JPH0449873B2 - - Google Patents

Info

Publication number
JPH0449873B2
JPH0449873B2 JP4913685A JP4913685A JPH0449873B2 JP H0449873 B2 JPH0449873 B2 JP H0449873B2 JP 4913685 A JP4913685 A JP 4913685A JP 4913685 A JP4913685 A JP 4913685A JP H0449873 B2 JPH0449873 B2 JP H0449873B2
Authority
JP
Japan
Prior art keywords
conductive
ptw
carbon black
conductive carbon
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4913685A
Other languages
Japanese (ja)
Other versions
JPS61207465A (en
Inventor
Akira Tabuchi
Morihiko Nakamura
Takio Tasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP4913685A priority Critical patent/JPS61207465A/en
Publication of JPS61207465A publication Critical patent/JPS61207465A/en
Publication of JPH0449873B2 publication Critical patent/JPH0449873B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は、機械的強度その他の機械的諸物性に
優れた導電性熱可塑性樹脂組成物に関する。さら
に詳しくは、本発明は、電気部品及び電子機器分
野に利用されうる安定した導電性乃至半導電性を
与える熱可塑性樹脂組成物に関する。 (背景とその問題点) 近年、技術の高度化及び精密化に伴つて、各種
の機器及びその構成部品に対して材質や構造面か
らその軽薄短小化を求める声が活発化しており、
その傾向は特に電子材料及び電子機器の両分野に
おいて著しい。そして、昨日まで金属で作られて
いた部品や部材が今日はプラスチツクで置換され
るという現象が急激に進行しつつある。しかし、
反面において、従来の金属製部品や部材では問題
にならなかつた機械強度その他の機械的諸物性、
帯電防止性能及び導電性能等の諸問題が顕在化
し、各分野においてこれらの問題を解決するため
の研究が営々と進められつつある。 ところで、ヤング率の低さその他のプラスチツ
クの宿命とも言うべき機械強度の低さを改善する
ためには、繊維状補強剤をプラスチツクに配合す
ることが有力な解決手段の一つである。 一方、帯電防止性能を付与する方法としては、
多価アルコールや多価アルコールの脂肪酸エステ
ル、ポリアルキレングリコール、アルキルアミン
などの親水基を有する化合物を添加する方法があ
る。しかしながら、この親水性物質を添加する方
法では、樹脂成形品の表面抵抗は精々1011Ω程度
までしか低下せず、しかも環境湿度により著しく
抵抗値が変化する欠点がある。 また他の方法として、導電性カーボンブラツク
を樹脂中に配合する方法もある。しかし周知のよ
うに、導電性カーボンブラツクは、非常に崇高
で、取扱に際し飛散しやすいため、作業場を汚し
易いという欠点がある。しかも本品単独にて樹脂
組成物に導電性を付与するには、少なくとも10重
量%程度の添加が必要である。しかるに、7重量
%以上の導電性カーボンブラツクの配合は対象成
形品の機械強度を著しく低下させるから、その適
用範囲は自ずと比較的狭い範囲内に限定されてい
るというのが実状であるが、特に導電性カーボン
ブラツクの単独添加により導電性を付与した樹脂
組成物における最大の欠点は、再現性のある固有
抵抗値を樹脂組成物に付与しにくい点である。こ
れを更に詳しく言えば、導電性カーボンブラツク
を7重量%未満の割合で添加、配合された樹脂組
成物では、熱可塑性樹脂本来の高い電気抵抗値を
示すのに対し、前者を10重量%以上の割合で添加
された樹脂組成物では、逆に導電性カーボンブラ
ツク固有の低い抵抗値を示すようになり、7〜10
重量%の中間領域では、抵抗値は導電性カーボン
ブラツク添加量の増加に応じて極めて微妙に変化
する。従つて、樹脂固有抵抗値と導電性カーボン
ブラツク固有の抵抗値との間の中間的な設計抵抗
値を自由に、しかも安定して付与することは甚だ
困難である。即ち、導電性カーボンブラツク配合
量の僅かな変化により、配合物乃至それによる成
形品の電気特性が絶縁領域から低抵抗領域へ急激
に変化するため、所望の半導電性を一定に付与す
るのは至難である。加えて、被配合樹脂の熱安定
性が悪化する他、成形時に起こる熱分解のため、
得られた成形物の外観が著しく変化し、かつ成形
品の耐衝撃強度、曲げ強度が著しく低下するなど
多くの欠点を生じる。 さらに別の方法として、炭素繊維を配合する方
法もあるが、炭素繊維自体高価であることに加
え、このものは成形品の表面平滑性を害する傾向
があり、その上導電性能においても部分的なバラ
ツキが出やすいという欠点を有している。 なお更に別の方法として、発明者らが先に見出
した、繊維状補強剤として導電性能を付与された
導電性チタン酸カリウム(以下「導電性PTW」
という)を利用する方法がある。即ち、導電性
PTWを熱可塑性樹脂に配合すると、機械的諸物
性が向上するのみならず、成形品の表面も平滑で
異方性が少ない等、カーボンフアイバー(炭素繊
維)の配合では望み得ない物性の向上が見られ
る。しかしながら、所望の高い導電性を得るため
には、該PTW〓を例えば40%程度以上の高充填
率水準で配合する必要があるが、かかる高充填率
での配合は、必然的にコスト高を招き、他の競合
手段との競争を不利とする。しかも該水準を越え
て配合しても、該水準を越えた量に見合う導電性
の向上が見られない。 (発明の目的) 本発明は、実用上充分な機械強度その他の機械
的物性(以下「機械的物性」と呼ぶ)を有すると
共に、平滑な表面を保持し、しかも任意の導電性
を安定して発現する成形物を与える熱可塑性樹脂
組成物を提供することにある。 (発明の構成) 以上の目的を達成せんがため、本発明の樹脂組
成物は、組成物中に10〜40重量%の導電性チタン
酸カリウム繊維と、0.3〜7重量%の導電性カー
ボンブラツクが配合されていることを特徴とす
る。 本発明者は、以上の事情に鑑み更に研究を進め
た結果、熱可塑性樹脂に10〜40重量%の導電性
PTWと0.3〜7重量%の導電性カーボンブラツク
を配合してなる導電性熱可塑性樹脂組成物が、導
電性PTWと導電性カーボンブラツクとの配合比
及び配合量に応じて、任意の導電性を良好な再現
性をもつて、しかも、導電性PTW単独使用時よ
り低充填量の該PTWの充填でもつて、導電性
PTWの特性を充分に発揮するから、経済的にも
極めて有利な樹脂組成物であることを見出した。 本発明者の得た新規な知見によれば、導電性
PTWと導電性カーボンブラツクを前述の量的範
囲内で併用することにより、抵抗値が予期値より
〓かに低くなることが見出されたばかりでなく、
半導電領域で、バラツキのない安定した電気抵抗
値を容易に再現しうるという事実が見出された。
換言すれば、本発明により、絶縁域から低抵抗域
までの間の任意の導電性を確実に再現することが
できる。 しかも、本発明においては、取扱上問題のある
導電性カーボンブラツクの添加量が比較的微量乃
至少量であることに加え、より多量の導電性
PTW中に分散した状態で使用されるため、計量
時を除き導電性カーボンブラツクが飛散する懸念
がないから、導電性PTWと導電性カーボンブラ
ツクとの併用によつて、実際的に作業環境が著し
く改善されるという副次的な効果も見出された。 本発明に使用される導電性PTWは、下記の一
般式で示される組成の単結晶繊維であり、平均
繊維径0.01〜1μm、平均繊維長1〜100μmで、か
つ平均繊維長/平均繊維径(アスペクト比)が10
以上のものである。 K2O・n(TiO2-x) …… (式中nは8以下の正の実数、xは2未満の実
数を意味する。) この導電性PTWは、一般式、 K2O・n(TiO2) (式中nは8以下の正の実数。) で表されるチタン酸カリウムウイスカーを、不活
性ガス雰囲気中で、又は水素、低級炭化水素ガス
もしくはアンモニアガス等の還元性ガス雰囲気中
にて、そのまま、あるいは炭素物質などの酸素受
容体と混合して、500〜1500℃の温度にて還元焼
成することにより得られる。因に、この際使用さ
れる炭素物質としては、カーボンブラツク、グラ
フアイト、コークス、石油ピツチ等を例示するこ
とができる。また、チタン酸カリウムウイスカー
と炭素物質との混合比は、還元炉の大きさ、材質
によつて異なるが、炭素物質の混合量は、通常、
チタン酸カリウムウイスカーに対して1〜50重量
%である。 またその他の導電性PTWとして、チタン酸カ
リウムウイスカーを無電解メツキ法又は浸漬法も
しくはスプレーコート法にて該ウイスカーの表面
に金属、金属酸化物等の導電性又は半導電性物質
を付着させ、又は沈積させたものも使用できる。
参考までに、チタン酸カリウムウイスカーを無電
解メツキするには、これを100℃のアルカリ性領
域のニツケル、銅、白金、銀等のメツキ液中に5
分〜1時間浸漬、攪拌し、当該金属をメツキす
る。またスプレーコート法においては、200〜900
℃に加熱されたチタン酸カリウムウイスカーに、
錫、ニツケル、インジウム、アンチモン等のハロ
ゲン化物、硫酸塩又は酸化物の水溶液又は水性有
機溶媒溶液をスプレーガン等を用いて噴霧、塗布
し、該ウイスカーの表面を被覆する。 上記各導電性PTWは、通常、無処理状態のま
までも使用できるが、熱可塑性樹脂との界面接着
性をより良好にするため、シランカツプリング
剤、チタネートカツプリング剤など目的に応じた
表面処理剤を使用した方が一般に良い結果を与え
る。 以上の導電性PTWの配合量は、補強効果、特
に剛性、耐クリープ性及び熱変形温度の向上並び
に限界PV値の向上、さらには寸法精度の向上な
どから、組成物中10〜40重量%の範囲で配合され
るのが好ましい。前記配合量が10重量%未満で
は、成形品の機械的強度を充分向上させることが
できない。一方、40重量%を越えて使用しても、
該限界量を越える量に見合う程の機械的強度の向
上効果を認めにくく、かつ組成物の造粒化も難し
くなる傾向にある。 本発明に使用される導電性カーボンブラツクと
しては、例えばフアーネスブラツク、サーマルブ
ラツク、チヤンネルブラツク及びグラフアイト等
が挙げられる。しかし特に、 ストラクチヤーが発達しやすい。 粒子径が小さい。 表面積が大きい。 π電子を捕捉する不純物が少ない。 グラフアイト化が進んでいる。 などの導電性に必要な性能を考慮すると、フアー
ネスブラツクのうち、コンダクテイブフアーネス
の一員であるケツチエングブラツクが最適であ
る。 導電性PTWと併用される導電性カーボンブラ
ツクの配合量は、組成物中0.3〜7重量%の範囲
内が好適である。使用量が0.3重量%以下では、
樹脂中で導電性を付与できる程のストラクチヤー
が構成されず、従つて、導電性PTWとの併用効
果を殆ど期待できない。他方、配合量が7重量%
を越えると、成形品における機械的物性の低下が
著しいのみでなく、樹脂組成物の熱変形温度をも
低下させ、しかも造粒が困難となる。但し、混練
技術及び成形技術の練磨如何により、単に導電性
の向上のみを目的としてならば実施する意義がな
いとは言えない。 本発明でいう熱可塑性樹脂は、ポリエチレン、
ポリプロピレン、ポリ塩化ビニル樹脂等の汎用熱
可塑性プラスチツク以外に、ポリアミド、熱可塑
性ポリエステル、ポリアセタール、ポリフエニレ
ンサルフアイド、ポリサルフオン、ポリエーテル
イミド、ポリエーテルエーテルケトン等のエンジ
ニアリングプラスチツクの全てを含む。 熱可塑性樹脂に導電性PTW及び導電性カーボ
ンブラツクを配合する方法自体は任意であつて、
前三者をドライブレンドする方法は、押出機を用
いて、熔融した熱可塑性樹脂に後二者を混入する
方法のような公知の配合法を自由に採用すること
ができる。しかしながら、導電性PTWの繊維の
切断や導電性カーボンブラツクのストラクチヤー
の破壊を防止乃至抑制するには、緩和な混練手
段、例えば押出機を用いて、熔融した熱可塑性樹
脂中に導電性PTW及び導電性カーボンブラツク
を配合する手段が好ましい。 本発明の樹脂組成物には、さらに所望により、
それ自体公知の熱安定剤、光安定剤、酸化防止
剤、滑剤、難燃化剤、色素もしくは顔料等を必要
に応じて、かつ本発明の効果を失わせない範囲で
任意に添加することができる。 (実施例) 以下、実施例を掲げて発明具体化の例及び具体
的効果等について説明するが、例示は当然説明用
のものであつて、発明思想の限定を意味するもの
ではない。 実施例 1 ノーブレンH501[三井東圧化学(株)、ポリプロピ
レン]、チタン酸カリウムウイスカーを不活性雰
囲気中で1000℃にて還元焼成した導電性PTW[大
塚化学(株)製]及びケツチエンブラツクEC−P[ラ
イオンアクゾ(株)製]を、下表−1に示す配合組成
として、220℃に設定した45mmφ二軸押出機にて、
熔融したノーブレンH501に上記の導電性PTW及
びケツチエンブラツクEC−Pを混入し、押出し
造粒化した。その後、下記条件下で射出成形を行
い、物性測定用テストピースを作成した。 シリンダー温度:210℃ 射出圧力:500Kg/cm2 射出時間:15秒 金型温度:60℃ 得られた各テストピースについて、電気的性質
と機械的強度とを測定した。その結果を下表−1
に示す。
(Technical Field of the Invention) The present invention relates to a conductive thermoplastic resin composition having excellent mechanical strength and other mechanical properties. More specifically, the present invention relates to a thermoplastic resin composition that provides stable conductivity or semiconductivity that can be used in the fields of electrical parts and electronic devices. (Background and issues) In recent years, as technology has become more sophisticated and precise, there has been an increasing demand for various devices and their component parts to be lighter, thinner, shorter, and smaller in terms of materials and structure.
This trend is particularly remarkable in both the fields of electronic materials and electronic equipment. Furthermore, the phenomenon is rapidly progressing that parts and components that were made of metal until yesterday are now being replaced with plastic. but,
On the other hand, mechanical strength and other mechanical properties, which were not a problem with conventional metal parts and members,
Various problems such as antistatic performance and conductive performance have become apparent, and research to solve these problems is being actively carried out in various fields. By the way, in order to improve the low Young's modulus and other low mechanical strength that can be said to be the fate of plastics, one effective solution is to incorporate a fibrous reinforcing agent into plastics. On the other hand, as a method of imparting antistatic performance,
There is a method of adding a compound having a hydrophilic group such as a polyhydric alcohol, a fatty acid ester of a polyhydric alcohol, a polyalkylene glycol, or an alkylamine. However, this method of adding a hydrophilic substance has the disadvantage that the surface resistance of the resin molded article is reduced to about 10 11 Ω at most, and the resistance value changes significantly depending on the environmental humidity. Another method is to mix conductive carbon black into the resin. However, as is well known, conductive carbon black has the disadvantage that it is very expensive and easily scatters when handled, making it easy to pollute the workplace. Moreover, in order to impart conductivity to the resin composition using this product alone, it is necessary to add at least about 10% by weight. However, the actual situation is that the blending of conductive carbon black in an amount of 7% by weight or more significantly reduces the mechanical strength of the target molded product, so its application range is naturally limited to a relatively narrow range. The biggest drawback of resin compositions imparted with conductivity by the sole addition of conductive carbon black is that it is difficult to impart a reproducible specific resistance value to the resin composition. To explain this in more detail, resin compositions containing less than 7% by weight of conductive carbon black exhibit high electrical resistance values inherent to thermoplastic resins, whereas those containing 10% by weight or more of the former exhibit high electrical resistance values inherent to thermoplastic resins. On the contrary, the resin composition added at a ratio of 7 to 10 exhibits the low resistance value inherent to conductive carbon black.
In the intermediate range of weight percentages, the resistance changes very slightly with increasing conductive carbon black loading. Therefore, it is extremely difficult to freely and stably provide an intermediate design resistance value between the resin specific resistance value and the specific resistance value of conductive carbon black. In other words, due to a slight change in the amount of conductive carbon black blended, the electrical properties of the compound or the resulting molded product change rapidly from an insulating region to a low resistance region, so it is difficult to consistently impart the desired semiconductivity. It is extremely difficult. In addition, the thermal stability of the blended resin deteriorates, and due to thermal decomposition that occurs during molding,
This causes many drawbacks, such as the appearance of the obtained molded product being significantly changed and the impact strength and bending strength of the molded product being significantly reduced. Another method is to mix carbon fiber, but in addition to being expensive, this tends to impair the surface smoothness of the molded product, and it also has partial electrical conductivity. It has the disadvantage that variations tend to occur. Furthermore, as another method, conductive potassium titanate (hereinafter referred to as "conductive PTW"), which has been given conductive performance as a fibrous reinforcing agent, was discovered by the inventors.
There is a way to use this. That is, conductivity
When PTW is blended with thermoplastic resin, it not only improves various mechanical properties, but also improves physical properties that cannot be expected when blending carbon fiber, such as making the surface of the molded product smooth and less anisotropic. Can be seen. However, in order to obtain the desired high conductivity, it is necessary to mix the PTW at a high filling rate level of, for example, about 40% or more, but mixing at such a high filling rate inevitably increases the cost. and put them at a disadvantage in competition with other competing means. Moreover, even if the amount exceeds the above level, an improvement in conductivity commensurate with the amount exceeding the above level is not observed. (Objective of the Invention) The present invention has practically sufficient mechanical strength and other mechanical properties (hereinafter referred to as "mechanical properties"), maintains a smooth surface, and has stable arbitrary conductivity. It is an object of the present invention to provide a thermoplastic resin composition that gives a molded article that exhibits the desired properties. (Structure of the Invention) In order to achieve the above object, the resin composition of the present invention contains 10 to 40% by weight of conductive potassium titanate fibers and 0.3 to 7% by weight of conductive carbon black. It is characterized by being blended with. In view of the above circumstances, the present inventor conducted further research and found that thermoplastic resin has an electrical conductivity of 10 to 40% by weight.
A conductive thermoplastic resin composition containing PTW and 0.3 to 7% by weight of conductive carbon black can have arbitrary conductivity depending on the blending ratio and amount of conductive PTW and conductive carbon black. With good reproducibility, and even with a lower filling amount of PTW than when using conductive PTW alone, conductive
It has been found that this resin composition is economically extremely advantageous because it fully exhibits the characteristics of PTW. According to the new findings obtained by the present inventor, conductive
It was not only discovered that by using PTW and conductive carbon black together within the above quantitative range, the resistance value was much lower than the expected value.
It has been discovered that stable electrical resistance values without variation can be easily reproduced in the semiconducting region.
In other words, the present invention makes it possible to reliably reproduce any conductivity between the insulation region and the low resistance region. Moreover, in the present invention, the amount of conductive carbon black, which is problematic in handling, is added in a relatively small to small amount, and a larger amount of conductive carbon black is added.
Since it is used in a dispersed state during PTW, there is no risk of the conductive carbon black scattering except during weighing, so the combined use of conductive PTW and conductive carbon black significantly improves the working environment. A secondary effect of improvement was also found. The conductive PTW used in the present invention is a single crystal fiber having a composition represented by the following general formula, with an average fiber diameter of 0.01 to 1 μm, an average fiber length of 1 to 100 μm, and an average fiber length/average fiber diameter ( aspect ratio) is 10
That's all. K 2 O・n (TiO 2-x ) ... (In the formula, n means a positive real number of 8 or less, and x means a real number of less than 2.) This conductive PTW is expressed by the general formula, K 2 O・n (TiO 2 ) (In the formula, n is a positive real number of 8 or less.) Potassium titanate whiskers expressed as It is obtained by reducing and firing it at a temperature of 500 to 1500°C either as it is or by mixing it with an oxygen acceptor such as a carbon material. Incidentally, examples of the carbon material used at this time include carbon black, graphite, coke, and petroleum pitch. In addition, the mixing ratio of potassium titanate whiskers and carbon material varies depending on the size and material of the reduction furnace, but the amount of carbon material mixed is usually
The amount is 1 to 50% by weight based on the potassium titanate whiskers. In addition, as other conductive PTW, conductive or semiconductive substances such as metals and metal oxides are attached to the surface of potassium titanate whiskers by electroless plating, dipping, or spray coating, or You can also use the deposited one.
For reference, to electrolessly plate potassium titanate whiskers, place them in a plating solution of nickel, copper, platinum, silver, etc. in the alkaline range at 100℃ for 5 minutes.
Soak for 1 hour to 1 hour, stir, and plate the metal. In addition, in the spray coating method, 200 to 900
Potassium titanate whiskers heated to ℃
An aqueous solution or an aqueous organic solvent solution of a halide, sulfate, or oxide of tin, nickel, indium, antimony, etc. is sprayed and applied using a spray gun or the like to coat the surface of the whiskers. Each of the above conductive PTWs can normally be used in an untreated state, but in order to improve the interfacial adhesion with thermoplastic resins, surface treatments such as silane coupling agents or titanate coupling agents are applied depending on the purpose. The use of agents generally gives better results. The above content of conductive PTW is 10 to 40% by weight in the composition, from the viewpoint of reinforcing effect, especially improvement of rigidity, creep resistance and heat distortion temperature, improvement of critical PV value, and improvement of dimensional accuracy. It is preferable to mix within a range. If the blending amount is less than 10% by weight, the mechanical strength of the molded article cannot be sufficiently improved. On the other hand, even if it is used in excess of 40% by weight,
It is difficult to see an effect of improving mechanical strength commensurate with the amount exceeding the limit amount, and it tends to be difficult to granulate the composition. Examples of the conductive carbon black used in the present invention include furnace black, thermal black, channel black, and graphite. However, structures are particularly susceptible to development. Particle size is small. Large surface area. There are fewer impurities that capture π electrons. Graphite is progressing. Considering the performance required for conductivity, the butt-engaging black, which is a member of conductive furnaces, is optimal among furnace blacks. The amount of conductive carbon black used in combination with conductive PTW is preferably within the range of 0.3 to 7% by weight in the composition. If the amount used is 0.3% by weight or less,
Structures sufficient to impart conductivity are not formed in the resin, and therefore, almost no effect can be expected when used in combination with conductive PTW. On the other hand, the blending amount is 7% by weight.
If it exceeds this value, not only the mechanical properties of the molded article will be significantly lowered, but also the heat distortion temperature of the resin composition will be lowered, and furthermore, granulation will become difficult. However, depending on how well the kneading technology and molding technology have been refined, it cannot be said that there is no point in implementing it if the purpose is simply to improve conductivity. The thermoplastic resin referred to in the present invention includes polyethylene,
In addition to general-purpose thermoplastics such as polypropylene and polyvinyl chloride resin, it includes all engineering plastics such as polyamide, thermoplastic polyester, polyacetal, polyphenylene sulfide, polysulfone, polyetherimide, and polyetheretherketone. The method of blending conductive PTW and conductive carbon black into the thermoplastic resin is arbitrary;
As a method for dry blending the former three, any known blending method can be freely adopted, such as a method of mixing the latter two into a molten thermoplastic resin using an extruder. However, in order to prevent or suppress the cutting of the conductive PTW fibers and the destruction of the conductive carbon black structure, a gentle kneading method, such as an extruder, is used to mix the conductive PTW and conductive A preferred method is to incorporate carbon black. The resin composition of the present invention further includes, if desired,
Heat stabilizers, light stabilizers, antioxidants, lubricants, flame retardants, dyes, pigments, etc., which are known per se, may be optionally added as necessary and within the range that does not impair the effects of the present invention. can. (Examples) Examples of embodiments of the invention, specific effects, etc. will be explained below using examples, but the examples are of course for illustrative purposes and do not mean limitations on the idea of the invention. Example 1 Noblen H501 [Mitsui Toatsu Chemical Co., Ltd., polypropylene], conductive PTW made by reducing and firing potassium titanate whiskers at 1000°C in an inert atmosphere [manufactured by Otsuka Chemical Co., Ltd.], and Ketsutien Black EC -P [manufactured by Lion Akzo Co., Ltd.] with the composition shown in Table 1 below in a 45 mmφ twin screw extruder set at 220°C.
The above-mentioned conductive PTW and Ketchen Black EC-P were mixed into the molten Noblen H501 and granulated by extrusion. Thereafter, injection molding was performed under the following conditions to create a test piece for measuring physical properties. Cylinder temperature: 210°C Injection pressure: 500Kg/cm 2 Injection time: 15 seconds Mold temperature: 60°C The electrical properties and mechanical strength of each test piece obtained were measured. The results are shown in Table-1 below.
Shown below.

【表】【table】

【表】 実施例 2 ジユラコンM90−02[ポリプラスチツク(株);ポ
リアセタール]、実施例1と同一の導電性PTW
[大塚化学(株)製]及びケツチエンブラツクEC−
DJ500[ライオンアクゾ(株)製]を下表−2に示す
配合組成として200℃に設定した45mmφの2軸押
出機にて熔融したジユラコンM90−02に上記の導
電性PTW及びケツチエンブラツクEC−DJ500を
混入し、押出し造粒した。その後、下記条件で射
出成形し、物性測定用テストピースを作成した。 シリンダー温度:200℃ 射出圧力:1000Kg/cm2 射出時間:30秒 金型温度:80℃ 続いて、電気的性質と機械的強度を測定した。
その結果を下表−2に示す。
[Table] Example 2 Diuracon M90-02 [Polyplastic Co., Ltd.; Polyacetal], same conductive PTW as Example 1
[Manufactured by Otsuka Chemical Co., Ltd.] and Ketsutien Black EC-
DJ500 [manufactured by Lion Akzo Co., Ltd.] was mixed with the composition shown in Table 2 below, and the above-mentioned conductive PTW and KETSUCHEN BLACK EC- DJ500 was mixed and extrusion granulated. Thereafter, injection molding was performed under the following conditions to create a test piece for measuring physical properties. Cylinder temperature: 200°C Injection pressure: 1000Kg/cm 2 Injection time: 30 seconds Mold temperature: 80°C Subsequently, electrical properties and mechanical strength were measured.
The results are shown in Table 2 below.

【表】【table】

【表】 実施例 3 RENY6001[三菱瓦斯化学(株);ナイロン
MXD6]、チタン酸カリウムウイスカーとコーク
スとを混合し、水素ガスとプロパンガスの混合気
流中で還元焼成することにより得られた導電性
PTW[大塚化学(株)製]及びケツチエンブラツク
EC−P[ライオンアクゾ(株)製]を下表−3に示す
配合組成として270℃に設定された45mmφの二軸
押出機にて、熔融したRENY6001に上記の導電
性PTW及びケツチエンブラツクEC−Pを混入
し、押出し造粒した。その後、下記条件で射出成
形し、物性測定用テストピースを作成した。 シリンダー温度:285℃ 射出圧力:1000Kg/cm2 射出時間:20秒 金型温度:120℃ 得られたテストピースについて、電気的性質と
機械的強度を測定した。その結果を下表−3に示
す。
[Table] Example 3 RENY6001 [Mitsubishi Gas Chemical Co., Ltd.; Nylon
MXD6], a conductive material obtained by mixing potassium titanate whiskers and coke and reducing and firing the mixture in a mixed flow of hydrogen gas and propane gas.
PTW [manufactured by Otsuka Chemical Co., Ltd.] and Ketsutien Black
EC-P [manufactured by Lion Akzo Co., Ltd.] was mixed with the above-mentioned conductive PTW and KETSUCHEN BLACK EC into melted RENY6001 using a 45 mmφ twin-screw extruder set at 270°C with the composition shown in Table 3 below. -P was mixed and extrusion granulated. Thereafter, injection molding was performed under the following conditions to create a test piece for measuring physical properties. Cylinder temperature: 285°C Injection pressure: 1000 Kg/cm 2 Injection time: 20 seconds Mold temperature: 120°C The electrical properties and mechanical strength of the obtained test piece were measured. The results are shown in Table 3 below.

【表】 実施例 4 テイジンPBTCL7000[帝人(株)、ポリブチレン
テレフタレート]、チタン酸カリウムウイスカー
を300℃に加熱し、塩化第二錫の水溶液のスプレ
ーにて表面を導電被覆された導電性PTW[大塚化
学(株)製]及びケツチエンブラツクEC−P[ライオ
ンアクゾ(株)製]を、下表−4に示す配合組成とし
て、240℃に設定された45mmφの二軸押出機にて
熔融したPBTCL7000に、上記の導電性PTW及
びケツチエンブラツクEC−Pを混入し、押出し
造粒した。その後、下記条件で射出成形を行い、
物性測定用テストピースを作成した。 シリンダー温度:245℃ 射出圧力:1000Kg/cm2 射出時間:20秒 金型温度:100℃ 次いで、得られたテストピースについて電気的
性質と機械的強度とを測定した。その結果を下表
−4に示す。
[Table] Example 4 Teijin PBTCL7000 [Teijin Ltd., polybutylene terephthalate], potassium titanate whiskers were heated to 300°C, and the surface was conductively coated with an aqueous solution of stannic chloride [ Otsuka Chemical Co., Ltd.] and Ketsutien Black EC-P [Lion Akzo Co., Ltd.] were melted in a 45 mmφ twin-screw extruder set at 240°C with the composition shown in Table 4 below. The above-mentioned conductive PTW and Ketchen Black EC-P were mixed into PBTCL7000 and granulated by extrusion. After that, injection molding is performed under the following conditions,
A test piece for measuring physical properties was created. Cylinder temperature: 245°C Injection pressure: 1000 Kg/cm 2 Injection time: 20 seconds Mold temperature: 100°C Next, the electrical properties and mechanical strength of the obtained test piece were measured. The results are shown in Table 4 below.

【表】 (発明の効果) 本発明によれば、成形品の機械的物性が高く、
また寸法精度にも優れ、しかも絶縁域から導電域
までの任意の導電性を再現しうる樹脂組成物を容
易に得ることができる。 特に、本発明の導電性熱可塑性樹脂組成物は、
体積固有抵抗値で1014〜1010Ω・cmの帯電防止材
料、1010〜104Ω・cmの半導電性材料及び104〜100
Ω・cmの導電性成形材料を提供できるので、電子
部品の梱包、収納材料、複写機、プリンター等の
OA機器の機構部品やハウジングなどに好適な樹
脂材料を提供する。
[Table] (Effects of the invention) According to the present invention, the mechanical properties of the molded product are high;
Furthermore, it is possible to easily obtain a resin composition that has excellent dimensional accuracy and can reproduce arbitrary conductivity from an insulating region to a conductive region. In particular, the conductive thermoplastic resin composition of the present invention is
Antistatic materials with a volume resistivity of 10 14 to 10 10 Ω・cm, semiconductive materials with a volume resistivity of 10 10 to 10 4 Ω・cm, and 10 4 to 10 0
Since we can provide conductive molding materials of Ω/cm, they can be used as packing materials for electronic parts, storage materials, copying machines, printers, etc.
We provide resin materials suitable for mechanical parts and housings of OA equipment.

Claims (1)

【特許請求の範囲】 1 10〜40重量%の導電性チタン酸カリウム繊維
と、0.3〜7重量%の導電性カーボンブラツクと
が配合されていることを特徴とする安定した導電
性又は半導電性を備える熱可塑性樹脂組成物。 2 導電性カーボンブラツクがフアーネスブラツ
クである特許請求の範囲第1項記載の熱可塑性樹
脂組成物。 3 導電性チタン酸カリウム繊維、導電性カーボ
ンブラツク及び熱可塑性樹脂が、熔融法により配
合されたものである特許請求の範囲第1項記載の
熱可塑性樹脂組成物。
[Claims] 1. Stable conductivity or semiconductivity characterized by blending 10 to 40% by weight of conductive potassium titanate fibers and 0.3 to 7% by weight of conductive carbon black. A thermoplastic resin composition comprising: 2. The thermoplastic resin composition according to claim 1, wherein the conductive carbon black is a furnace black. 3. The thermoplastic resin composition according to claim 1, wherein the conductive potassium titanate fiber, the conductive carbon black, and the thermoplastic resin are blended by a melting method.
JP4913685A 1985-03-11 1985-03-11 Electrically conductive thermoplastic resin composition Granted JPS61207465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4913685A JPS61207465A (en) 1985-03-11 1985-03-11 Electrically conductive thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4913685A JPS61207465A (en) 1985-03-11 1985-03-11 Electrically conductive thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS61207465A JPS61207465A (en) 1986-09-13
JPH0449873B2 true JPH0449873B2 (en) 1992-08-12

Family

ID=12822650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4913685A Granted JPS61207465A (en) 1985-03-11 1985-03-11 Electrically conductive thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS61207465A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290464A (en) * 1985-06-18 1986-12-20 Sutaaraito Kogyo Kk Stripping claw for fixing
JPS6429461A (en) * 1987-07-24 1989-01-31 Ishihara Mining & Chemical Co Electrical conductive composition
JPH0267358A (en) * 1988-09-01 1990-03-07 Otsuka Chem Co Ltd Thermoplastic resin composition
JP2816864B2 (en) * 1989-07-07 1998-10-27 大塚化学株式会社 Transfer wafer basket and storage case
JP3844436B2 (en) 2000-04-26 2006-11-15 旭化成ケミカルズ株式会社 Conductive resin composition and process for producing the same
CN110964253B (en) * 2019-12-18 2022-07-29 上海日之升科技有限公司 High-gloss low-shrinkage heat-insulation spraying-free PP composite material and preparation method thereof

Also Published As

Publication number Publication date
JPS61207465A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
EP1153401B1 (en) Injection moldable conductive aromatic thermoplastic liquid crystalline polymeric compositions
KR950015027B1 (en) Static dissipative resin composition
US5428100A (en) Liquid crystal polyester resin composition and molded article
US5256335A (en) Conductive polyketone polymers
EP0099573A1 (en) Improved conductive resinous composites
JPH06207012A (en) Electrically conductive plastic material and its preparation
US3733385A (en) Method of making conducting plastic articles
CA2493818A1 (en) Static dissipative thermoplastic polymer composition
EP0337487A1 (en) Electroconductive polymer composition
JP4160138B2 (en) Thermoplastic resin molded product, material for molded product, and method for producing molded product
JPH0449873B2 (en)
JPS61155451A (en) Electrically conductive resin composition
US4798686A (en) Organic polymers with electrical properties
US20080075953A1 (en) Electrically Conductive Composites with Resin and Vgcf, Production Process, and Use Thereof
JPH0468348B2 (en)
CN109265822B (en) Production process of white-point-free thermoplastic flame-retardant composite material
KR950012656B1 (en) Electric conductive resin product for shielding electromagnetic wave
JPH0277442A (en) Electrically conductive thermoplastic resin composition
JPH06207083A (en) Liquid crystal polyester resin composition, carrier for electronic component and heat-resistant tray for ic
JPH0267358A (en) Thermoplastic resin composition
JPH0548789B2 (en)
JP2000281896A (en) Flame-retardant conductive resin composition and molded product using the same
JPH0652838B2 (en) Resin composition for electromagnetic wave shielding
JPH0534377B2 (en)
JPS63272536A (en) Manufacture of conductive resin molded product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term