるサンプルのロスは、特にサンプルがHS、CH,COなどの物質を含む場合に、何らかの問題につながる可能性があった。 In such in-situ fluid sampling bottles and in-situ fluid analysis / sampling bottles, the oil reservoir fluid has been recovered at the oil reservoir conditions in the field having high pressure and high temperature. When these bottles were recovered to the surface, the pressure remained high although the temperature decreased. After collection, the sample was transferred to another storage, transportation or analysis container. The seal member on the sliding piston in the sample bottle has an important function described below during the collection of the sample, as in the transport of the sample. For example, due to loss of sample in the deep sea area when high-pressure and low-temperature sealing is not possible when recovering to the surface, loss of sample on the surface at the time of recovery, chemical incompatibility with the sample, and poor sealing caused by expansion due to gas absorption Loss of sample, gas-absorbed seal member expands to increase piston friction and drag, excessive expansion of seal member causes poor adherence and seal or other when transferring sample from bottle to other storage location or analyzer And the problem that a plurality of sample bottles are used in piles at the time of work. Loss of sample on the surface at the time of recovery could lead to some problems, especially when the sample contains substances such as H 2 S, CH 4 , CO 2 .
 これに対して、本発明の一実施形態のシール部材をその場流体サンプリングボトル及びその場流体分析・サンプリングボトルに用いることによって、上述のシール部材の特性に加え、高い耐ガス性と、高い耐薬品性と、高圧高温要求特性を満たしながら優れた低温密閉性能を達成することにより、上記の諸課題を解決することができる。 On the other hand, by using the seal member of one embodiment of the present invention for the in-situ fluid sampling bottle and the in-situ fluid analysis / sampling bottle, in addition to the above-described characteristics of the seal member, high gas resistance and high resistance The above problems can be solved by achieving excellent low-temperature sealing performance while satisfying chemical properties and high-pressure and high-temperature required characteristics.
 このようなシール部材の使用は、例えば、本明細書において全体として援用される米国特許第6,058,773号、米国特許第4,860,581号、及び米国特許第6,467,544号(brown他)において見られる。より詳細に述べると、米国特許第6,058,773号の図7は、サンプルボトル内のピストン上のシール部材を示している。米国特許第4,860,581号の図2における2つのボトルからなる構成は、サンプルボトル内のピストン上のシール部材を示している。米国特許第6,467,544号の図1は、シール弁を示している。 The use of such seal members is described, for example, in US Pat. No. 6,058,773, US Pat. No. 4,860,581, and US Pat. No. 6,467,544, which are incorporated herein in their entirety. (Brown et al.). More specifically, FIG. 7 of US Pat. No. 6,058,773 shows a sealing member on a piston in a sample bottle. The two bottle configuration in FIG. 2 of US Pat. No. 4,860,581 shows a sealing member on a piston in the sample bottle. FIG. 1 of US Pat. No. 6,467,544 shows a seal valve.
 また、油田用途として、例えば、その場流体分析機器(IFA:InSitu Fluid Analysis tool)にも、本発明の一実施形態のシール部材を適用することができる。このようなその場流体分析機器は、ダウンホールPVT用の高い耐摩耗性及び耐ガス性を有するシール部材を必要とする。PVTは、圧力、体積、及び温度を分析することを意味する。また、その場流体分析機器は、産出した流体を取り扱うための高い耐薬品性有するシール部材を必要とする。さらに、その場流体分析機器は、高圧と最大約210℃の高温特性と高い耐ガス性とを持ったフローライン固定シール部材を必要とする。フローラインは、サンプリングした流体に暴露される領域のことである。 Also, as an oil field application, for example, the seal member of one embodiment of the present invention can be applied to in-situ fluid analysis equipment (IFA: In Situ Fluid Analysis tool). Such an in-situ fluid analysis instrument requires a seal member having high wear resistance and gas resistance for downhole PVT. PVT means analyzing pressure, volume, and temperature. Further, the in-situ fluid analyzer requires a seal member having high chemical resistance for handling the produced fluid. Further, the in-situ fluid analysis instrument requires a flow line fixed seal member having high pressure, high temperature characteristics up to about 210 ° C. and high gas resistance. A flow line is an area exposed to sampled fluid.
 その場流体分析機器は、例えば、ダウンホールPVTでは、油層流体サンプルを回収し、圧力を減少させてガス生成を開始させると共にバブルポイントを決定することが必要となっていた。減圧は非常に急速で例えば3000psi/分超であり、PVTサンプル室に直接接続されたシール部材において急激な減圧が生じることがあった。シール部材は、200以上のPVTサイクルに耐えることができなければならなかった。また、ダウンホールPVT用のシール部材は、急激な減圧によるガスによって機能しなくなることがあった。そのため、従来の市販のシール部材では、210℃でダウンホールPVTを行うことができなかった。従来のシール部材では、フローライン中において、膨張による不良及びガス透過による水泡形成が生じることがあった。 For example, in the downhole PVT, the in-situ fluid analysis instrument needs to collect the oil reservoir fluid sample, reduce the pressure, start gas generation, and determine the bubble point. The depressurization was very rapid, for example, greater than 3000 psi / min, and an abrupt depressurization could occur in the seal member directly connected to the PVT sample chamber. The seal member had to be able to withstand over 200 PVT cycles. In addition, the seal member for downhole PVT sometimes fails to function due to the gas due to sudden pressure reduction. Therefore, the downhole PVT cannot be performed at 210 ° C. with a conventional commercially available sealing member. In the conventional sealing member, in the flow line, a defect due to expansion and water bubble formation due to gas permeation may occur.
 これに対して、本発明の一実施形態のシール部材をその場流体分析機器に用いることによって、上記の諸課題を解決することができる。高圧高温における機械的特性が優れているシール部材は、膨張傾向を減少することができる。カーボンナノファイバーによってシール部材中の空隙が減少したシール部材は、耐ガス性を向上することができる。シール部材の材料特性の向上によって、膨張及び急激な減圧に対する耐性を向上することができる。耐薬品性に優れたシール部材は、広範な産出流体に対して耐薬品性を向上することができる。 On the other hand, the above-described problems can be solved by using the seal member according to the embodiment of the present invention for the in-situ fluid analysis instrument. A sealing member having excellent mechanical properties at high pressure and high temperature can reduce the expansion tendency. The seal member in which the voids in the seal member are reduced by the carbon nanofiber can improve the gas resistance. By improving the material characteristics of the seal member, it is possible to improve resistance to expansion and sudden pressure reduction. A sealing member having excellent chemical resistance can improve chemical resistance against a wide range of produced fluids.
 このようなシール部材の使用は、例えば、本明細書において全体として援用される米国特許出願公開第2009/0078412号、米国特許第6,758,090号、米国特許第4,782,695号、及び米国特許第7,461,547号において見られる。より詳細に述べると、米国特許出願公開第2009/0078412号の図7は弁上のシール部材を示し、図5はピストンシール装置上のシール部材を示している。米国特許第6,758,090号の図21aは、弁及びピストン上のシール部材を示している。米国特許第4,782,695号は、ニードルとPVT処理室の間のシール部材を示している。米国特許第7,461,547号は、PVT分析用PVCU(圧力体積制御装置)内のピストンスリーブ装置のシール部材として、PVCUにおいて流体を隔離するための弁上のシール部材を示している。 The use of such seal members can be found, for example, in U.S. Patent Application Publication No. 2009/0078412, U.S. Patent No. 6,758,090, U.S. Pat. No. 4,782,695, incorporated herein in its entirety. And in US Pat. No. 7,461,547. More specifically, FIG. 7 of US 2009/0078412 shows a seal member on a valve and FIG. 5 shows a seal member on a piston seal device. FIG. 21a of US Pat. No. 6,758,090 shows a seal member on the valve and piston. U.S. Pat. No. 4,782,695 shows a seal member between a needle and a PVT processing chamber. U.S. Pat. No. 7,461,547 shows a seal member on a valve for isolating fluid in a PVCU as a seal member of a piston sleeve device in a PVCU (pressure volume control unit) for PVT analysis.
 また、油田用途として、例えば、ワイヤーライン検層、掘削中検層、坑井試験、穿孔(perforation)、サンプリング作業に用いられる全ての機器にも、本発明の一実施形態のシール部材を適用することができる。このような機器は、例えば、低温及び高温における高圧密閉を可能にするシール部材を必要とする。 In addition, as an oil field application, for example, the seal member of one embodiment of the present invention is applied to all devices used for wireline logging, logging during drilling, well testing, perforation, and sampling operations. be able to. Such devices require, for example, a sealing member that enables high pressure sealing at low and high temperatures.
 このような機器は、例えば、深海における利用では、低温から高温にかけて広い温度範囲で機能するシール部材が要求され、低温においてシール部材が正常に機能しない場合には、電子部品等の空気室への漏洩や機器の故障が生じる可能性があった。また、深海域や北海等の冷水域でのサンプリングにおいて、シール部材は、低温から高温にかけて広い温度範囲で機能しなければならなかった。このような水域において、地中で回収したときのサンプルは高温であるが、地表へ運んだサンプルの温度は地表温度まで低下するからである。例えば、シール部材による高圧低温における密閉が不十分な場合には、サンプルの漏洩やロス及びその他の問題が生じる可能性があった。このような機器の多くは、油圧オイルで充填され、100~200psiに加圧されるため、低温において十分に機能するシール部材を使用しない場合には、冷表面条件においてオイルの漏洩が生じたり、低温の深海部からの回収時に不具合が生じたりする可能性があった。 For such devices, for example, when used in the deep sea, a seal member that functions in a wide temperature range from low temperature to high temperature is required, and when the seal member does not function normally at low temperatures, Leakage and equipment failure could occur. Further, in sampling in a cold water region such as the deep sea region or the North Sea, the seal member has to function in a wide temperature range from a low temperature to a high temperature. This is because, in such a water area, the sample collected in the ground is hot, but the temperature of the sample carried to the ground surface decreases to the ground surface temperature. For example, when the sealing member is insufficiently sealed at high pressure and low temperature, there is a possibility that sample leakage or loss and other problems may occur. Many of these devices are filled with hydraulic oil and pressurized to 100-200 psi, so if you do not use a seal member that functions well at low temperatures, oil leakage may occur under cold surface conditions, There was a possibility of troubles during recovery from the low temperature deep sea.
 これに対して、本発明の一実施形態のシール部材をこのような機器に用いることによって、上述のシール部材の特性に加え、優れた低温密封性、高温におけるより優れた機械的特性による高圧高温における優れた密閉性によって、上記の諸課題を解決することができる。 On the other hand, by using the sealing member according to an embodiment of the present invention for such a device, in addition to the above-described characteristics of the sealing member, high-temperature high-temperature due to excellent low-temperature sealing properties and superior mechanical characteristics at high temperatures. The above-mentioned problems can be solved by the excellent hermeticity in.
 また、油田用途として、例えば、側壁コアリング機器(Side wall Coring Tool)にも、本発明の一実施形態のシール部材を適用することができる。このような側壁コアリング機器は、例えば、低摩擦性・高耐摩耗性を有するシール部材、長い寿命及び高い密閉信頼性を有するシール部材、最大約200℃の高温特性を持ったシール部材、あるいはデルタPが100psi以下(低速摺動)であるシール部材を必要とする。ここで、デルタPはピストンのシール部材両側における圧力差であり、例えばシール部材が低摩擦性を有することで、デルタPは小さくなり、すなわち小さな圧力差でピストンを動かすことができることを示す。 Also, as an oil field application, for example, the seal member of one embodiment of the present invention can be applied to a side wall coring tool. Such side wall coring equipment includes, for example, a seal member having low friction and high wear resistance, a seal member having a long life and high sealing reliability, a seal member having a high temperature characteristic of about 200 ° C. at maximum, or A seal member having a Delta P of 100 psi or less (low speed sliding) is required. Here, Delta P is a pressure difference between both sides of the seal member of the piston. For example, when the seal member has low friction, the Delta P becomes small, that is, the piston can be moved with a small pressure difference.
 このような側壁コアリング機器は、例えば、シール部材が固着又は摩擦力の増加をもたらす場合には、コアリングを停止する場合があった。また、各コアの掘削では、地層を切断する間、シール部材と係合させることによってドリルビットを回転・摺動させることが要求された。さらに、高いコア掘削効率を維持するためには、シール部材における低いシーリング摩擦性が重要であった。 Such a side wall coring device sometimes stops the coring when, for example, the sealing member causes adhesion or an increase in frictional force. In the drilling of each core, it was required to rotate and slide the drill bit by engaging with the seal member while cutting the formation. Furthermore, in order to maintain high core drilling efficiency, low sealing friction in the seal member was important.
 これに対して、本発明の一実施形態のシール部材をこのような機器に用いることによって、上述のシール部材の特性に加え、以下の特性によって、上記の諸課題を解決することができる。低摩擦性のシール部材は、コア掘削作業及び作動/移動のための電力消費量を減少することができる。また、低摩擦性のシール部材は、固着(sticking)及び転がり摩耗(rolling)の傾向が減少し、コア掘削作業の効率を向上することができる。さらに、高い耐摩耗性を有するシール部材は、摩耗性を有する流体中における密閉寿命を向上することができる。 On the other hand, by using the sealing member of one embodiment of the present invention for such a device, the above-described problems can be solved by the following characteristics in addition to the characteristics of the above-described sealing member. A low friction seal member can reduce power consumption for core drilling operations and actuation / movement. In addition, the low friction seal member can reduce the tendency of sticking and rolling and improve the efficiency of core excavation work. Furthermore, the seal member having high wear resistance can improve the sealing life in a fluid having wear properties.
 このようなシール部材の使用は、例えば、本明細書において全体として援用される米国特許公開第2009/0133932号、米国特許第4,714,119号、及び米国特許第7,191,831号において見られる。より詳細に述べると、米国特許公開第2009/0133932号の図4及び図5は、モータによって駆動されるコアリングアセンブリのコアリングビット上のシール部材を示している。米国特許第4,714,119号の図3B、図7、図8は、最大2000rpmでモータによって試錐孔からコアを採掘するように駆動されたドリルビット上のシール部材を示している。米国特許第7,191,831号の図2A及び図2Bは、モータによって駆動されるコアリングビット及びコアリングアセンブリ間のシール部材を示し、図3及び図4で符号201~204で示される部品の境界又は図8Bのビットとハウジング間には、本実施形態のシール部材のような低摩擦性シール部材を用いることで高い効率を達成することができる。 The use of such seal members is described, for example, in US Patent Publication No. 2009/0133932, US Pat. No. 4,714,119, and US Pat. No. 7,191,831, which are incorporated herein in their entirety. It can be seen. More particularly, FIGS. 4 and 5 of US Patent Publication No. 2009/0133932 show a seal member on a coring bit of a coring assembly driven by a motor. FIGS. 3B, 7 and 8 of U.S. Pat. No. 4,714,119 show a seal member on a drill bit that is driven to mine a core from a borehole by a motor at up to 2000 rpm. FIGS. 2A and 2B of U.S. Pat. No. 7,191,831 show a seal member between a coring bit and a coring assembly driven by a motor, and the parts denoted by reference numerals 201 to 204 in FIGS. High efficiency can be achieved by using a low friction seal member such as the seal member of this embodiment between the boundary of FIG.
 また、油田用途として、例えば、掘削用途のためのテレメトリー・発電機器(Telemetry and power generation tool in Drilling applications)にも、本発明の一実施形態のシール部材を適用することができる。このようなテレメトリー・発電機器は、例えば、高い耐摩耗性を有する回転シール部材、低摩擦性を有する回転・摺動シール部材、最大約175℃の高温特性を持ったシール部材を必要とする。 In addition, as an oil field application, for example, a telemetry / power generation tool for drilling application (Telemetry and power generation tool in Drilling applications) can be applied to the seal member of one embodiment of the present invention. Such telemetry / power generation equipment requires, for example, a rotating seal member having high wear resistance, a rotating / sliding seal member having low friction, and a seal member having a high temperature characteristic of about 175 ° C. at the maximum.
 このようなテレメトリー・発電機器、例えば、米国特許第7,083,008号に開示されているようなマッドパルステレメトリ装置は、オイルで充填された機器の内部を、回転シール部材によって坑井流体(掘削泥水)から保護することが要求された。しかしながら、坑井流体中に粒子が含まれるため、シール部材の摩耗や断裂が増加する傾向があった。また、シール部材の摩滅及び摩耗による不十分な密閉により、泥水が侵入すると機器の故障が発生する可能性があった。また、米国特許第7,083,008号に開示されているテレメトリー及び発電機器は、外部流体で内部油圧を補償するピストン上の摺動シール部材を使用して動作しており、シール部材の摩耗、摩滅、膨張、固着により、外部流体の侵入による機器の故障が発生する可能性があった。 Such a telemetry / power generation device, for example, a mud pulse telemetry device as disclosed in US Pat. No. 7,083,008, uses a well seal fluid ( Protection from drilling mud was required. However, since particles are contained in the well fluid, there is a tendency for wear and tear of the seal member to increase. In addition, due to insufficient sealing due to wear and wear of the seal member, there was a possibility that equipment failure would occur if muddy water entered. Also, the telemetry and power generation device disclosed in US Pat. No. 7,083,008 operates using a sliding seal member on the piston that compensates the internal hydraulic pressure with an external fluid, and wear of the seal member Due to wear, expansion, and sticking, there is a possibility that equipment failure occurs due to intrusion of external fluid.
 これに対して、本発明の一実施形態のシール部材をテレメトリー・発電機器に用いることによって、上述のシール部材の特性に加え、シール部材の耐摩耗性及び低摩擦性の向上により、より信頼性の高い作業及びより長いシール寿命が得られることによって、上記の諸課題を解決することができる。 On the other hand, by using the seal member according to one embodiment of the present invention for telemetry / power generation equipment, in addition to the above-described characteristics of the seal member, the wear resistance and the low friction property of the seal member are improved, thereby improving reliability. The above-mentioned problems can be solved by obtaining a high work and a longer seal life.
 このようなシール部材の使用は、例えば、本明細書において全体として援用される米国特許第7,083,008号において見られる。より詳細に述べると、米国特許第7,083,008号の図2はロータ間のシール部材/軸受アセンブリにおけるロータリシール部材を示し、図3aは圧力補償室内において油と坑井流体(マッド)を分離する補償形ピストン上の摺動シール部材を示している。 The use of such seal members can be found, for example, in US Pat. No. 7,083,008, which is incorporated herein in its entirety. More specifically, FIG. 2 of US Pat. No. 7,083,008 shows a rotary seal member in a rotor-to-rotor seal member / bearing assembly, and FIG. 3a shows oil and well fluid (mud) in a pressure compensation chamber. Fig. 5 shows a sliding seal member on a compensating piston to be separated.
 また、油田用途として、例えば、サンプリング及び地層検査のために坑井の一部を隔離するために使用される膨張パッカー(inflate packer)にも、本発明の一実施形態のシール部材を適用することができる。このような膨張パッカーにおけるシール部材は、坑井内の複数の位置における膨張・収縮の繰り返し作業を可能とするために高い摩耗強度と高温特性を有することが必要である。 In addition, as an oil field application, for example, the seal member according to an embodiment of the present invention is also applied to an expansion packer used to isolate a part of a well for sampling and geological inspection. Can do. The seal member in such an expansion packer needs to have high wear strength and high temperature characteristics in order to enable repeated operations of expansion and contraction at a plurality of positions in the well.
 従来のパッカーにおけるシール部材は、所望の高温特性を有していないために密閉機能に劣化・低下する傾向があった。また、従来のパッカーのシール部材は、所望の寿命を満たさない傾向があった。 The seal member in the conventional packer does not have the desired high-temperature characteristics, and thus has a tendency to deteriorate / decrease in the sealing function. Also, the conventional packer sealing members tend not to meet the desired life.
 これに対して、本発明の一実施形態のシール部材を膨張パッカーに用いることによって、シール部材がより優れた耐摩耗性及びより高い高温特性を有することにより、パッカー部材の寿命と信頼性を向上することができる。 In contrast, by using the seal member of one embodiment of the present invention for an expansion packer, the seal member has better wear resistance and higher high temperature characteristics, thereby improving the life and reliability of the packer member. can do.
 このようなシール部材の使用は、例えば、本明細書において全体として援用される米国特許第7,578,342号、米国特許第4,860,581号、及び米国特許第7,392,851号において見られる。より詳細に述べると、米国特許第7,578,342号の図1A、図1B、図1Cは、シール部材が膨張して発破孔を密閉し、符号16で示される部材を隔離することを示している。また、図4Aのエラストマーシール部材(パッカー部材)又は図7、図8の符号712、812で示される部材がシール部材を示している。米国特許第4,860,581号の図1は、坑井を密閉する膨張パッカー部材を示している。米国特許第7,392,851号は、膨張パッカー部材を示している。 The use of such seal members is described, for example, in US Pat. No. 7,578,342, US Pat. No. 4,860,581, and US Pat. No. 7,392,851, which are incorporated herein in their entirety. Seen in More specifically, FIGS. 1A, 1B, and 1C of US Pat. No. 7,578,342 show that the seal member expands to seal the blast hole and isolate the member indicated at 16. ing. Further, the elastomer seal member (packer member) in FIG. 4A or the members denoted by reference numerals 712 and 812 in FIGS. 7 and 8 indicate the seal members. FIG. 1 of US Pat. No. 4,860,581 shows an expansion packer member that seals a well. U.S. Patent No. 7,392,851 shows an expansion packer member.
 上記のように、本発明の実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できよう。したがって、このような変形例はすべて、本発明の範囲に含まれるものとする。 As described above, the embodiments of the present invention have been described in detail. However, those skilled in the art can easily understand that many modifications can be made without departing from the novel matters and effects of the present invention. Accordingly, all such modifications are intended to be included in the scope of the present invention.
以下、本発明の実施例について述べるが、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited thereto.
(1)カーボンナノファイバーの作成
触媒担持反応法(Substrate Reaction Method)によって平均直径15nm、頻度最大直径18nm、剛直度指数4.8、ラマンピーク比(D/G)1.7、窒素吸着比表面積260m/gの多層カーボンナノファイバー(表1において「MWCNT−1」で示す)を製造した。製造条件は以下の通りであった。酸化アルミニウムの粉体10.0gを、クエン酸鉄アンモニウム0.2gと七モリブデン酸六アンモニウム四水和物0.1gを純水300mlに溶解させて得た溶液中に20分間、超音波処理により分散させた。次いでこの溶液を撹拌しながら100℃で乾燥し、触媒粉体を得た。この触媒粉体をアルミナ製ボートに入れ、管状電気炉中に配置した。電気炉の反応管は内径3cm、長さ1.5mの石英管で、中央部600mm長さ方向が加熱領域であり、その加熱領域の中央部に触媒粉体を入れたボートを配置した。電気炉をアルゴン雰囲気下で800℃まで昇温させた後、エチレンとアルゴンの混合ガスを30分間流通し、平均直径15nmのカーボンナノチューブを得た。カーボンナノファイバーの黒鉛化は行っていない。カーボンナノファイバーは、電子顕微鏡(SEM)を用いて1.0kV、1万倍~10万倍で撮影した写真で繊維の屈曲していないほぼ直線状部分の長さとして隣接する欠陥の間隔Lxと繊維の直径Dを測定し、その結果を用いて、繊維の種類毎に200箇所の剛直度指数をLx/Dで計算し、その剛直度指数を測定箇所の数(200)で割って平均剛直度指数を求めた。
(1) Preparation of carbon nanofibers By means of a catalyst reaction method (Substrate Reaction Method), an average diameter of 15 nm, a frequency maximum diameter of 18 nm, a stiffness index of 4.8, a Raman peak ratio (D / G) of 1.7, a nitrogen adsorption specific surface area A 260 m 2 / g multilayer carbon nanofiber (shown as “MWCNT-1” in Table 1) was produced. The manufacturing conditions were as follows. By ultrasonication for 20 minutes in a solution obtained by dissolving 10.0 g of aluminum oxide powder, 0.2 g of ammonium iron citrate and 0.1 g of hexaammonium heptamolybdate tetrahydrate in 300 ml of pure water. Dispersed. Next, this solution was dried at 100 ° C. with stirring to obtain catalyst powder. The catalyst powder was placed in an alumina boat and placed in a tubular electric furnace. The reaction tube of the electric furnace was a quartz tube having an inner diameter of 3 cm and a length of 1.5 m, and the length direction in the central part was 600 mm, and a boat in which catalyst powder was put in the central part of the heating area was arranged. After raising the temperature of the electric furnace to 800 ° C. under an argon atmosphere, a mixed gas of ethylene and argon was circulated for 30 minutes to obtain carbon nanotubes having an average diameter of 15 nm. Graphitization of carbon nanofibers is not performed. The carbon nanofiber is a photograph taken with an electron microscope (SEM) at 1.0 kV and 10,000 times to 100,000 times, and is a length of a substantially straight portion where the fiber is not bent. The fiber diameter D is measured, and the result is used to calculate the stiffness index at 200 locations for each fiber type by Lx / D, and the stiffness index is divided by the number of measurement locations (200) to obtain the average stiffness The degree index was determined.
 浮遊流動反応法によって、平均直径が87nmの未処理のカーボンナノファイバーを製造した。製造条件は以下の通りであった。縦型加熱炉(内径17.0cm、長さ150cm)の頂部に、スプレーノズルを取り付ける。加熱炉の炉内壁温度(反応温度)を1000℃に昇温・維持し、スプレーノズルから4重量%のフェロセンを含有するベンゼンの液体原料20g/分を100L/分の水素ガスの流量で炉壁に直接噴霧(スプレー)散布するように供給する。この時のスプレーの形状は円錐側面状(ラッパ状ないし傘状)であり、ノズルの頂角が60°である。このような条件の下で、フェロセンは熱分解して鉄微粒子を作り、これがシード(種)となってベンゼンの熱分解による炭素から、カーボンナノファイバーを生成成長させ、カーボンナノファイバーを5分間隔で掻き落としながら1時間にわたって連続的に製造した。平均直径が87nmの前記未処理のカーボンナノファイバーを不活性ガス雰囲気中で前記浮遊流動反応法における反応温度より低温である1500℃で低温熱処理したカーボンナノファイバー(表1において「MWCNT−2」で示す)を得た。低温熱処理したカーボンナノファイバー(MWCNT−2)は、平均直径87nm、頻度最大直径90nm、剛直度指数9.9、表面の酸素濃度2.1atm%、ラマンピーク比(D/G)1.12、窒素吸着比表面積30m/gであった。 Untreated carbon nanofibers having an average diameter of 87 nm were produced by the floating flow reaction method. The manufacturing conditions were as follows. A spray nozzle is attached to the top of a vertical heating furnace (inner diameter 17.0 cm, length 150 cm). The furnace wall temperature (reaction temperature) is raised to and maintained at 1000 ° C., and 20 g / min of a benzene liquid raw material containing 4% by weight of ferrocene is supplied from the spray nozzle at a flow rate of hydrogen gas of 100 L / min. To be sprayed directly. The shape of the spray at this time is a conical side surface (trumpet shape or umbrella shape), and the apex angle of the nozzle is 60 °. Under these conditions, ferrocene is pyrolyzed to produce iron fine particles, which become seeds, which generate and grow carbon nanofibers from the carbon produced by pyrolysis of benzene, and the carbon nanofibers are spaced every 5 minutes. And continuously produced for 1 hour. Carbon nanofibers obtained by subjecting the untreated carbon nanofibers having an average diameter of 87 nm to low temperature heat treatment at 1500 ° C., which is lower than the reaction temperature in the floating flow reaction method, in an inert gas atmosphere (“MWCNT-2” in Table 1). Obtained). Carbon nanofibers (MWCNT-2) heat-treated at low temperature have an average diameter of 87 nm, a frequency maximum diameter of 90 nm, a stiffness index of 9.9, a surface oxygen concentration of 2.1 atm%, a Raman peak ratio (D / G) of 1.12, The nitrogen adsorption specific surface area was 30 m 2 / g.
 なお、低温熱処理したカーボンナノファイバー(MWNT−2)は、製造工程におけるハンドリング性を向上させるため、ロール処理によって造粒された。ロール処理は、カーボンナノファイバーを、2本のロールを有する乾式圧縮造粒機であるロールプレス機(ロール径は150mm、ロールは平滑ロール、ロール間隔は0mm、ロール間の設定圧縮力(線圧)は1960N/cm、ギア比1:1.3、ロール回転数3rpm)へ投入して直径が約2~3cmの板状の塊(カーボンナノファイバー集合体)に造粒し、さらに8枚の回転刃を有する破砕造粒整粒機(回転数15rpm、スクリーン5mm)を通して破砕し、粒径を整えた。 In addition, the carbon nanofiber (MWNT-2) subjected to low-temperature heat treatment was granulated by roll treatment in order to improve handling properties in the manufacturing process. The roll treatment is a roll press machine that is a dry compression granulator having two rolls of carbon nanofibers (roll diameter is 150 mm, rolls are smooth rolls, roll interval is 0 mm, set compression force between rolls (linear pressure) ) 1960 N / cm, gear ratio 1: 1.3, roll rotation speed 3 rpm) and granulated into a plate-like lump (carbon nanofiber aggregate) having a diameter of about 2 to 3 cm. The particle size was adjusted by crushing through a crushing granulator (rotating speed: 15 rpm, screen: 5 mm) having a rotary blade.
 (2)実施例1~7及び比較例1~4の炭素繊維複合材料サンプルの作製
実施例1~7及び比較例2~4サンプルとして、密閉式混練機のブラベンダーに、FEPM(表1,2では「FEPM」で示した)を投入し素練り後、表1、2に示す所定量のカーボンナノファイバー及びカーボンブラック(表1,2では「MT−CB」で示した)をFEPMに投入しチャンバー温度150℃~200℃で混練りの後、第1の混練工程を行いロールから取り出した。さらに、その混合物をオープンロール(ロール温度10~20℃、ロール間隔0.3mm)に巻きつけ、薄通しを繰り返し5回行なった。このとき、2本のロールの表面速度比を1.1とした。さらに、ロール間隙を1.1mmにセットして、薄通しして得られた炭素繊維複合材料を投入し、分出しした。分出ししたシートを120℃、2分間圧縮成形して厚さ1mmの実施例1~7及び比較例2~4の未架橋体の炭素繊維複合材料サンプルを得た。また、薄通しして得られた炭素繊維複合材料に架橋剤としてパーオキサイド(表1,2では「PO」で示した)2質量部及びトリアリルイソシアヌレート(表1,2では「TAIC」で示した)を加えて分出ししたシートをプレス加硫(170℃/20分)、二次加硫(200℃/4時間)で成形して厚さ1mmの実施例1~7及び比較例2~6のシート状の架橋体の炭素繊維複合材料サンプルを得た。なお、比較例1は、カーボンナノファイバーもカーボンブラックも配合しなかったが、同様の混練工程を行った。
(2) Preparation of carbon fiber composite material samples of Examples 1 to 7 and Comparative Examples 1 to 4 As Examples 1 to 7 and Comparative Examples 2 to 4 samples, FEPM (Table 1, 2) (indicated as “FEPM”) and after mastication, a predetermined amount of carbon nanofibers and carbon black (indicated in “MT-CB” in Tables 1 and 2) shown in Tables 1 and 2 are introduced into FEPM. Then, after kneading at a chamber temperature of 150 ° C. to 200 ° C., the first kneading step was performed and the product was taken out from the roll. Further, the mixture was wound around an open roll (roll temperature: 10 to 20 ° C., roll interval: 0.3 mm), and thinning was repeated 5 times. At this time, the surface speed ratio of the two rolls was set to 1.1. Furthermore, the carbon fiber composite material obtained by setting the roll gap to 1.1 mm and passing through was put and dispensed. The separated sheets were compression molded at 120 ° C. for 2 minutes to obtain uncrosslinked carbon fiber composite material samples of Examples 1 to 7 and Comparative Examples 2 to 4 having a thickness of 1 mm. Further, the carbon fiber composite material obtained by passing through the thin film was mixed with 2 parts by weight of peroxide (indicated as “PO” in Tables 1 and 2) and triallyl isocyanurate (in Tables 1 and 2 as “TAIC”). Sheets added and dispensed were formed by press vulcanization (170 ° C./20 minutes) and secondary vulcanization (200 ° C./4 hours), and Examples 1 to 7 having a thickness of 1 mm and Comparative Example 2 ~ 6 sheet-like crosslinked carbon fiber composite material samples were obtained. In Comparative Example 1, neither carbon nanofiber nor carbon black was blended, but the same kneading process was performed.
 表1,2において、「FEPM」は、フッ素含有量が57質量%、ムーニー粘度(ML1+4100℃)の中心値が95、ガラス転移点が−3℃の旭ガラス社製の3元系テトラフルオロエチレン−プロピレン共重合体(FEPM)であった。
また、表1,2において、「MT−CB」は、算術平均直径200nmのMTグレードのカーボンブラックであった。
In Tables 1 and 2, “FEPM” is a ternary tetramer made by Asahi Glass Co., Ltd. having a fluorine content of 57 mass%, a Mooney viscosity (ML 1 + 4 100 ° C.) of 95, and a glass transition point of −3 ° C. It was a fluoroethylene-propylene copolymer (FEPM).
In Tables 1 and 2, “MT-CB” was MT grade carbon black having an arithmetic average diameter of 200 nm.
 (3)パルス法NMRを用いた測定
実施例1~7及び比較例1~4の各未架橋体の炭素繊維複合材料サンプルについて、パルス法NMRを用いてハーンエコー法による測定を行った。この測定は、日本電子(株)製「JMN−MU25」を用いて行った。測定は、観測核がH、共鳴周波数が25MHz、90°パルス幅が2μsecの条件で行い、ハーンエコー法のパルスシーケンス(90°x−Pi−180°y)にて、減衰曲線を測定し、炭素繊維複合材料サンプルの150℃における特性緩和時間(T2’HE)を測定した。測定結果を表1に示す。また、パルス法NMRを用いてソリッドエコー法による測定を行った。この測定は、日本電子(株)製「JMN−MU25」を用いて行った。測定は、観測核がH、共鳴周波数が25MHz、90°パルス幅が2μsecの条件で行い、ソリッドエコー法のパルスシーケンス(90°x−Pi−90°y)にて、減衰曲線を測定し、炭素繊維複合材料サンプルの150℃における特性緩和時間(T2’SE)を検出した。測定結果を表1に示す。
(3) Measurement Using Pulsed Method NMR Measurement of each uncrosslinked carbon fiber composite material sample of Examples 1 to 7 and Comparative Examples 1 to 4 was performed by Hahn echo method using pulsed method NMR. This measurement was performed using “JMN-MU25” manufactured by JEOL Ltd. The measurement is carried out under the conditions that the observation nucleus is 1 H, the resonance frequency is 25 MHz, the 90 ° pulse width is 2 μsec, and the decay curve is measured by the pulse sequence of the Hahn-echo method (90 ° x-Pi-180 ° y). The characteristic relaxation time (T2′HE) at 150 ° C. of the carbon fiber composite material sample was measured. The measurement results are shown in Table 1. Moreover, the measurement by the solid echo method was performed using pulse method NMR. This measurement was performed using “JMN-MU25” manufactured by JEOL Ltd. The measurement is performed under the conditions of an observation nucleus of 1 H, a resonance frequency of 25 MHz, a 90 ° pulse width of 2 μsec, and an attenuation curve is measured by a pulse sequence (90 ° x-Pi-90 ° y) of the solid echo method. The characteristic relaxation time (T2′SE) at 150 ° C. of the carbon fiber composite material sample was detected. The measurement results are shown in Table 1.
 (4)硬度、50%モジュラス、100%モジュラス、引張強さ、破断伸び、圧縮永久ひずみ、引裂き強さ、引裂きエネルギー、引張疲労寿命及びDIN摩耗の測定
実施例1~7及び比較例1~4の架橋体の炭素繊維複合材料サンプルについて、ゴム硬度(Hs(JIS−A))をJIS K 6253に基づいて測定した。
(4) Measurement of hardness, 50% modulus, 100% modulus, tensile strength, elongation at break, compression set, tear strength, tear energy, tensile fatigue life and DIN wear Examples 1 to 7 and Comparative Examples 1 to 4 The rubber hardness (Hs (JIS-A)) of the carbon fiber composite material sample of the crosslinked product was measured based on JIS K 6253.
 実施例1~7及び比較例1~4の架橋体の炭素繊維複合材料サンプルをJIS6号形のダンベル形状に切り出した試験片について、東洋精機社製の引張試験機を用いて、23±2℃、引張速度500mm/minでJIS K6251に基づいて引張試験を行い引張強さ(表1,2において「TB(MPa)」で示した。)、破断伸び(表1,2において「EB(%)」で示した。)、50%応力(表1,2において「M50」で示した。)及び100%応力(表1,2において「M100」で示した。)を測定した。 About the test piece which cut the carbon fiber composite material sample of the bridge | crosslinking body of Examples 1-7 and Comparative Examples 1-4 into the dumbbell shape of JIS6 type | mold, it was 23 +/- 2 degreeC using the tensile tester by Toyo Seiki Co., Ltd. Tensile test was performed based on JIS K6251 at a tensile speed of 500 mm / min, tensile strength (indicated as “TB (MPa)” in Tables 1 and 2), and elongation at break (“EB (%) in Tables 1 and 2). ), 50% stress (shown as “M50” in Tables 1 and 2), and 100% stress (shown as “M100” in Tables 1 and 2).
 実施例1~7及び比較例1~4の架橋体の炭素繊維複合材料サンプルを直径29.0±0.5mm、厚さ12.5±0.5mmの試験片に切り出し、圧縮永久ひずみ(JIS K6262)を測定した。圧縮永久ひずみは、200℃、70時間、25%圧縮で行なった。 The crosslinked carbon fiber composite material samples of Examples 1 to 7 and Comparative Examples 1 to 4 were cut into test pieces having a diameter of 29.0 ± 0.5 mm and a thickness of 12.5 ± 0.5 mm, and compression set (JIS K6262) was measured. The compression set was performed at 200 ° C. for 70 hours at 25% compression.
 実施例1~7及び比較例1~4の架橋体の炭素繊維複合材料サンプルをJIS K 6252切込み無しのアングル形試験片に切り出し、島津製作所社製オートグラフAG−Xを用いて、引張速度500mm/minでJIS K 6252に準拠して引裂き試験を行い、最大引裂き力(N)を測定し、その測定結果を試験片の厚さ1mmで除して、引裂き強さ(N/mm)を測定し、縦軸を測定荷重(N)、横軸を試験機のストローク変位(mm)として引裂試験の荷重−変位曲線で囲まれる面積を引裂きエネルギーとした。 The carbon fiber composite material samples of the crosslinked bodies of Examples 1 to 7 and Comparative Examples 1 to 4 were cut into JIS K 6252 angle-shaped test pieces without incision, and using an autograph AG-X manufactured by Shimadzu Corporation, a tensile speed of 500 mm / Min is measured in accordance with JIS K 6252, the maximum tear force (N) is measured, and the measurement result is divided by the thickness of the test piece to measure the tear strength (N / mm). The area surrounded by the load-displacement curve of the tear test was taken as the tear energy, with the measured load (N) on the vertical axis and the stroke displacement (mm) on the horizontal axis on the horizontal axis.
 実施例1~7及び比較例1~4の架橋体の炭素繊維複合材料サンプルを、図5に示すような10mm×幅4mm×厚さ1mmの短冊状の試験片に切り出し、その試験片の長辺の中心から幅方向へ深さ1mmの切込みを入れ、SII社製TMA/SS6100試験機を用いて、大気雰囲気中、150℃、最大引張応力2N/mm、周波数1Hzの条件で繰り返し引っ張り荷重(0N/mm~2N/mm)をかけて引張疲労試験を行い、試験片が破断するかあるいは100万回までの引張回数を測定し、表1,2において「引張疲労寿命(回)」と示した。なお、引張回数が100万回になっても破断しなかった場合には、表1,2に「100万回中断」と記載した。 The crosslinked carbon fiber composite material samples of Examples 1 to 7 and Comparative Examples 1 to 4 were cut into strip-shaped test pieces of 10 mm × width 4 mm × thickness 1 mm as shown in FIG. A notch with a depth of 1 mm is made in the width direction from the center of the side, and using a TMA / SS6100 testing machine manufactured by SII, repeated tensile loads (at 150 ° C., maximum tensile stress 2 N / mm, frequency 1 Hz) in an air atmosphere 0 N / mm to 2 N / mm), and the test piece breaks or the number of pulls up to 1 million times is measured. In Tables 1 and 2, “Tensile fatigue life (times)” is shown. It was. In addition, when it did not break even when the number of tensions reached 1 million times, it was described in Tables 1 and 2 as “1 million interruptions”.
 実施例1、2、5~7及び比較例4の架橋体の炭素繊維複合材料サンプルを直径8mm、厚さ6mmの円盤状試験片に切り出し、5kgfのおもりを用いて49.0Nの荷重で試験片を回転する#100の円盤形砥石に25℃の水中で押しつけ、摩耗距離20mとして、その他はDIN−53516摩耗試験と同様にして、摩耗試験前後の試験片の質量(g)を計測した。摩耗量Wa=(g−g)/(P・L・d)で計算して求め、表1,2には「DIN摩耗」として記載した。摩耗量Waの単位は、cm/N・mである。なお、gは摩耗前の試験片の質量(g)、gは摩耗後の試験片の質量(g)、Pはおもりの設定荷重(49N)、Lは摩耗距離(m)、dは比重(g/cm)であった。 The crosslinked carbon fiber composite material samples of Examples 1, 2, 5 to 7 and Comparative Example 4 were cut into a disk-shaped test piece having a diameter of 8 mm and a thickness of 6 mm, and tested at a load of 49.0 N using a 5 kgf weight. The mass (g) of the test piece before and after the wear test was measured in the same manner as the DIN-53516 wear test except that the wear distance was 20 m and pressed against a # 100 disk-shaped grindstone rotating the piece in water of 25 ° C. The amount of wear Wa = (g 2 −g 1 ) / (P · L · d) was obtained by calculation and listed as “DIN wear” in Tables 1 and 2. The unit of the wear amount Wa is cm 3 / N · m. The mass of g 1 is a front wear test piece (g), the mass of g 2 are after the abrasion test specimen (g), P is the weight of the set load (49N), L is the wear length (m), d is Specific gravity (g / cm 3 ).
 実施例1,5及び比較例4の架橋体の炭素繊維複合材料サンプルを直径8mm、厚さ6mmの円盤状試験片に切り出し、NACE(米国のNational Association of Corrosion Engineers) TM097−97に基づいて、圧力容器内に試験片を置き、室温でCO流体を用いて5.5(MPa)で24時間加圧後、減圧速度1.8(MPa/秒)で急速に減圧し、試験前後の試験片の体積変化を測定した。体積変化は、dV(%)=(Va−Vb)・100/Vbで計算した。なお、Vbは試験片の試験前の体積、Vaは試験片の試験後の体積である。体積変化dVは、ここでは試験後の体積膨張となり、耐ガス性を評価する試験であって、表1,2に「体積膨張(%)」として記載した。試験前の試験片の体積は、電子比重計にて測定し、具体的には、Va=(Wa−Ww)/dtで計算し、同様にして試験後の試験片の体積Vbも計算した。なお、Waは空気中の試験前の試験片の重さ、Wwは水中の試験前の試験片の重さ、dtは水温で補正した水の比重である。
各測定結果は、表1,2に示した。
The crosslinked carbon fiber composite material samples of Examples 1 and 5 and Comparative Example 4 were cut into disk-shaped test pieces having a diameter of 8 mm and a thickness of 6 mm, and based on NACE (National Association of Corrosion Engineers) TM097-97. Place the test piece in a pressure vessel, pressurize at 5.5 (MPa) with CO 2 fluid at room temperature for 24 hours, and then rapidly depressurize at a depressurization rate of 1.8 (MPa / second), before and after the test. The volume change of the piece was measured. The volume change was calculated by dV (%) = (Va−Vb) · 100 / Vb. Vb is the volume of the test piece before the test, and Va is the volume of the test piece after the test. Here, the volume change dV is the volume expansion after the test, and is a test for evaluating gas resistance, and is described as “volume expansion (%)” in Tables 1 and 2. The volume of the test piece before the test was measured with an electronic hydrometer, specifically, Va = (Wa−Ww) / dt. Similarly, the volume Vb of the test piece after the test was also calculated. Wa is the weight of the test piece in the air before the test, Ww is the weight of the test piece in the water before the test, and dt is the specific gravity of water corrected by the water temperature.
The measurement results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1,2の結果からも明らかなように、本発明の実施例1~7の架橋体の炭素繊維複合材料サンプルは、比較例1~4に比べて引張疲労寿命回数が多く、高温(150℃)における耐摩耗性に優れることが分かった。また、本発明の実施例1、2、5~7の架橋体の炭素繊維複合材料サンプルは、比較例4に比べてDIN摩耗量が小さく、耐摩耗性に優れることが分かった。また、実施例1,5の架橋体の炭素繊維複合材料サンプルは、比較例4に比べて体積膨張が小さく、耐ガス性に優れていることが分かった。
Figure JPOXMLDOC01-appb-T000002
As is clear from the results of Tables 1 and 2, the crosslinked carbon fiber composite material samples of Examples 1 to 7 of the present invention have a higher number of tensile fatigue lives than those of Comparative Examples 1 to 4, and have a high temperature (150 (° C.). In addition, it was found that the crosslinked carbon fiber composite material samples of Examples 1, 2, and 5 to 7 of the present invention had a smaller DIN wear amount than that of Comparative Example 4 and excellent wear resistance. Moreover, it turned out that the carbon fiber composite material sample of the crosslinked body of Examples 1 and 5 has small volume expansion compared with the comparative example 4, and is excellent in gas resistance.
2  オープンロール
10 第1のロール
20 第2のロール
30 FEPM
60 カーボンナノファイバー
70 乾式圧縮造粒機
72、74ロール
80 カーボンナノファイバー集合体
100 試験片
106 切込み
110 チャック
120 DIN摩耗試験機
150 プラットホーム
155 デリック組立体
160 孔底組立体
162 ドリルビット
164 回転操作システム
166 マッドモータ
2 Open roll 10 First roll 20 Second roll 30 FEPM
60 Carbon nanofiber 70 Dry compression granulator 72, 74 roll 80 Carbon nanofiber assembly 100 Test piece 106 Notch 110 Chuck 120 DIN abrasion tester 150 Platform 155 Derrick assembly 160 Hole bottom assembly 162 Drill bit 164 Rotation operation system 166 Mud motor

Claims (17)

  1.  テトラフルオロエチレン−プロピレン共重合体(FEPM)に対し、カーボンナノファイバーを含み、
     150℃、最大引張応力2N/mm、周波数1Hzの引張疲労試験における破断回数が10回以上である、シール部材。
    For tetrafluoroethylene-propylene copolymer (FEPM), including carbon nanofibers,
    A seal member having a number of breaks of 10 or more in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz.
  2.  請求項1において、
     前記テトラフルオロエチレン−プロピレン共重合体(FEPM)100質量部に対し、前記カーボンナノファイバー0.5質量部~30質量部と、平均粒径5nm~300nmの充填剤0質量部~50質量部と、を含み、
     前記カーボンナノファイバーは、平均直径が10nm~20nmであり、
     前記カーボンナノファイバーと前記充填剤の配合量は、下記式(1)及び(2)を満たす、シール部材。
     Wt=0.09W1+W2  (1)
     5≦Wt≦30     (2)
     W1:充填剤の配合量(質量部)
     W2:カーボンナノファイバーの配合量(質量部)。
    In claim 1,
    With respect to 100 parts by mass of the tetrafluoroethylene-propylene copolymer (FEPM), 0.5 part by mass to 30 parts by mass of the carbon nanofiber, and 0 part by mass to 50 parts by mass of a filler having an average particle diameter of 5 nm to 300 nm; Including,
    The carbon nanofiber has an average diameter of 10 nm to 20 nm,
    The amount of the carbon nanofiber and the filler is a sealing member that satisfies the following formulas (1) and (2).
    Wt = 0.09W1 + W2 (1)
    5 ≦ Wt ≦ 30 (2)
    W1: Blending amount of filler (parts by mass)
    W2: Compounding amount (parts by mass) of carbon nanofibers.
  3.  請求項2において、
     150℃、最大引張応力2N/mm、周波数1Hzの引張疲労試験における破断回数が1,000回以上である、シール部材。
    In claim 2,
    A seal member in which the number of breaks in a tensile fatigue test at 150 ° C., a maximum tensile stress of 2 N / mm, and a frequency of 1 Hz is 1,000 times or more.
  4.  請求項1において、
     前記テトラフルオロエチレン−プロピレン共重合体(FEPM)100質量部に対し、前記カーボンナノファイバー4質量部~30質量部と、平均粒径5nm~300nmの充填剤0質量部~60質量部と、を含み、
     前記カーボンナノファイバーは、平均直径が60nm~110nmであり、
     前記カーボンナノファイバーと前記充填剤の配合量は、下記式(3)及び(4)を満たす、シール部材。
     Wt=0.1W1+W2  (3)
     10≦Wt≦30    (4)
     W1:充填剤の配合量(質量部)
     W2:カーボンナノファイバーの配合量(質量部)。
    In claim 1,
    4 parts by mass to 30 parts by mass of the carbon nanofibers and 0 part by mass to 60 parts by mass of a filler having an average particle diameter of 5 nm to 300 nm with respect to 100 parts by mass of the tetrafluoroethylene-propylene copolymer (FEPM). Including
    The carbon nanofiber has an average diameter of 60 nm to 110 nm,
    The amount of the carbon nanofiber and the filler is a sealing member that satisfies the following formulas (3) and (4).
    Wt = 0.1W1 + W2 (3)
    10 ≦ Wt ≦ 30 (4)
    W1: Blending amount of filler (parts by mass)
    W2: Compounding amount (parts by mass) of carbon nanofibers.
  5.  請求項4において、
     25%圧縮して200℃で70時間後の圧縮永久ひずみが0%~40%である、シール部材。
    In claim 4,
    A seal member having a compression set of 0% to 40% after being compressed by 25% and after 70 hours at 200 ° C.
  6.  請求項1~5のいずれかにおいて、
     25℃の高圧摩耗試験における摩耗量Waが0.010cm/N・m~0.070cm/N・mであり、
     前記摩耗量Waは、下記式(5)を満たす、シール部材。
     Wa=(g−g)/(P・L・d)  (5)
     g:摩耗前の試験片の質量(g)
     g:摩耗後の試験片の質量(g)
     P:おもりの設定荷重(N)
     L:摩耗距離(m)
     d:比重(H/cm)。
    In any one of claims 1 to 5,
    The wear amount Wa in a high-pressure wear test at 25 ° C. is 0.010 cm 3 / N · m to 0.070 cm 3 / N · m,
    The wear amount Wa is a seal member that satisfies the following formula (5).
    Wa = (g 2 −g 1 ) / (P · L · d) (5)
    g 1 : Mass of the test piece before wear (g)
    g 2 : Mass of the test piece after wear (g)
    P: Set weight of weight (N)
    L: Wear distance (m)
    d: Specific gravity (H / cm 3 ).
  7.  請求項1~6のいずれかにおいて、
     前記シール部材は、油田装置に用いられる、シール部材。
    In any one of claims 1 to 6,
    The seal member is a seal member used in an oil field device.
  8.  請求項7において、
     前記油田装置は、坑井内において検層を行う検層装置である、シール部材。
    In claim 7,
    The oil field device is a seal member that is a logging device that performs logging in a well.
  9.  請求項7において、
     前記シール部材は、前記油田装置内に配置された無端状のシール部材である、シール部材。
    In claim 7,
    The seal member is an endless seal member disposed in the oil field device.
  10.  請求項7において、
     前記シール部材は、前記油田装置内に配置された流体駆動モータのステータである、シール部材。
    In claim 7,
    The seal member is a stator of a fluid drive motor disposed in the oil field device.
  11.  請求項10において、
     前記流体駆動モータはマッドモータである、シール部材。
    In claim 10,
    The fluid drive motor is a mud motor, a seal member.
  12.  請求項7において、
     前記シール部材は、前記油田装置内に配置された流体駆動モータのロータである、シール部材。
    In claim 7,
    The said sealing member is a sealing member which is a rotor of the fluid drive motor arrange | positioned in the said oil field apparatus.
  13.  請求項12において、
     前記流体駆動モータはマッドモータである、シール部材。
    In claim 12,
    The fluid drive motor is a mud motor, a seal member.
  14.  請求項1~13のいずれかにおいて、
     前記テトラフルオロエチレン−プロピレン共重合体(FEPM)は、フッ素含有量が50~60質量%、ムーニー粘度(ML1+4100℃)の中心値が90~160、ガラス転移点が0℃以下である、シール部材。
    In any one of claims 1 to 13,
    The tetrafluoroethylene-propylene copolymer (FEPM) has a fluorine content of 50 to 60% by mass, a central value of Mooney viscosity (ML 1 + 4 100 ° C.) of 90 to 160, and a glass transition point of 0 ° C. or less. Seal member.
  15.  請求項1~14のいずれかにおいて、
     前記カーボンナノファイバーは、前記テトラフルオロエチレン−プロピレン共重合体(FEPM)に配合される前の段階において、剛直度=Lx÷D(Lx:カーボンナノファイバーの隣り合う欠陥と欠陥との間の距離、D:カーボンナノファイバーの直径)で定義される剛直度の平均値が3~12である、シール部材。
    In any one of claims 1 to 14,
    Before the carbon nanofibers are blended with the tetrafluoroethylene-propylene copolymer (FEPM), rigidity = Lx ÷ D (Lx: distance between adjacent defects of the carbon nanofibers) , D: the diameter of the carbon nanofiber), and the average value of the stiffness is 3 to 12, the sealing member.
  16.  請求項2または4において、
     前記充填剤は、平均粒径が10nm~300nmのカーボンブラックである、シール部材。
    In claim 2 or 4,
    The sealing member, wherein the filler is carbon black having an average particle size of 10 nm to 300 nm.
  17.  請求項2または4において、
     前記充填剤は、平均粒径が5nm~50nmであって、かつ、シリカ、タルク及びクレーから選ばれる少なくとも一つである、シール部材。
    In claim 2 or 4,
    The sealing member has an average particle diameter of 5 nm to 50 nm and is at least one selected from silica, talc and clay.
PCT/JP2009/071906 2009-12-25 2009-12-25 Sealing member WO2011077597A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011547230A JP5592401B2 (en) 2009-12-25 2009-12-25 Seal member
PCT/JP2009/071906 WO2011077597A1 (en) 2009-12-25 2009-12-25 Sealing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071906 WO2011077597A1 (en) 2009-12-25 2009-12-25 Sealing member

Publications (1)

Publication Number Publication Date
WO2011077597A1 true WO2011077597A1 (en) 2011-06-30

Family

ID=44195153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071906 WO2011077597A1 (en) 2009-12-25 2009-12-25 Sealing member

Country Status (2)

Country Link
JP (1) JP5592401B2 (en)
WO (1) WO2011077597A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242609A (en) * 2013-05-28 2013-08-14 中国石油大学(北京) Multidimensional composite inorganic particle/tetrafluoroethylene-propylene rubber composite material
JP2015045524A (en) * 2013-08-27 2015-03-12 東京瓦斯株式会社 Life evaluation method of rubber seal material
JP2016023262A (en) * 2014-07-23 2016-02-08 日信工業株式会社 Method for producing thermoplastic resin composition, and thermoplastic resin composition
KR20180133246A (en) 2016-04-07 2018-12-13 니폰 제온 가부시키가이샤 Fluorine-containing elastomer composition and molded article
NL2032882A (en) * 2021-09-14 2023-03-23 Halliburton Energy Services Inc Polymer blends for use in wellbore applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280788A (en) * 1987-05-13 1988-11-17 Asahi Chem Ind Co Ltd Composition for gasket
JP2007063429A (en) * 2005-08-31 2007-03-15 Nippon Zeon Co Ltd Nitrile rubber composition and crosslinked substance
JP2008024800A (en) * 2006-07-20 2008-02-07 Nissin Kogyo Co Ltd Carbon fiber composite material
JP2008143963A (en) * 2006-12-07 2008-06-26 Nissin Kogyo Co Ltd Carbon fiber composite material
JP2008308515A (en) * 2007-06-12 2008-12-25 Nissin Kogyo Co Ltd Carbon nanofiber and manufacturing method for it, and carbon fiber composite material
WO2009128374A1 (en) * 2008-04-16 2009-10-22 日信工業株式会社 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280788A (en) * 1987-05-13 1988-11-17 Asahi Chem Ind Co Ltd Composition for gasket
JP2007063429A (en) * 2005-08-31 2007-03-15 Nippon Zeon Co Ltd Nitrile rubber composition and crosslinked substance
JP2008024800A (en) * 2006-07-20 2008-02-07 Nissin Kogyo Co Ltd Carbon fiber composite material
JP2008143963A (en) * 2006-12-07 2008-06-26 Nissin Kogyo Co Ltd Carbon fiber composite material
JP2008308515A (en) * 2007-06-12 2008-12-25 Nissin Kogyo Co Ltd Carbon nanofiber and manufacturing method for it, and carbon fiber composite material
WO2009128374A1 (en) * 2008-04-16 2009-10-22 日信工業株式会社 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242609A (en) * 2013-05-28 2013-08-14 中国石油大学(北京) Multidimensional composite inorganic particle/tetrafluoroethylene-propylene rubber composite material
JP2015045524A (en) * 2013-08-27 2015-03-12 東京瓦斯株式会社 Life evaluation method of rubber seal material
JP2016023262A (en) * 2014-07-23 2016-02-08 日信工業株式会社 Method for producing thermoplastic resin composition, and thermoplastic resin composition
KR20180133246A (en) 2016-04-07 2018-12-13 니폰 제온 가부시키가이샤 Fluorine-containing elastomer composition and molded article
US10982083B2 (en) 2016-04-07 2021-04-20 Zeon Corporation Fluorinated elastomer composition and shaped article
NL2032882A (en) * 2021-09-14 2023-03-23 Halliburton Energy Services Inc Polymer blends for use in wellbore applications

Also Published As

Publication number Publication date
JP5592401B2 (en) 2014-09-17
JPWO2011077597A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5816474B2 (en) Seal member and manufacturing method thereof
US20110156357A1 (en) Dynamic seal member
US8614273B2 (en) Seal member
JP5592400B2 (en) Seal member
JP5876817B2 (en) Heat resistant seal
JP5546556B2 (en) Dynamic seal member
JP5379125B2 (en) Heat-resistant sealing material, endless seal member using heat-resistant sealing material, and downhole device provided with endless seal member
EP1533469B1 (en) Downhole seal element formed from a nanocomposite material
JP5592401B2 (en) Seal member
EP1533468B1 (en) Drill bit having an improved seal
US8403332B2 (en) Seal member
NO20130062A1 (en) Polymer nanocomposite and its use
JP5763991B2 (en) Carbon fiber composite material, oil field device, and method for producing carbon fiber composite material
JP2023501975A (en) Blends of polyaryletherketone copolymers
JP2016204594A (en) Oil-field equipment
US20150065635A1 (en) Carbon fiber composite material, method of producing the same, insulating article, electronic part, and logging tool
JP5670817B2 (en) Carbon fiber composite material manufacturing method, carbon fiber composite material, and oil field device
US20130012644A1 (en) Carbon Fiber Composite Material, Oilfield Apparatus Thereof, and Method for Manufacture of The Same
JP5844064B2 (en) Method for producing carbon fiber composite material
JP5647152B2 (en) Carbon fiber composite material and manufacturing method thereof, insulating article, electronic component, and logging device
JP5789391B2 (en) Porous body for electrode using carbon nanofiber, electrode, battery, capacitor, water treatment device, heat resistant casing for oil field device, oil field device, and method for producing porous body for electrode
US20130020769A1 (en) Sealing Member and Its Manufacture
JP5670818B2 (en) Carbon fiber composite material manufacturing method, carbon fiber composite material, and oil field device
Amanullah et al. Potential application of nanomaterials in oil and gas field drilling tools and fluids design
Izadi et al. Mechanical strength improvement of mud motor’s elastomer by nano clay and prediction the working life via strain energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547230

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852612

Country of ref document: EP

Kind code of ref document: A1