JPH0625722B2 - Indentation diameter measurement method - Google Patents

Indentation diameter measurement method

Info

Publication number
JPH0625722B2
JPH0625722B2 JP59102520A JP10252084A JPH0625722B2 JP H0625722 B2 JPH0625722 B2 JP H0625722B2 JP 59102520 A JP59102520 A JP 59102520A JP 10252084 A JP10252084 A JP 10252084A JP H0625722 B2 JPH0625722 B2 JP H0625722B2
Authority
JP
Japan
Prior art keywords
indentation
magnifying glass
measuring
image
tangent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59102520A
Other languages
Japanese (ja)
Other versions
JPS60247136A (en
Inventor
博 小川
隆 植木
登志男 長谷川
健二 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROZEFU TEKUNOROJII KK
Nippon Steel Corp
Original Assignee
ROZEFU TEKUNOROJII KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROZEFU TEKUNOROJII KK, Sumitomo Metal Industries Ltd filed Critical ROZEFU TEKUNOROJII KK
Priority to JP59102520A priority Critical patent/JPH0625722B2/en
Publication of JPS60247136A publication Critical patent/JPS60247136A/en
Publication of JPH0625722B2 publication Critical patent/JPH0625722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は、ブリネル硬度の測定技術に関し、特に測定対
象の窪みすなわち圧痕を光学的に検知し、その直径を画
像処理によって測定する方法に係る。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a technique for measuring Brinell hardness, and more particularly to a method for optically detecting a depression or indentation of a measurement target and measuring the diameter thereof by image processing.

従来技術 ブリネル硬度の測定では、試験片の窪みすなわち圧痕の
直径を測定することが前提となる。通常、生産現場で
は、携帯用の拡大鏡によって圧痕を目視し、その拡大鏡
の目盛から目読によって直径の測定が行われている。こ
のような測定方法では、短時間での連続的な測定が不可
能であるから、生産ライン中の全ての製品についての検
査が不可能となる。
Prior Art The measurement of Brinell hardness is premised on the measurement of the diameter of the indentation or indentation of the test piece. Usually, at the production site, the diameter is measured by visually observing the indentation with a portable magnifying glass and reading it from the scale of the magnifying glass. With such a measuring method, continuous measurement in a short time is impossible, so that it is impossible to inspect all products in the production line.

また、実験室では、顕微鏡を用いて、試験片または顕微
鏡を圧痕の直径方向に移動させ、その移動量から直径を
求めることが行われている。しかし、このような測定方
法では、上記測定方法と同様に、生産ラインに組み込む
ことが不可能であり、また測定に際し圧痕が拡大鏡によ
って拡大されるため、その圧痕の輪郭すなわち境界線が
拡大されて不明確となり、測定精度の低下が免れない。
Further, in a laboratory, a microscope is used to move a test piece or a microscope in the diameter direction of an indentation, and the diameter is obtained from the amount of movement. However, with such a measuring method, like the above-described measuring method, it is impossible to incorporate it in the production line, and since the indentation is enlarged by the magnifying glass during the measurement, the contour of the indentation, that is, the boundary line is enlarged. It is not clear that the measurement accuracy will be degraded.

発明の目的 したがって本発明の目的は、生産ライン上で、全製品に
ついて短時間で連続的に測定可能な圧痕径の測定方法を
提供することである。
OBJECT OF THE INVENTION It is therefore an object of the present invention to provide a method for measuring an indentation diameter that can continuously measure all products on a production line in a short time.

発明の概要 上記目的のもとに、本発明は、求める圧痕の直径線上
で、圧痕の輪郭曲線の接線を確定し、それぞれの接線位
置と基線との距離およびこの2つの接線の測定時の拡大
鏡の移動距離との関係から計算によって圧痕の直径を求
めるようにしている。
SUMMARY OF THE INVENTION Based on the above-mentioned object, the present invention determines the tangent line of the contour curve of the indentation on the diameter line of the indentation to be obtained, and the distance between each tangent position and the base line and the expansion at the time of measuring these two tangent lines. The diameter of the indentation is calculated from the relationship with the moving distance of the mirror.

発明の構成 以下、本発明の一実施例を図面に基づいて具体的に説明
する。
Configuration of the Invention Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings.

まず、第1図は、本発明の測定方法による測定装置1の
概要を示している。この測定装置1は、光学的な拡大鏡
2、これに連係されたCCD型のイメージセンサー3を
移動させるための案内装置4、およびこの案内装置4を
駆動するための位置決め制御装置5を備えている。上記
拡大鏡2は、低倍率例えば2倍程度の倍率であり、対物
レンズの側で測定対象のワーク6に向けられており、そ
の上端の接眼レンズ側でCCD型のイメージセンサ3に
連結されている。このイメージセンサ3は、画像処理装
置7および画像処理用のCPU8に順次接続されてい
る。
First, FIG. 1 shows an outline of a measuring apparatus 1 according to the measuring method of the present invention. This measuring device 1 comprises an optical magnifying glass 2, a guide device 4 for moving a CCD image sensor 3 associated therewith, and a positioning control device 5 for driving this guide device 4. There is. The magnifying glass 2 has a low magnification, for example, about 2 times, is directed toward the workpiece 6 to be measured at the objective lens side, and is connected to the CCD type image sensor 3 at the eyepiece side at the upper end thereof. There is. The image sensor 3 is sequentially connected to the image processing device 7 and the CPU 8 for image processing.

そして上記案内装置4は、拡大鏡2およびイメージセン
サ3を三次元空間すなわちX・Y・Z方向に移動可能な
状態で保持している。上記位置決め制御装置5は、ワー
ク6の移動および測定動作つまりCPU8の制御動作と
の関連で、上記拡大鏡2をワーク6の圧痕9の位置まで
移動させる。
The guide device 4 holds the magnifying glass 2 and the image sensor 3 in a movable state in the three-dimensional space, that is, the X, Y, and Z directions. The positioning control device 5 moves the magnifying glass 2 to the position of the indentation 9 of the work 6 in relation to the movement of the work 6 and the measurement operation, that is, the control operation of the CPU 8.

測定動作 上記測定装置1は、以下のような一連の測定動作を繰り
返す。
Measuring Operation The measuring apparatus 1 repeats the following series of measuring operations.

まず、測定対象のワーク6がタクトタイム20秒以内で
連続的に測定ステーションまで運ばれ、そこで位置決め
される。続いて位置決め制御装置5は、案内装置4を移
動させ、拡大鏡2について第1段階の焦点合わせおよび
光量調整を行った後、続いて切削面10から圧痕9の探
索を行い、拡大鏡2の光軸をその圧痕9の近くに位置決
めした後、自動焦点機能によって最終的な焦点合わせを
行い、続いて落射照明による光量調整を行う。
First, the workpiece 6 to be measured is continuously conveyed to the measuring station within 20 seconds of the tact time and positioned there. Subsequently, the positioning control device 5 moves the guide device 4 to perform the first-stage focusing and light amount adjustment on the magnifying glass 2, and then searches for the indentation 9 from the cutting surface 10 to detect the magnifying glass 2. After positioning the optical axis near the indentation 9, the final focusing is performed by the autofocus function, and then the light amount adjustment by epi-illumination is performed.

このような焦点合わせ、光量調整および位置決め制御を
行った後に、本発明の測定方法に基づいて、圧痕9の直
径Dの測定が開始される。この圧痕9と直径Dとの関係
は、第2図に示されている。
After performing such focusing, light amount adjustment, and positioning control, measurement of the diameter D of the indentation 9 is started based on the measuring method of the present invention. The relationship between the indentation 9 and the diameter D is shown in FIG.

最初の位置決めでは、第3図に示すように、拡大鏡2の
圧痕9の輪郭曲線15の一方に設定されている。ここで
イメージセンサ3および画像処理装置7は、拡大鏡2の
光学像を読取り、A−D変換の後に、バッファメモリを
介して、または直接に、1フレームの画像データとして
画像メモリ上に記憶し、その位置で輪郭曲線15の想像
上の接線11を求め、この接線11と第1の画面13a
上の基線14との距離x1を測定する。この測定が完了
した時点で、位置決め制御装置5は、拡大鏡2をX軸方
向つまり接線11に対して直交する方向に適当な移動距
離dだけ移動させる。この移動距離dは、求める直径D
との関係で、予め設定されている。このような移動によ
って、拡大鏡2に第2の画面13bまで移動している。
ここでも同様に輪郭曲線15の接線12と基線14との
距離x2が測定される。このような距離x1、x2およ
び移動距離dが測定されると、求める圧痕9の直径D
は、下記の計算式によって求める。
In the first positioning, as shown in FIG. 3, it is set on one of the contour curves 15 of the indentation 9 of the magnifying glass 2. Here, the image sensor 3 and the image processing device 7 read the optical image of the magnifying glass 2 and, after AD conversion, store it in the image memory as image data of one frame via the buffer memory or directly. , The imaginary tangent line 11 of the contour curve 15 is obtained at that position, and this tangent line 11 and the first screen 13a
The distance x1 from the upper baseline 14 is measured. When this measurement is completed, the positioning control device 5 moves the magnifying glass 2 by an appropriate movement distance d in the X-axis direction, that is, in the direction orthogonal to the tangent line 11. This moving distance d is the desired diameter D
It is set in advance in relation to. With such movement, the magnifying glass 2 is moved to the second screen 13b.
Here as well, the distance x2 between the tangent line 12 of the contour curve 15 and the base line 14 is similarly measured. When such distances x1 and x2 and the moving distance d are measured, the diameter D of the indentation 9 to be obtained is obtained.
Is calculated by the following calculation formula.

D=d−x1+x2 接線の確定方法 ここで上記接線11、12を確定する方法を説明する。
画面13a上では、圧痕9と切削面10とが明度の差と
して表現されている。しかし、それらの圧痕9の内部に
明るい点が雑音として存在し、また切削面13の部分に
も逆に暗い点が雑音として存在する。
D = d-x1 + x2 Method of deciding tangent line Here, a method of deciding the tangent lines 11 and 12 will be described.
On the screen 13a, the indentation 9 and the cutting surface 10 are represented as a difference in brightness. However, a bright point exists as noise inside the indentations 9 and a dark point also exists as noise inside the cutting surface 13.

そこでまず、第4図のような記憶画像について、雑音除
去のために、領域分割および領域の2値化が行われる。
この領域分割では、第5図に示すように、その領域を1
単位として、全体的な明度つまり領域内の各画素の明度
の総和を基準値と比較し、その比較結果に基づいて、そ
の領域を2値化すなわち白または黒として判別される。
このようにしてその区画領域内での雑音が除去され、圧
痕9と切削面10との境界部分つまり輪郭曲線15がそ
の粗い分割領域によって2値的に表現される。このよう
にして粗い分割画面で画像のノイズが消去される。
Therefore, first, with respect to the stored image as shown in FIG. 4, area division and area binarization are performed for noise removal.
In this area division, as shown in FIG.
As a unit, the overall brightness, that is, the sum of the brightness of each pixel in the area is compared with a reference value, and based on the comparison result, the area is binarized, that is, determined as white or black.
In this way, noise in the divided area is removed, and the boundary portion between the indentation 9 and the cutting surface 10, that is, the contour curve 15 is represented by the rough divided area in a binary manner. In this way, the noise of the image is eliminated in the coarse divided screen.

つぎに、画像上で、求める接線と直交するX方向で、隣
り合う黒の画面と白の画面との間で、輪郭曲線15の範
囲が第6図に示すように、エッジ処理により確定され
る。そしてこの範囲内で、輝度の急変する点が第7図に
示すように、1つの画素単位ごとに光点16として表現
される。このようにして圧痕9の輪郭曲線15が不連続
な光点16によって表現される。もちろんこの光点16
はイメージセンサ3によって得られる画像の最小単位の
画素と対応している。画像処理装置7での測定精度は、
画素の大きさと対応し、±3/100(mm)程度とな
る。
Next, on the image, the range of the contour curve 15 is determined by edge processing between the black screen and the white screen which are adjacent to each other in the X direction orthogonal to the tangent line to be obtained, as shown in FIG. . Within this range, a point where the brightness changes abruptly is expressed as a light spot 16 for each pixel unit, as shown in FIG. In this way, the contour curve 15 of the indentation 9 is represented by the discontinuous light spot 16. Of course this light spot 16
Corresponds to the minimum unit pixel of the image obtained by the image sensor 3. The measurement accuracy of the image processing device 7 is
Corresponding to the size of the pixel, it is about ± 3/100 (mm).

続いて求める接線方向つまりY方向で、その直線上の画
素つまり光点16の分布が計数することによって、接線
方向での光点16の分布総数が求められる。この分布総
数のうち最大値が圧痕9の輪郭曲線15の接線11の位
置として求められる。このように記憶画像の境界での画
像処理によって接線11の位置が確定される。以上の画
像処理は、他方の接線12についても、同様に行われ
る。
Subsequently, in the tangential direction, that is, in the Y direction, the distribution of the pixels, that is, the light spots 16 on the straight line is counted to obtain the total number of distributions of the light spots 16 in the tangential direction. The maximum value of the total number of distributions is obtained as the position of the tangent line 11 of the contour curve 15 of the indentation 9. In this way, the position of the tangent line 11 is determined by the image processing at the boundary of the stored image. The above image processing is similarly performed for the other tangent line 12.

このような接線の確定方法では、求める接線位置を接線
11、12と同じ方向での光点16の数として求められ
るから、圧痕9の輪郭を直径方向で直接測定するのに比
較して拡大画像であっても、高い精度のもとに測定でき
る。またこのような測定では、測定値について統計的な
手法が必要とされないから、処理時間が短縮化できる。
In such a method of determining the tangent line, the tangent position to be obtained is obtained as the number of the light spots 16 in the same direction as the tangent lines 11 and 12, so that the contour of the indentation 9 is directly measured in the diametrical direction, and an enlarged image is obtained. However, it can be measured with high accuracy. In addition, in such a measurement, a statistical method is not required for the measured value, so that the processing time can be shortened.

発明の変形例 上記実施例では、拡大鏡2を移動距離dだけ移動させて
いるが、この移動距離dは、測定対象のワーク6を移動
させることによっても測定できる。したがってこの移動
距離dは、拡大鏡2とワーク6との相対的な移動距離と
して理解されなければならない。また上記実施例は、圧
痕9の直径すなわちほぼ円形状の輪郭を測定することを
対象としているが、この測定方法は、ブリネル硬度の測
定分野以外の窪み、例えば楕円状の輪郭の長軸や短軸、
あるいは二次曲線や三次曲線のような曲線の最大値ある
いは最小値などの極値の間隔を測定する場合にも応用で
きる。
Modification of the Invention In the above embodiment, the magnifying glass 2 is moved by the movement distance d, but this movement distance d can also be measured by moving the workpiece 6 to be measured. Therefore, this moving distance d must be understood as a relative moving distance between the magnifying glass 2 and the workpiece 6. Further, the above-mentioned embodiment is intended to measure the diameter of the indentation 9, that is, the contour of a substantially circular shape, but this measurement method is a dent other than the field of measurement of Brinell hardness, for example, the long axis or the short axis of an elliptical contour. axis,
Alternatively, it can be applied to the case of measuring the interval between extreme values such as the maximum value or the minimum value of a curve such as a quadratic curve or a cubic curve.

発明の効果 本発明では、圧痕径の大小にかかわらず、イメージセン
サより得られる画像の分解能の範囲内での測定精度が確
保でき、さらにまた直径の算出が直径線上の接線の位置
との関係によって求められるから、圧痕の輪郭に複雑な
凹凸が形成されていても、信頼性の高い測定結果が得ら
れる。特に、圧痕の輪郭曲線が円形状であるため、ワー
クをXY平面上でXY平面に対する垂直軸を中心として
位置決めする必要がなく、2箇所の接線が円のどこでも
容易に確定できること、また接線に対する光学系の直交
方向の移動によって、一方の接線位置から他方の接線位
置への移動が簡単に行われるため、測定対象物と装置や
カメラなどの間で位置整合をとる必要がなく、検査工程
が簡単となり、自動化も容易となる。また領域分割、2
値化処理およびエッジ処理を行い、境界で接線方向の輪
郭曲線の光点の分布総数の最大値から接線位置を確定す
るから、圧痕の輪郭曲線の境界部分に複雑な凹凸があっ
ても、接線の確定が精度よくでき、信頼性の高い直径を
測定することができる。
EFFECTS OF THE INVENTION In the present invention, regardless of the size of the indentation diameter, the measurement accuracy within the range of the resolution of the image obtained by the image sensor can be ensured, and the calculation of the diameter depends on the relationship with the position of the tangent line on the diameter line. Since it is required, a highly reliable measurement result can be obtained even if complicated irregularities are formed on the contour of the indentation. In particular, since the contour curve of the indentation is circular, it is not necessary to position the workpiece on the XY plane around the vertical axis with respect to the XY plane, and two tangents can be easily determined anywhere in the circle. By moving the system in the orthogonal direction, it is easy to move from one tangential position to the other tangential position, so there is no need to align the measurement object with the device or camera, and the inspection process is simple. Therefore, automation becomes easy. Area division, 2
Since the tangent position is determined from the maximum value of the total number of distribution of the light points of the contour curve in the tangential direction at the boundary, the tangent position is determined even if there are complicated irregularities at the boundary of the contour curve of the indentation. Can be accurately determined and the diameter can be measured with high reliability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を実施する場合の測定装置の概略的ブロ
ック線図、第2図は圧痕部分の断面図、第3図は直径を
算出する場合の説明図、第4図ないし第7図は画面上か
ら接線位置を確定する場合の説明図である。 1……測定装置、2……拡大鏡、3……CCD型のイメ
ージセンサ、4……案内装置、5……位置決め制御装
置、6……ワーク、7……画像処理装置、8……CP
U、9……圧痕、10……切削面、11、12……接
線、13a,13b……画面、14……基線、15……
輪郭曲線、16……光点。
FIG. 1 is a schematic block diagram of a measuring apparatus for carrying out the present invention, FIG. 2 is a cross-sectional view of an indentation portion, FIG. 3 is an explanatory view for calculating a diameter, and FIGS. 4 to 7 [FIG. 6] is an explanatory diagram for deciding a tangent position from the screen. 1 ... Measuring device, 2 ... Magnifying glass, 3 ... CCD image sensor, 4 ... Guide device, 5 ... Positioning control device, 6 ... Work, 7 ... Image processing device, 8 ... CP
U, 9 ... Indentation, 10 ... Cutting surface, 11, 12 ... Tangent line, 13a, 13b ... Screen, 14 ... Baseline, 15 ...
Contour curve, 16 ... light spot.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 登志男 富山県東砺波郡福野町二日町1331番地の1 株式会社ロゼフ内 (72)発明者 上田 健二 富山県東砺波郡福野町二日町1331番地の1 株式会社ロゼフ内 (56)参考文献 特開 昭55−154435(JP,A) 特開 昭57−19608(JP,A) 特開 昭57−42838(JP,A) 特開 昭53−133464(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Hasegawa No. 1 133-1, Futano-cho, Fukuno-cho, Higashi-Tonami-gun, Toyama Prefecture Rosef Co., Ltd. (72) Kenji Ueda Fukka-cho, Fukuno-cho, Higashi-Tonami-gun, Toyama No. 1331 1 Rosef Co., Ltd. (56) Reference JP-A-55-154435 (JP, A) JP-A-57-19608 (JP, A) JP-A-57-42838 (JP, A) JP-A-53 -133464 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】円形くぼみの圧痕を有するワークを測定ス
テーションで位置決めした後、圧痕を拡大鏡により光学
拡大像とし、その光学拡大像を画像処理装置により画像
データに変換して記憶してから、記憶画像に対する画像
処理により圧痕の輪郭曲線の一方の接線位置で拡大鏡の
基線と接線位置との距離x1を測定し、次に拡大鏡を接
線と直交する方向に移動させて、圧痕の輪郭曲線の他方
の接線位置で拡大鏡の基線と接線位置との距離x2を測
定するとともに、拡大鏡について一方の接線位置での測
定位置から他方の測定位置までの移動距離dを測定し、
計算式(d−x1+x2)から圧痕の直径を求める過程
で、記憶画像について領域分割、領域の2値化およエッ
ジ処理を行い、境界で接線方向の輪郭曲線の光点の分布
総数の最大値から接線位置を確定することを特徴とする
圧痕径の測定方法。
1. After positioning a work having an indentation of a circular depression at a measuring station, the indentation is converted into an optical enlarged image by a magnifying glass, and the optical enlarged image is converted into image data by an image processing device and stored. The distance x1 between the base line and the tangent position of the magnifying glass is measured at one tangential position of the contour curve of the indentation by image processing on the stored image, and then the magnifying glass is moved in a direction orthogonal to the tangent line to form the contour curve of the indentation. While measuring the distance x2 between the base line and the tangent position of the magnifying glass at the other tangential position of, the moving distance d from the measuring position at one tangential position to the other measuring position of the magnifying glass is measured,
In the process of obtaining the diameter of the indentation from the calculation formula (d-x1 + x2), the storage image is divided into regions, binarization of regions and edge processing are performed, and the maximum value of the total number of distribution of light points of the tangential contour curve at the boundary is obtained. A method for measuring an indentation diameter, characterized in that the tangent position is determined from the.
JP59102520A 1984-05-23 1984-05-23 Indentation diameter measurement method Expired - Lifetime JPH0625722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102520A JPH0625722B2 (en) 1984-05-23 1984-05-23 Indentation diameter measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102520A JPH0625722B2 (en) 1984-05-23 1984-05-23 Indentation diameter measurement method

Publications (2)

Publication Number Publication Date
JPS60247136A JPS60247136A (en) 1985-12-06
JPH0625722B2 true JPH0625722B2 (en) 1994-04-06

Family

ID=14329618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102520A Expired - Lifetime JPH0625722B2 (en) 1984-05-23 1984-05-23 Indentation diameter measurement method

Country Status (1)

Country Link
JP (1) JPH0625722B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6706353B2 (en) * 2017-01-31 2020-06-03 ヤマハ発動機株式会社 Component mounting device and suction nozzle inspection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2917971A1 (en) * 1979-05-04 1980-11-13 Leitz Ernst Gmbh METHOD FOR THE AUTOMATIC EVALUATION OF IMPRESSIONS IN THE HARDNESS TESTING OF MATERIALS AND DEVICE FOR IMPLEMENTING THE METHOD

Also Published As

Publication number Publication date
JPS60247136A (en) 1985-12-06

Similar Documents

Publication Publication Date Title
JP2731864B2 (en) Indentation type hardness tester
EP1062478B8 (en) Apparatus and method for optically measuring an object surface contour
JP2870142B2 (en) Coplanarity measuring method and apparatus
US5129010A (en) System for measuring shapes and dimensions of gaps and flushnesses on three dimensional surfaces of objects
JP4791118B2 (en) Image measuring machine offset calculation method
US4498776A (en) Electro-optical method and apparatus for measuring the fit of adjacent surfaces
JP3464835B2 (en) Hole diameter and concentricity measuring device for micro cylindrical parts
JPH11132748A (en) Multi-focal point concurrent detecting device, stereoscopic shape detecting device, external appearance inspecting device, and its method
EP0316624A2 (en) Improved imaging and inspection apparatus and method
US20110043829A1 (en) Surface alignment and positioning method and apparatus
JPH0914921A (en) Non-contact three-dimensional measuring instrument
JPH0625722B2 (en) Indentation diameter measurement method
JP3259462B2 (en) Method and apparatus for detecting focal position of laser beam machine
JPH1172311A (en) Sectional form measuring apparatus
JP3180091B2 (en) Non-contact dimension measurement method by laser autofocus
US10475205B2 (en) Positioning and measuring system based on flexible feature image scale
JPH0656281B2 (en) How to find the tangent position of a curve on an image
JPH0629705B2 (en) Plate inspection method
JPH0429007A (en) Optical inspection device
JP2695338B2 (en) Hardness measuring method
CN2519299Y (en) Non-contact-type optical system air spacing measuring apparatus
KR100488305B1 (en) A non-contact and portable surface roughness measuring device
CN1114089C (en) Optical method and instrument for testing pins of integrated circuit
CN1428627A (en) Air space measurement working method of non-contact optical system and its equipment
Mashimo et al. Development of optical noncontact sensor for measurement of three-dimensional profiles using depolarized components of scattered light