JPH06256953A - Gas introducing method for tin-cvd and gas introducing mechanism - Google Patents

Gas introducing method for tin-cvd and gas introducing mechanism

Info

Publication number
JPH06256953A
JPH06256953A JP6925593A JP6925593A JPH06256953A JP H06256953 A JPH06256953 A JP H06256953A JP 6925593 A JP6925593 A JP 6925593A JP 6925593 A JP6925593 A JP 6925593A JP H06256953 A JPH06256953 A JP H06256953A
Authority
JP
Japan
Prior art keywords
gas
reaction
substrate
cvd
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6925593A
Other languages
Japanese (ja)
Inventor
Wataru Fukagawa
渡 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP6925593A priority Critical patent/JPH06256953A/en
Publication of JPH06256953A publication Critical patent/JPH06256953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a gas introducing method for TiN-CVD without deposition of an impurity and enabling to form a uniform film on a base plate, and a gas introducing mechanism. CONSTITUTION:A reactive gas consisting of a titanium compound and a reactive gas consisting of a nitrogen compound are introduced from an outside of a reaction container by separating them till a gas ejector 3 confronted to the base plate 8, and also the reaction gas consisting of the titanium compound is kept at a higher temp. than the dew point temp. The gas introducing mechanism for practicing this method is constituted of connecting a reaction gas source outside the reaction vessel with the gas ejector 3 provided by being confronted to the base plate 8 in the reaction vessel via a double pipe (which is composed of an inside pipe 1 and an outside pipe 2) and winding a sheath heater 7 on the inside pipe 1 of the double pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、TiN(窒化チタ
ン)薄膜をCVD (Chemical Vapor Deposition)法で形
成する際の、チタン化合物ガスおよび窒素化合物ガスを
反応容器内へ導入する方法および機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a mechanism for introducing a titanium compound gas and a nitrogen compound gas into a reaction vessel when a TiN (titanium nitride) thin film is formed by a CVD (Chemical Vapor Deposition) method.

【0002】[0002]

【従来の技術】高集積化されたICでは、コンタクト電
極部の信頼性を高める上で、拡散バリアーとしてのTi
N層の形成が必須条件となってきている。このTiN層
の形成は、配線の微細化に伴い、CVD法による成膜が
有力な方法と考えられてきている。
2. Description of the Related Art In a highly integrated IC, in order to improve the reliability of the contact electrode portion, Ti as a diffusion barrier is used.
The formation of the N layer has become an essential condition. The formation of the TiN layer is considered to be an effective method for forming a film by the CVD method as the wiring becomes finer.

【0003】従来知られているCVD法には、以下のよ
うな技術がある。即ち、 1) TiNの成膜を目的として、図3に示したような装
置でCVD法により成膜する技術がある。NH3 ガス1
1とTiCl4 ガス12が、夫々導管13、14を通し
て反応容器15に導入される。NH3 ガスについては、
拡散を目的とした容器16を経由させ、容器16に形成
したスリット18から基板19の方向へ向かわせる。一
方TiCl4 ガス12はNH3 ガスの下流において、基
板19の方向へ臨ませたパイプ17から噴出させる。N
3 ガス11とTiCl4 ガス12は基板19上で混合
し、基板19の表面にTiNが堆積する(例えば、19
89年3月発行、Journal of the Electrochemical Soc
iety、第36巻、第3号、第882頁〜第883頁)。 2) TiNの成膜を目的として、図4に示したような装
置でCVD法により成膜する技術がある。NH3 ガス2
1とTiCl4 ガス22を、夫々導管23、24を通し
て、反応容器25内に設置したドラム状の容器26に導
入する。容器26には基板28と対向する面27に複数
の小孔が形成してあり、容器26内で混合した両反応ガ
スは小孔を通して噴出し、基板28の表面にTiNが堆
積する(例えば特開平3−64473号公報)。 3) SiO2 の成膜を目的として、図5に示した装置で
CVD法により成膜する技術がある。導入するガスは、
主にO3 +O2 ガス31とTEOSガス32である。両
反応ガスは、夫々別個に、反応容器35内のディスパー
ジョンヘッド36に導入される。38は排気管である。
両反応ガスは、ディスパージョンヘッド36の溝37か
ら層状に噴出し、混合しながら基板39に向かい、基板
39の表面にSiO2 を析出させる(例えば、1989
年発行、電気化学、第56巻、第7号、第527頁〜第
532頁)。 4) SiO2 の成膜を目的として、図6に示した装置
でCVD法により成膜する技術がある。導入するガス
は、熱プラズマで生成された励起状酸素ガス41とTE
OSガス42である。TEOSガス42は拡散を目的と
した分散板44を複数設置したガス吹き出し器46に導
入される。ガス吹き出し器46には、基板47と対向す
るように配置した複数のパイプ45が設けてあり、励起
状酸素ガス41はパイプ45を通して噴出するようにす
る。両反応ガスはガス吹き出し器46の先端部で合流・
化合しながら基板47に向かい、基板47の表面にSi
2 を堆積させる(例えば特開平3−122281号公
報)。
Conventionally known CVD methods include the following techniques. That is, 1) there is a technique for forming a TiN film by a CVD method using an apparatus as shown in FIG. NH 3 gas 1
1 and TiCl 4 gas 12 are introduced into reaction vessel 15 through conduits 13 and 14, respectively. For NH 3 gas,
It goes through the container 16 for the purpose of diffusion toward the substrate 19 from the slit 18 formed in the container 16. On the other hand, the TiCl 4 gas 12 is ejected from a pipe 17 facing the substrate 19 downstream of the NH 3 gas. N
The H 3 gas 11 and the TiCl 4 gas 12 are mixed on the substrate 19, and TiN is deposited on the surface of the substrate 19 (for example, 19
Published in March 1989, Journal of the Electrochemical Soc
society, Vol. 36, No. 3, pp. 882-883). 2) There is a technique for forming a TiN film by a CVD method using an apparatus as shown in FIG. NH 3 gas 2
1 and TiCl 4 gas 22 are introduced into a drum-shaped container 26 installed in a reaction container 25 through conduits 23 and 24, respectively. The container 26 has a plurality of small holes formed on the surface 27 facing the substrate 28. Both reaction gases mixed in the container 26 are ejected through the small holes, and TiN is deposited on the surface of the substrate 28 (for example, a special Kaihei 3-64473). 3) There is a technique for forming a film of SiO 2 by the CVD method using the apparatus shown in FIG. The gas to be introduced is
It is mainly O 3 + O 2 gas 31 and TEOS gas 32. Both reaction gases are separately introduced into the dispersion head 36 in the reaction container 35. 38 is an exhaust pipe.
Both reaction gases are ejected in layers from the grooves 37 of the dispersion head 36, and are mixed and directed toward the substrate 39 to deposit SiO 2 on the surface of the substrate 39 (eg, 1989).
Annual Issue, Electrochemistry, Vol. 56, No. 7, pp. 527-532). 4) There is a technique for forming a film of SiO 2 by the CVD method using the apparatus shown in FIG. The gas to be introduced is the excited oxygen gas 41 generated by thermal plasma and TE.
The OS gas 42. The TEOS gas 42 is introduced into a gas blower 46 having a plurality of dispersion plates 44 for the purpose of diffusion. The gas blower 46 is provided with a plurality of pipes 45 arranged so as to face the substrate 47, and the excited oxygen gas 41 is ejected through the pipes 45. Both reaction gases join at the tip of the gas blower 46.
Heading toward the substrate 47 while combining, Si on the surface of the substrate 47
O 2 is deposited (for example, JP-A-3-122281).

【0004】[0004]

【発明が解決しようとする課題】低圧CVD法(LPC
VD法)によるTiN膜の形成における基本的な留意点
として、TiCl4 ガスが液化ガスであるため、気化し
た後は凝固しないように、移送中、ガスの温度が低下し
ないようにする必要がある点および−30〜180℃で
TiCl4 ガスとNH3 ガスが混合すると、TiNでは
なくTiCl4 ・2NH3 が生成され、黄色の粉体とな
って、反応容器内で不純物を形成するので、これを避け
なければならない点がある(例えば、1991年2月発
行、Journal of the Electrochemical Society、第13
8巻、第2号、第500頁〜505頁)。
The low pressure CVD method (LPC
As a basic point to be noted in the formation of the TiN film by the VD method), since TiCl 4 gas is a liquefied gas, it is necessary to prevent the gas temperature from lowering during the transfer so that it does not solidify after being vaporized. When mixed TiCl 4 gas and NH 3 gas at point and -30 to 180 ° C., TiCl 4 · 2NH3 instead TiN is generated, become yellow powder, so to form impurity in the reaction vessel, it There are some points to avoid (eg, February 1991, Journal of the Electrochemical Society, 13th
8: No. 2, pp. 500-505).

【0005】つまり、反応ガスの移送経路、両反応ガス
の混合後基板到達以前に接する面、排気経路等に不純物
が析出する。そのため反応が不安定になったり、頻繁に
反応容器内の不純物除去の必要が出てくる。また、VL
SI製造におけるTiN形成においては、基板の大口径
化に従って、成膜レート、膜厚分布、膜質の均一性がよ
り重要になってくるが、前記の要因によりそれらの信頼
性低下を招くことになる。
That is, impurities are deposited on the transfer path of the reaction gas, the surface of the reaction gas which is in contact with the reaction gas before reaching the substrate, the exhaust path, and the like. Therefore, the reaction becomes unstable, and it becomes necessary to frequently remove impurities in the reaction vessel. Also, VL
In forming TiN in SI manufacturing, the film forming rate, the film thickness distribution, and the uniformity of the film quality become more important as the diameter of the substrate becomes larger. However, the above factors lead to a decrease in their reliability. .

【0006】前記従来技術の1)においては、TiCl4
ガスの拡散の具合によりNH3 ガスとの反応が決まって
しまうと考えられ、TiCl4 ガスの噴出中心部と周辺
部に対応する基板上では膜質や膜厚が不均一になる。
In the above-mentioned prior art 1), TiCl 4
It is considered that the reaction with the NH 3 gas is decided depending on the diffusion of the gas, and the film quality and the film thickness become nonuniform on the substrate corresponding to the central part and the peripheral part of the TiCl 4 gas jet.

【0007】2)においては、ドラム状の容器内で混合し
たガスは容器から噴出する前に既に反応して混合容器内
に不純物を析出する。
In 2), the gas mixed in the drum-shaped container has already reacted before ejecting from the container to deposit impurities in the mixing container.

【0008】3)においては、各ガスは隣合って基板に向
かって直進するため、両ガスの横方向の拡散のみによっ
て混合が進む。そのため化合が均等にならず、均一な膜
が得られ難い。
In 3), since the gases adjoin each other and go straight toward the substrate, the mixing proceeds only by the lateral diffusion of both gases. Therefore, the chemical composition is not uniform, and it is difficult to obtain a uniform film.

【0009】4)においては、両ガスは噴出部付近におい
て激しく混合するため、不純物析出反応が起こることが
考えられる。
In 4), since both gases are vigorously mixed in the vicinity of the ejection portion, an impurity precipitation reaction may occur.

【0010】[0010]

【課題を解決する為の手段】この発明は、以上のような
問題点に鑑みてなされたもので、不純物の析出が無く、
また、基板上に均一に成膜が可能な、TiN−CVD用
ガス導入法およびガス導入機構を提供することを目的と
している。
The present invention has been made in view of the above problems, and is free from precipitation of impurities.
Another object of the present invention is to provide a TiN-CVD gas introduction method and a gas introduction mechanism capable of forming a uniform film on a substrate.

【0011】前記の目的を達成するこの発明のTiN−
CVD用ガス導入法は、反応ガスであるチタン化合物と
窒素化合物を移送し、両反応ガスを基板の近くで混合
し、基板上でCVD反応を生じさせてTiN薄膜を得る
CVD法のガス導入法において、前記反応ガスを反応容
器外部から基板と対向させたガス噴出器まで分離して導
入し、かつチタン化合物からなる反応ガスは露点温度よ
り高い温度に保温するようにしたことを特徴としてい
る。
The TiN-based alloy of the present invention which achieves the above objects.
The gas introduction method for CVD is a gas introduction method of the CVD method in which a titanium compound and a nitrogen compound, which are reaction gases, are transferred, both reaction gases are mixed near the substrate, and a CVD reaction is caused on the substrate to obtain a TiN thin film. In the above method, the reaction gas is separately introduced from the outside of the reaction container to a gas ejector facing the substrate, and the reaction gas composed of a titanium compound is kept at a temperature higher than the dew point temperature.

【0012】また、この発明のTiN−CVD用ガス導
入機構は、反応ガスであるチタン化合物と窒素化合物を
移送し、両反応ガスを基板の近くで混合し、基板上でC
VD反応を生じさせてTiN薄膜を得るCVD法のガス
導入機構において、反応容器外の反応ガス源と、反応容
器内に基板と対向させて設置したガス噴出器が二重管を
通して接続してあり、二重管の内側管に加熱手段が設け
てあることを特徴としている。
In the TiN-CVD gas introduction mechanism of the present invention, the titanium gas and the nitrogen compound, which are reaction gases, are transferred, both reaction gases are mixed in the vicinity of the substrate, and C
In a gas introduction mechanism of a CVD method for causing a VD reaction to obtain a TiN thin film, a reaction gas source outside the reaction container and a gas ejector installed in the reaction container so as to face the substrate are connected through a double pipe. The inner tube of the double tube is provided with heating means.

【0013】両反応ガスが均一に混合して基板に至るよ
うにする為、前記ガス噴出器は、基板と対向する小孔を
複数備えた環状の管体を二重管の内側管と連通させると
共に、前記管体の外部と二重管の外側管を連通させて構
成し、チタン化合物でなる反応ガスを窒素化合物でなる
反応ガスで包み込むようにして、ガス噴出器から噴出さ
せるようにすることが望ましい。
In order to uniformly mix the two reaction gases to reach the substrate, the gas ejector communicates an annular pipe body having a plurality of small holes facing the substrate with the inner pipe of the double pipe. At the same time, the outside of the pipe body and the outer pipe of the double pipe are made to communicate with each other, and the reaction gas consisting of the titanium compound is wrapped with the reaction gas consisting of the nitrogen compound so that the gas is ejected from the gas ejector. Is desirable.

【0014】[0014]

【作用】この発明のTiN−CVD用ガス導入法によれ
ば、チタン化合物からなる反応ガスと窒素化合物からな
る反応ガスを、基板の表面におけるCVD反応の直前ま
で完全に分離して移送することができる。また、チタン
化合物からなる反応ガスを結露させることなく移送する
ことができる。従って、反応ガスを良好な状態で移送で
き、かつガス噴出器から噴出して化合した後、基板へ到
達するまでには何物にも接しないので、目的とした反応
以外の反応が起ることがなく、不純物の生成を無くする
ことができる。
According to the TiN-CVD gas introduction method of the present invention, the reaction gas consisting of the titanium compound and the reaction gas consisting of the nitrogen compound can be completely separated and transferred until just before the CVD reaction on the surface of the substrate. it can. Further, the reaction gas composed of the titanium compound can be transferred without dew condensation. Therefore, the reaction gas can be transferred in a good condition, and since it does not come into contact with anything until it reaches the substrate after being combined by being ejected from the gas ejector, a reaction other than the intended reaction may occur. Therefore, the generation of impurities can be eliminated.

【0015】また、この発明のTiN−CVD用ガス導
入機構によれば、上記の作用を得られると共に、ガス導
入の為の配管が占有する空間を小さくすることができる
更に、チタン化合物でなる反応ガスを窒素化合物でなる
反応ガスで包み込むようにすることによって、両反応ガ
スを完全に、かつ均一に化合させることができ、基板上
における成膜を均一にすることができる。
Further, according to the TiN-CVD gas introduction mechanism of the present invention, the above-mentioned effects can be obtained, and the space occupied by the gas introduction pipe can be reduced. By enclosing the gas with the reaction gas composed of a nitrogen compound, both reaction gases can be combined completely and uniformly, and the film formation on the substrate can be made uniform.

【0016】[0016]

【実施例】以下、この発明の実施例を図1および図2を
参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.

【0017】チタン化合物でなる反応ガスとしてTiC
4 ガスを用い、窒素化合物でなる反応ガスとしてNH
3 ガスを用いることとした。TiCl4 ガスは液化ガス
であるため、本発明の目的とするCVD反応が必要とす
る減圧下では、移送中の結露を防止するため保温機構
(〜80℃)を必要とする。また、TiCl4 ガスとN
3 ガスとの反応において、180℃以下の温度で化合
すると、TiCl4 +2NH3 ←→TiCl4 ・2NH
3 (Yellow Solid)という不純物生成反応が起ってしま
う性質がある。
TiC as a reaction gas composed of a titanium compound
NH 4 is used as a reaction gas composed of a nitrogen compound by using l 4 gas.
We decided to use 3 gases. Since TiCl 4 gas is a liquefied gas, a heat retention mechanism (up to 80 ° C.) is required to prevent dew condensation during transfer under the reduced pressure required for the CVD reaction which is the object of the present invention. Also, TiCl 4 gas and N
In the reaction with H 3 gas, if combined at a temperature of 180 ° C. or lower, TiCl 4 + 2NH 3 ← → TiCl 4 .2NH
3 (Yellow Solid) has a property of causing an impurity generation reaction.

【0018】そこでガス導入機構を図1、図2のように
構成した。内側管1と外側管2はステンレス(SUS3
16)でできた同軸型二重管となっている。一般的にT
iN膜の形成における反応ガスの流量比はTiCl4
NH3 =1:10〜100であるから、内側管1にTi
Cl4 ガス、外側管2にNH3 ガス2を導入するように
した。内側管1の外側には、耐蝕性のシースに覆われた
シースヒータ7を巻き付け、外部ヒータ電源10からの
電力で内側管1を80℃以上に加熱できるようにし、T
iCl4 ガスが内側管1内で結露しないようにする。
Therefore, the gas introduction mechanism is constructed as shown in FIGS. Inner tube 1 and outer tube 2 are made of stainless steel (SUS3
It is a coaxial double tube made in 16). Generally T
The flow rate ratio of the reaction gas in forming the iN film is TiCl 4 :
Since NH 3 = 1: 10 to 100, Ti is used for the inner tube 1.
Cl 4 gas and NH 3 gas 2 were introduced into the outer tube 2. A sheath heater 7 covered with a corrosion resistant sheath is wound around the inner tube 1 so that the inner tube 1 can be heated to 80 ° C. or higher by electric power from an external heater power source 10.
Make sure that the iCl 4 gas does not condense in the inner tube 1.

【0019】前記内側管1と外側管2でなる同軸型二重
管の先端には、基板8と対向するガス噴出器3を連設す
る。このガス噴出器3は、外側管2に取付けた、逆漏斗
状のカバー4と、カバー4の内側に同心状に配置された
環状の管体6、6で構成されたもので、前記管体6、6
と内側管1を分岐用枝管4、4、5、5を介して連通
し、管体6、6の、基板8と対向する側壁に、多数の小
孔9、9を、等間隔で開口する。
At the tip of the coaxial double tube consisting of the inner tube 1 and the outer tube 2, a gas ejector 3 facing the substrate 8 is connected in series. The gas ejector 3 is composed of an inverted funnel-shaped cover 4 attached to the outer pipe 2 and annular pipe bodies 6 arranged inside the cover 4 concentrically. 6, 6
And the inner pipe 1 are communicated with each other through branching branch pipes 4, 4, 5 and 5, and a large number of small holes 9, 9 are opened at equal intervals in a side wall of the pipe body 6, 6 facing the substrate 8. To do.

【0020】上記のようなガス導入機構を用いて、内側
管1を80℃以上の温度に保って、TiCl4 ガスおよ
びNH3 ガスを導入する。TiCl4 ガスは内側管1内
で結露することなく、管体6、6まで導かれ、小孔9、
9より基板8の方向に噴出する(矢示a)。管体6、6
にはシースヒータ7が巻き付けられていないが、加熱下
におかれる基板8(300〜400℃)からの輻射熱と
内側管1からの熱伝導で、80℃以下の温度に下がるこ
とはないと考えられる。
Using the gas introduction mechanism as described above, the inner tube 1 is maintained at a temperature of 80 ° C. or higher, and TiCl 4 gas and NH 3 gas are introduced. The TiCl 4 gas is guided to the pipes 6, 6 without dew condensation in the inner pipe 1, and the small holes 9,
It is jetted from 9 toward the substrate 8 (arrow a). Tube 6, 6
Although the sheath heater 7 is not wound around, the radiant heat from the substrate 8 (300 to 400 ° C.) to be heated and the heat conduction from the inner tube 1 are considered not to lower the temperature below 80 ° C. .

【0021】一方NH3 ガスは外側管2を通して導入さ
れ、内側管1を包むようにしてガス噴出器3まで到達
し、前記小孔9、9より噴出したTiCl4 ガスを包み
込むようにして基板8の方向に噴出する(矢示b)。
On the other hand, NH 3 gas is introduced through the outer pipe 2, reaches the gas ejector 3 so as to wrap the inner pipe 1, and reaches the substrate 8 so as to wrap the TiCl 4 gas ejected from the small holes 9, 9. Squirt out (arrow b).

【0022】然して、TiCl4 ガスとNH3 ガスは、
噴出後、均一に混合し、他の部材に一切接触することな
く、基板8に到達する。従って、加熱された基板8上で
は純粋なTiN生成反応のみが起り、高純度のTiN膜
が、基板8の全面に亘って均一に形成される。
However, TiCl 4 gas and NH 3 gas are
After jetting, they are mixed uniformly and reach the substrate 8 without contacting any other member. Therefore, only pure TiN forming reaction occurs on the heated substrate 8, and a high-purity TiN film is uniformly formed over the entire surface of the substrate 8.

【0023】[0023]

【発明の効果】以上に説明したように、この発明のガス
導入法によれば、反応ガスを、基板と対向させたガス噴
出器まで分離して導入し、かつチタン化合物からなる反
応ガスを結露しないようにしたので、基板上で所用のC
VD反応を安定して起させることができる効果がある。
As described above, according to the gas introduction method of the present invention, the reaction gas is introduced separately to the gas ejector facing the substrate, and the reaction gas consisting of the titanium compound is condensed. Since I did not do so, I got the required C on the board
There is an effect that a VD reaction can be stably caused.

【0024】チタン化合物でなる反応ガスを窒素化合物
でなる反応ガスで包み込むようにしてガス噴出器より噴
出させることによって、反応ガスを均一に混合し、均一
な生膜を行なえる効果がある。
The reaction gas composed of the titanium compound is wrapped with the reaction gas composed of the nitrogen compound and ejected from the gas ejector, so that the reaction gas is uniformly mixed and a uniform film formation can be achieved.

【0025】また、この発明のガス導入機構によれば、
反応ガスを二重管を通してガス噴出器まで導入できるの
で、前記と同様の効果に加えて、ガス導入の為の機構が
占有する空間を小さくできる効果がある。ガス噴出器と
基板の間に介在する部材は無いので、噴出した反応ガス
は何物にも接触することなく基板に到達でき、不純物を
析出することなく、高純度のTiN膜を生膜できる効果
がある。
According to the gas introduction mechanism of the present invention,
Since the reaction gas can be introduced to the gas ejector through the double pipe, in addition to the same effect as described above, there is an effect that the space occupied by the mechanism for introducing the gas can be reduced. Since there is no member interposed between the gas ejector and the substrate, the ejected reaction gas can reach the substrate without coming into contact with anything, and the high purity TiN film can be formed without depositing impurities. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の縦断面図である。FIG. 1 is a vertical sectional view of an embodiment of the present invention.

【図2】同じく実施例の底面図である。FIG. 2 is a bottom view of the embodiment as well.

【図3】従来のガス導入機構の説明図である。FIG. 3 is an explanatory view of a conventional gas introduction mechanism.

【図4】同じく従来の他のガス導入機構の説明図であ
る。
FIG. 4 is an explanatory view of another conventional gas introducing mechanism.

【図5】同じく従来の別のガス導入機構の説明図であ
る。
FIG. 5 is an explanatory view of another conventional gas introduction mechanism.

【図6】同じく従来の更に別のガス導入機構の説明図で
ある。
FIG. 6 is an explanatory view of still another conventional gas introducing mechanism.

【符号の説明】[Explanation of symbols]

1 内側管 2 外側管 3 ガス噴出器 4 カバー 5 分岐用枝管 6 管体 7 シースヒータ 8 基板 9 小孔 1 Inner Tube 2 Outer Tube 3 Gas Ejector 4 Cover 5 Branch Branch Tube 6 Tubular Body 7 Sheath Heater 8 Substrate 9 Small Hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 反応ガスであるチタン化合物と窒素化合
物を移送し、両反応ガスを基板の近くで混合し、基板上
でCVD反応を生じさせてTiN薄膜を得るCVD法の
ガス導入法において、前記反応ガスを反応容器外部から
基板と対向させたガス噴出器まで分離して導入し、かつ
チタン化合物からなる反応ガスは露点温度より高い温度
に保温するようにしたことを特徴とするTiN−CVD
用ガス導入法。
1. A gas introduction method of a CVD method, wherein a titanium compound and a nitrogen compound, which are reaction gases, are transferred, both reaction gases are mixed near a substrate, and a CVD reaction is caused on the substrate to obtain a TiN thin film. The TiN-CVD is characterized in that the reaction gas is separately introduced from the outside of the reaction container to a gas ejector facing the substrate, and the reaction gas composed of a titanium compound is kept at a temperature higher than the dew point temperature.
Gas introduction method.
【請求項2】 反応ガスは、チタン化合物でなる反応ガ
スを窒素化合物でなる反応ガスで包み込むようにして、
ガス噴出器より噴出される請求項1記載のTiN−CV
D用ガス導入法。
2. The reaction gas is such that a reaction gas composed of a titanium compound is wrapped with a reaction gas composed of a nitrogen compound,
The TiN-CV according to claim 1, which is ejected from a gas ejector.
Gas introduction method for D.
【請求項3】 反応ガスであるチタン化合物と窒素化合
物を移送し、両反応ガスを基板の近くで混合し、基板上
でCVD反応を生じさせてTiN薄膜を得るCVD法の
ガス導入機構において、反応容器外の反応ガス源と、反
応容器内に基板と対向させて設置したガス噴出器が二重
管を通して接続してあり、二重管の内側管に加熱手段が
設けてあることを特徴とするTiN−CVD用ガス導入
機構。
3. A gas introduction mechanism of a CVD method, in which a titanium compound and a nitrogen compound, which are reaction gases, are transferred, both reaction gases are mixed near a substrate, and a CVD reaction is caused on the substrate to obtain a TiN thin film. A reaction gas source outside the reaction vessel and a gas ejector installed inside the reaction vessel so as to face the substrate are connected through a double tube, and a heating means is provided in the inner tube of the double tube. A gas introduction mechanism for TiN-CVD.
【請求項4】 ガス噴出器は、基板と対向する小孔を複
数備えた環状の管体を二重管の内側管と連通させると共
に、前記管体の外部と二重管の外側管を連通させて構成
した請求項3記載のTiN−CVD用ガス導入機構。
4. The gas ejector connects an annular pipe having a plurality of small holes facing the substrate with an inner pipe of the double pipe, and connects the outside of the pipe with an outer pipe of the double pipe. The gas introduction mechanism for TiN-CVD according to claim 3, which is constituted by
JP6925593A 1993-03-04 1993-03-04 Gas introducing method for tin-cvd and gas introducing mechanism Pending JPH06256953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6925593A JPH06256953A (en) 1993-03-04 1993-03-04 Gas introducing method for tin-cvd and gas introducing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6925593A JPH06256953A (en) 1993-03-04 1993-03-04 Gas introducing method for tin-cvd and gas introducing mechanism

Publications (1)

Publication Number Publication Date
JPH06256953A true JPH06256953A (en) 1994-09-13

Family

ID=13397439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6925593A Pending JPH06256953A (en) 1993-03-04 1993-03-04 Gas introducing method for tin-cvd and gas introducing mechanism

Country Status (1)

Country Link
JP (1) JPH06256953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150387A (en) * 1998-11-18 2000-05-30 Applied Materials Inc Piping structure and piping unit
DE102005056322A1 (en) * 2005-11-25 2007-06-06 Aixtron Ag Apparatus for depositing a film on a substrate, especially for semiconductor production, comprises a process chamber that contains a substrate holder and is supplied with process gases through coaxial inlet ports

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150387A (en) * 1998-11-18 2000-05-30 Applied Materials Inc Piping structure and piping unit
DE102005056322A1 (en) * 2005-11-25 2007-06-06 Aixtron Ag Apparatus for depositing a film on a substrate, especially for semiconductor production, comprises a process chamber that contains a substrate holder and is supplied with process gases through coaxial inlet ports

Similar Documents

Publication Publication Date Title
JP3040212B2 (en) Vapor phase growth equipment
US6573184B2 (en) Apparatus and method for depositing thin film on wafer using atomic layer deposition
US4699805A (en) Process and apparatus for the low pressure chemical vapor deposition of thin films
JP2760717B2 (en) Method for manufacturing semiconductor device
JP2003017422A (en) Method and equipment for manufacturing semiconductor device
JPS59179775A (en) Method and device for depositting tungsten silicide
KR20010041420A (en) Liquid vaporizer systems and methods for their use
CN105789028A (en) Method of manufacturing semiconductor device, and substrate processing apparatus
TW306937B (en)
JPS6033352A (en) Vacuum cvd apparatus
JPH06256953A (en) Gas introducing method for tin-cvd and gas introducing mechanism
JP2017183392A (en) Substrate processing device, method of manufacturing semiconductor device, and recording medium
JP2023165711A (en) Substrate processing device, plasma generation device, manufacturing method for semiconductor device, and program
JP2001214274A (en) Duplex zone showerhead and chemical enhanced cvd- device using the same
JPH0786267A (en) Method and device for introducing gas for tin-cvd
JPS6052578A (en) Formation of silicon nitride film
KR101462154B1 (en) Method for depositing W thin film
JPS60234315A (en) Method of producing semiconductor device and apparatus for producing same
JP3037287B1 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JPH08162445A (en) Film forming method and device
JPH0530350Y2 (en)
JP3399124B2 (en) Method for forming oxide film and apparatus for forming oxide film
JP2006173553A (en) Catalyst cvd method and catalyst cvd device
JPS63216973A (en) System for feeding reactive gas to vapor phase reactor
KR940007175Y1 (en) Low pressure cvd apparatus of wafer