DE102005056322A1 - Apparatus for depositing a film on a substrate, especially for semiconductor production, comprises a process chamber that contains a substrate holder and is supplied with process gases through coaxial inlet ports - Google Patents
Apparatus for depositing a film on a substrate, especially for semiconductor production, comprises a process chamber that contains a substrate holder and is supplied with process gases through coaxial inlet ports Download PDFInfo
- Publication number
- DE102005056322A1 DE102005056322A1 DE200510056322 DE102005056322A DE102005056322A1 DE 102005056322 A1 DE102005056322 A1 DE 102005056322A1 DE 200510056322 DE200510056322 DE 200510056322 DE 102005056322 A DE102005056322 A DE 102005056322A DE 102005056322 A1 DE102005056322 A1 DE 102005056322A1
- Authority
- DE
- Germany
- Prior art keywords
- substrate
- process chamber
- outlet openings
- outlet opening
- particular according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45576—Coaxial inlets for each gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45519—Inert gas curtains
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zum Abscheiden mindestens einer Schicht auf mindestens einem Substrat, mit einem vertikal sich erstreckenden Reaktorgehäuse mit einer Prozesskammer, in welcher sich ein Substrathalter befindet, um das Substrat in Horizontallage zu halten und in welche Gaszuleitungen münden, aus deren auf das Substrat weisenden Austrittsöffnungen Prozessgase austreten, deren Bestandteile auf dem Substrat die Schicht bilden.The The invention relates to a device for separating at least one Layer on at least one substrate, with a vertically extending reactor housing with a process chamber in which a substrate holder is located, to keep the substrate in horizontal position and in which gas supply lines lead, from whose outlet openings pointing to the substrate, process gases exit, whose constituents form the layer on the substrate.
Die Erfindung betrifft darüber hinaus ein Verfahren zum Abscheiden mindestens einer Schicht auf einem Substrat, in einer Prozesskammer eines sich vertikal erstreckenden Reaktorgehäuses, wobei ein Substrat auf der in der Horizontalrichtung sich erstreckenden Stirnfläche eines Substrathalters angeordnet ist und in die Prozesskammer durch mit einem Abstand vor dem Substrat angeordneten Austrittsöffnungen Prozessgase in die Prozesskammer eingeleitet werden, deren Bestandteile auf dem Substrat die Schicht bilden.The Invention relates to this In addition, a method for depositing at least one layer on one Substrate, in a process chamber of a vertically extending Reactor housing, wherein a substrate extends in the horizontal direction face a substrate holder is arranged and in the process chamber through with a distance in front of the substrate arranged outlet openings Process gases are introduced into the process chamber, whose components forming the layer on the substrate.
Aus
der
Der Erfindung liegt die Aufgabe zugrunde, die eingangs genannte Vorrichtung bzw. das eingangs genannte Verfahren prozesstechnisch zu verbessern.Of the Invention is based on the object, the device mentioned or to improve the method mentioned process-related.
Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Erfindung, wobei jeder einzelne Anspruch eine eigenständige Lösung der Aufgabe darstellt und jeder Anspruch mit jedwedem anderen Anspruch kombinierbar ist.Is solved the object by the invention specified in the claims, each individual claim represents an independent solution of the task and each claim can be combined with any other claim.
Die Aufgabe wird zunächst und im wesentlichen dadurch gelöst, dass die Austrittsöffnungen in einer Koaxiallage zueinander angeordnet sind, so kann eine Austrittsöffnung für das Halid, also GaCl, InCl oder AlCl im Zentrum der Prozesskammer angeordnet sein. Diese Austrittsöffnung ist von einer Austrittsöffnung für ein Trenngas, beispielsweise Wasserstoff oder bevorzugt Stickstoff ringförmig umgeben. Um die zuletzt genannte Austrittsöffnung erstreckt sich die Austrittsöffnung für das Hydrid. Die Austrittsöffnung für das Hydrid ist gegenüber der Austrittsöffnung des Halids oder des Trenngases relativ schmal. Mit der Austrittsöffnung für das Trenngas kann die Mischzone der beiden Prozessgase Halid und Hydrid gesteuert werden. Hierdurch lässt sich der Ort der Gasphasenreaktionen beeinflussen, wobei es bei der HVPE im Wesentlichen darauf ankommt, dass die Prozessgase entfernt von den Oberflächen zusammentreffen. In einer Weiterbildung der Erfindung ist eine weitere Austrittsöffnung für ein Trenngas vorgesehen, die die Austrittsöffnung für das Hydrid umgibt und die radial außen von einer Reaktorwand oder einem Liner-Rohr begrenzt ist. Die einzelnen Austrittsöffnungen sind die Mündungen von Gaszuleitungen, wobei die Gaszuleitungen von Quarzrohren gebildet werden, die einen Durchmesser von ca. 2 mm aufweisen. Die Gaszuleitungen können aber auch aus PBN bestehen oder PBN-Aufsätze besitzen, um beispielsweise eine Galliumnitritabscheidung am Quarz zu vermeiden. Die Wandung der radial äußeren Gaszuleitung für das Trenngas kann von einer Graphitoberfläche des aus Graphit bestehenden Liner-Rohrs gebildet sein. Bevorzugt liegen alle Austrittsöffnungen in einer gemeinsamen Horizontalebene, die sich unterhalb der Horizontalebene der Stirnfläche des Substrathalters befindet. Auch besteht eine koaxiale Zuordnung zwischen Substrathalter und Austrittsöffnungen, so dass eine Rotationssymmetrie gegeben ist. Es erweist sich als strömungstechnisch günstig, wenn die Stirnfläche des Substrathalters in der Ausbildung einer Verrundung oder einer Kegelstumpfmantelfläche in eine Zylinderfläche übergeht. Die Prozesskammer wird von außen beheizt. Hierzu ist das rohrförmige Reaktorgehäuse von einem Heizmantel umgeben. Innerhalb des Heizmantels befindet sich eine Heizspule. Es kann sich um eine Widerstandsheizung oder um eine RF-Heizung handeln. Es erweist sich bei einer RF-Heizung als vorteilhaft, wenn bestimmte Bestandteile der Prozesskammer, also insbesondere das Liner-Rohr oder der Substrathalter aus Graphit oder einem anderen elektrisch leitenden Material bestehen, das das oszillierende Magnetfeld, das von der RF-Spule erzeugt wird, einkoppelt und sich dadurch aufwärmt. Die Metallquelle, in der sich die Metallchloride bilden, befindet sich unterhalb der Prozesskammer. Die einzelnen Rohre sind geschachtelt. In einer Weiterbildung der Erfindung ist vorgesehen, dass der Substrathalter in Achsrichtung des Reaktorgehäuses motorisch verlagerbar ist. Der Substrathalter wird während des Schichtwachstums von den Austrittsöffnungen entfernt. Die Geschwindigkeit entspricht dabei der Wachstumsrate, welche zwischen 100 und 800 μm/Stunde betragen kann. Dadurch bleibt der Abstand zwischen der Schicht und den Austrittsöffnungen während des Wachstums konstant. Dieser Abstand kann etwa 100 mm betragen. Der Durchmesser der Prozesskammer kann 120 mm betragen. Der Durchmesser der Substrathalter-Stirnfläche beträgt vorzugsweise 60 mm, 85 mm oder 110 mm. Die radialen Weiten der kreisförmigen bzw. kreisringförmigen Austrittsöffnungen sind unterschiedlich. Allgemein gilt, dass die Spaltweiten für die Trenngase größer, insbesondere doppelt oder dreimal so groß sind wie die Spaltweiten bzw. der Radius der Prozessgase. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass durch die zentrale Zuleitung bzw. Austrittsöffnung das Metallchlorid und radial außerhalb getrennt von einem Trenngas das Hydrid in die Prozesskammer eingeleitet wird. Dabei kann die Spaltweite der Hydrid-Austrittsöffnung 5 mm und der Radius der Austrittsöffnung für das Chlorid 10 bis 13 mm betragen. Die Trenngasflüsse werden je nach Prozessbedingung so eingestellt, dass eine parasitäre Deposition an der Reaktorwand oder der Innenfläche des Liner-Rohres vermieden wird. Die Austrittsöffnungen können Ränder besitzen, die entlang einer Kreislinie verlaufen, wobei die Kreislinien mehrerer ineinander geschachtelter Rohre einen gemeinsamen Mittelpunkt bilden. Die Austrittsöffnungen liegen dann als solche koaxial zueinander. Die dadurch gebildete Zentrumslinie kann mit der Zentrumslinie der Prozesskammer zusammenfallen. Die Zentrumslinie der Austrittsöffnungen kann aber auch versetzt zur Zentrumslinie der Prozesskammer angeordnet sein. Hierbei kann vorgesehen sein, dass sich eine Vielzahl von Austrittsöffnungen auf einer Kreislinie befinden, die als Zentrum die Zentrumslinie der Prozesskammer besitzt. Die Austrittsöffnungen können somit durch kreisförmig angeordnete Röhrchen gebildet werden. Es ist auch eine Kombination denkbar, bei der die kreisförmig angeordneten Rohre geschachtelt sind, so dass die Austrittsöffnungen als solche wiederum ein gemeinsames Zentrum besitzen.The object is achieved initially and essentially by the fact that the outlet openings are arranged in a coaxial position with respect to one another, so that an outlet opening for the halide, ie GaCl, InCl or AlCl, can be arranged in the center of the process chamber. This outlet opening is annularly surrounded by an outlet opening for a separating gas, for example hydrogen or preferably nitrogen. The outlet opening for the hydride extends around the last-mentioned outlet opening. The exit opening for the hydride is relatively narrow relative to the outlet opening of the halide or the separation gas. With the outlet for the separation gas, the mixing zone of the two process gases halide and hydride can be controlled. In this way, the location of the gas phase reactions can be influenced, whereby in the case of the HVPE, it is essential that the process gases come together away from the surfaces. In a further development of the invention, a further outlet opening is provided for a separating gas which surrounds the outlet opening for the hydride and which is bounded radially on the outside by a reactor wall or a liner tube. The individual outlet openings are the mouths of gas supply lines, wherein the gas supply lines are formed by quartz tubes having a diameter of about 2 mm. The gas supply lines can also consist of PBN or have PBN essays, for example, to avoid a Galliumnitritabscheidung on quartz. The wall of the radially outer gas supply line for the separating gas may be formed by a graphite surface of the graphite liner tube. Preferably, all outlet openings lie in a common horizontal plane, which is located below the horizontal plane of the end face of the substrate holder. There is also a coaxial association between substrate holder and outlet openings, so that a rotational symmetry is given. It turns out to be favorable in terms of flow, when the end face of the substrate holder merges into a cylindrical surface in the formation of a rounding or a truncated cone lateral surface. The process chamber is heated from the outside. For this purpose, the tubular reactor housing is surrounded by a heating jacket. Inside the heating jacket is a heating coil. It can be a resistance heater or an RF heater. It proves to be advantageous in an RF heating if certain components of the process chamber, ie in particular the liner tube or the substrate holder made of graphite or other electrically conductive material that the oscillating magnetic field generated by the RF coil, coupled and thereby warms up. The metal source in which the metal chlorides are formed is located below the process chamber. The individual pipes are nested. In a further development of the invention, it is provided that the substrate holder is displaceable in the axial direction of the reactor housing by a motor. The substrate holder is removed from the exit openings during layer growth. The speed corresponds to the growth rate, which can be between 100 and 800 μm / hour. This leaves the distance between the layer and the Outlet openings constant during growth. This distance can be about 100 mm. The diameter of the process chamber can be 120 mm. The diameter of the substrate holder end face is preferably 60 mm, 85 mm or 110 mm. The radial widths of the circular or annular outlet openings are different. In general, the gap widths for the separating gases are greater, in particular twice or three times as large as the gap widths or the radius of the process gases. The method according to the invention is characterized in that the hydride is introduced into the process chamber through the central supply line or outlet opening, and the hydrogen chloride is introduced radially outside, separated from a separating gas. The gap width of the hydride outlet opening may be 5 mm and the radius of the outlet opening for the chloride 10 to 13 mm. Depending on the process conditions, the separating gas flows are adjusted so that a parasitic deposition on the reactor wall or the inner surface of the liner pipe is avoided. The outlet openings may have edges that run along a circular line, wherein the circular lines of several nested tubes form a common center. The outlet openings are then as such coaxial with each other. The center line formed thereby can coincide with the center line of the process chamber. The center line of the outlet openings can also be arranged offset from the center line of the process chamber. It can be provided that a plurality of outlet openings are located on a circular line, which has the center line of the process chamber as the center. The outlet openings can thus be formed by circularly arranged tubes. It is also a combination conceivable in which the circularly arranged tubes are nested, so that the outlet openings as such in turn have a common center.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand beigefügter Zeichnung erläutert. Es zeigen:One embodiment The invention will be explained below with reference to the accompanying drawings. It demonstrate:
Das
Reaktorgehäuse
Im
oberen Bereich der Prozesskammer
In
einem axialen Abstand zur Stirnfläche
Das
Quarzrohr
Das
Quarzrohr
Das
radial äußere Rohr
Die
Ströme
der Trenngase, die durch die Zuleitungen
Der
Gesamtdurchmesser der Prozesskammer, also der Innendurchmesser des
Liner-Rohres
Alle zuvor genannten Maße sind nur beispielhaft erwähnt und können sowohl nach oben als auch nach unten abweichen.All previously mentioned dimensions are mentioned only as an example and can vary both up and down.
Mit
der Bezugsziffer
Der
Substrathalter
Die
koaxiale Anordnung der Austrittsöffnungen
vermeidet nicht nur die Wanddeposition, sondern ermöglicht auch
das homogene Wachstum von Schichten. Hierzu ist es insbesondere
von Vorteil, dass mit dem Trenngas, welches aus der mittleren Austrittsöffnung
Als Hydride werden ferner Ph3 und AsH3 verwandt. Die geometrischen Parameter, also die Austrittsfläche für die Trenngase oder die Prozessgase und die Flussmengen können über Modellrechnungen ermittelt werden, die die Thermodynamik und die Kinetik des Systems mit berücksichtigen. Mit diesen Modellrechnungen kann auch der optimale Prozesskammerdruck berechnet werden, der zwischen 10 und 1000 Millibar liegen kann.As hydrides also Ph 3 and AsH 3 are used. The geometric parameters, ie the exit area for the separation gases or the process gases and the flow rates can be determined by model calculations that take into account the thermodynamics and the kinetics of the system. With these model calculations, the optimal process chamber pressure can be calculated, which can be between 10 and 1000 millibars.
Die
Vorrichtung eignet sich insbesondere für ein Verfahren zur Erzeugung
von GaN-Substraten. Auf einer Keimschicht eines Substrats, welches
sich an der Stirnfläche
Die
Gaszuleitungen
Es
ist nicht nur vorgesehen, dass die Zentrumslinien der Austrittsöffnungen
Bei
dem in der
Alle offenbarten Merkmale sind (für sich) erfindungswesentlich. In die Offenbarung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender Anmeldung mit aufzunehmen.All disclosed features are (for itself) essential to the invention. In the disclosure of the application will hereby also the disclosure content of the associated / attached priority documents (Copy of the advance notice) fully included, too for the purpose, features of these documents in claims present Registration with.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200510056322 DE102005056322A1 (en) | 2005-11-25 | 2005-11-25 | Apparatus for depositing a film on a substrate, especially for semiconductor production, comprises a process chamber that contains a substrate holder and is supplied with process gases through coaxial inlet ports |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200510056322 DE102005056322A1 (en) | 2005-11-25 | 2005-11-25 | Apparatus for depositing a film on a substrate, especially for semiconductor production, comprises a process chamber that contains a substrate holder and is supplied with process gases through coaxial inlet ports |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102005056322A1 true DE102005056322A1 (en) | 2007-06-06 |
Family
ID=38047482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE200510056322 Withdrawn DE102005056322A1 (en) | 2005-11-25 | 2005-11-25 | Apparatus for depositing a film on a substrate, especially for semiconductor production, comprises a process chamber that contains a substrate holder and is supplied with process gases through coaxial inlet ports |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102005056322A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007024798A1 (en) | 2007-05-25 | 2008-11-27 | Aixtron Ag | Device for depositing nitrogen and gallium, indium or aluminum containing semiconductor layers on substrate, comprises process chamber, first inlet for gallium chloride-containing process gas, and second inlet for ammonia-containing gas |
CN103806092A (en) * | 2014-01-23 | 2014-05-21 | 东莞市中镓半导体科技有限公司 | Reactor for hydride vapour phase epitaxy (HVPE) |
CN114737170A (en) * | 2022-04-15 | 2022-07-12 | 北京格安利斯气体管道工程技术有限公司 | Gas pipeline reactor for chemical vapor deposition, material prepared by using gas pipeline reactor and application of gas pipeline reactor |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1034095A (en) * | 1962-05-17 | 1966-06-29 | Motorola Inc | Method for forming thin oxide films |
DE2355058A1 (en) * | 1972-12-27 | 1974-07-11 | Elektromat Veb | METHOD AND DEVICE FOR THE GENERATION OF THIN, HOMOGENOUS LAYERS ON DOCUMENTS |
US4476158A (en) * | 1981-03-06 | 1984-10-09 | Battelle Memorial Institute | Method of depositing a mineral oxide coating on a substrate |
JPS6237374A (en) * | 1985-08-08 | 1987-02-18 | Sumitomo Electric Ind Ltd | Vapor growth device |
JPS6376879A (en) * | 1986-09-18 | 1988-04-07 | Hitachi Electronics Eng Co Ltd | Cvd thin film forming device |
US5093150A (en) * | 1989-04-20 | 1992-03-03 | Alps Electric Co., Ltd. | Synthesis method by plasma chemical vapor deposition |
US5160543A (en) * | 1985-12-20 | 1992-11-03 | Canon Kabushiki Kaisha | Device for forming a deposited film |
JPH06256953A (en) * | 1993-03-04 | 1994-09-13 | Anelva Corp | Gas introducing method for tin-cvd and gas introducing mechanism |
JPH07252655A (en) * | 1994-03-14 | 1995-10-03 | Sony Corp | Thin film forming device |
JPH07278816A (en) * | 1994-12-14 | 1995-10-24 | Tokyo Electron Ltd | Treatment of body to be treated |
US5958140A (en) * | 1995-07-27 | 1999-09-28 | Tokyo Electron Limited | One-by-one type heat-processing apparatus |
EP0763147B1 (en) * | 1994-06-03 | 2000-03-08 | Tokyo Electron Limited | Method and apparatus for producing thin films |
US6113983A (en) * | 1997-04-03 | 2000-09-05 | The United States Of America As Represented By The Secretary Of Commerce | Method of forming metallic and ceramic thin film structures using metal halides and alkali metals |
US6190732B1 (en) * | 1998-09-03 | 2001-02-20 | Cvc Products, Inc. | Method and system for dispensing process gas for fabricating a device on a substrate |
DE10103341A1 (en) * | 2000-01-26 | 2001-08-09 | Matsushita Electric Ind Co Ltd | Plasma treatment device used for etching and cleaning the surface of a wafer comprises an upper electrode and a lower electrode arranged in a vacuum chamber, a high frequency supply |
US6294466B1 (en) * | 1998-05-01 | 2001-09-25 | Applied Materials, Inc. | HDP-CVD apparatus and process for depositing titanium films for semiconductor devices |
DE10133914A1 (en) * | 2001-07-12 | 2003-01-23 | Aixtron Ag | Apparatus to deposit crystalline layers on semiconductor wafers comprises rotating wafer holders mounted on rotating mounting forming floor of process chamber whose roof contains central gas inlet |
DE69903466T2 (en) * | 1998-06-16 | 2003-05-15 | Applied Materials Inc | GAS DISTRIBUTION PLATE WITH TWO GAS CHANNELS |
US20050178336A1 (en) * | 2003-07-15 | 2005-08-18 | Heng Liu | Chemical vapor deposition reactor having multiple inlets |
-
2005
- 2005-11-25 DE DE200510056322 patent/DE102005056322A1/en not_active Withdrawn
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1034095A (en) * | 1962-05-17 | 1966-06-29 | Motorola Inc | Method for forming thin oxide films |
DE2355058A1 (en) * | 1972-12-27 | 1974-07-11 | Elektromat Veb | METHOD AND DEVICE FOR THE GENERATION OF THIN, HOMOGENOUS LAYERS ON DOCUMENTS |
US4476158A (en) * | 1981-03-06 | 1984-10-09 | Battelle Memorial Institute | Method of depositing a mineral oxide coating on a substrate |
JPS6237374A (en) * | 1985-08-08 | 1987-02-18 | Sumitomo Electric Ind Ltd | Vapor growth device |
US5160543A (en) * | 1985-12-20 | 1992-11-03 | Canon Kabushiki Kaisha | Device for forming a deposited film |
JPS6376879A (en) * | 1986-09-18 | 1988-04-07 | Hitachi Electronics Eng Co Ltd | Cvd thin film forming device |
US5093150A (en) * | 1989-04-20 | 1992-03-03 | Alps Electric Co., Ltd. | Synthesis method by plasma chemical vapor deposition |
JPH06256953A (en) * | 1993-03-04 | 1994-09-13 | Anelva Corp | Gas introducing method for tin-cvd and gas introducing mechanism |
JPH07252655A (en) * | 1994-03-14 | 1995-10-03 | Sony Corp | Thin film forming device |
EP0763147B1 (en) * | 1994-06-03 | 2000-03-08 | Tokyo Electron Limited | Method and apparatus for producing thin films |
JPH07278816A (en) * | 1994-12-14 | 1995-10-24 | Tokyo Electron Ltd | Treatment of body to be treated |
US5958140A (en) * | 1995-07-27 | 1999-09-28 | Tokyo Electron Limited | One-by-one type heat-processing apparatus |
US6113983A (en) * | 1997-04-03 | 2000-09-05 | The United States Of America As Represented By The Secretary Of Commerce | Method of forming metallic and ceramic thin film structures using metal halides and alkali metals |
US6294466B1 (en) * | 1998-05-01 | 2001-09-25 | Applied Materials, Inc. | HDP-CVD apparatus and process for depositing titanium films for semiconductor devices |
DE69903466T2 (en) * | 1998-06-16 | 2003-05-15 | Applied Materials Inc | GAS DISTRIBUTION PLATE WITH TWO GAS CHANNELS |
US6190732B1 (en) * | 1998-09-03 | 2001-02-20 | Cvc Products, Inc. | Method and system for dispensing process gas for fabricating a device on a substrate |
DE10103341A1 (en) * | 2000-01-26 | 2001-08-09 | Matsushita Electric Ind Co Ltd | Plasma treatment device used for etching and cleaning the surface of a wafer comprises an upper electrode and a lower electrode arranged in a vacuum chamber, a high frequency supply |
DE10133914A1 (en) * | 2001-07-12 | 2003-01-23 | Aixtron Ag | Apparatus to deposit crystalline layers on semiconductor wafers comprises rotating wafer holders mounted on rotating mounting forming floor of process chamber whose roof contains central gas inlet |
US20050178336A1 (en) * | 2003-07-15 | 2005-08-18 | Heng Liu | Chemical vapor deposition reactor having multiple inlets |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007024798A1 (en) | 2007-05-25 | 2008-11-27 | Aixtron Ag | Device for depositing nitrogen and gallium, indium or aluminum containing semiconductor layers on substrate, comprises process chamber, first inlet for gallium chloride-containing process gas, and second inlet for ammonia-containing gas |
CN103806092A (en) * | 2014-01-23 | 2014-05-21 | 东莞市中镓半导体科技有限公司 | Reactor for hydride vapour phase epitaxy (HVPE) |
CN103806092B (en) * | 2014-01-23 | 2016-05-18 | 东莞市中镓半导体科技有限公司 | A kind of reactor for hydride gas-phase epitaxy |
CN114737170A (en) * | 2022-04-15 | 2022-07-12 | 北京格安利斯气体管道工程技术有限公司 | Gas pipeline reactor for chemical vapor deposition, material prepared by using gas pipeline reactor and application of gas pipeline reactor |
CN114737170B (en) * | 2022-04-15 | 2024-01-19 | 北京格安利斯气体管道工程技术有限公司 | Gas pipeline reactor for chemical vapor deposition, material prepared by using same and application of material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4241932C2 (en) | Method and device for controlling the gas flow in CVD processes | |
DE69433656T2 (en) | A method of introducing reactive gas into a substrate processing apparatus | |
EP1718784B1 (en) | Inlet system for an mocvd reactor | |
EP2408952B1 (en) | Mocvd reactor having a ceiling panel coupled locally differently to a heat dissipation member | |
DE69126122T2 (en) | METHOD AND APPARATUS FOR GROWING CONNECTING SEMICONDUCTOR CRYSTALS | |
DE69732722T2 (en) | CVD method | |
EP0787822B1 (en) | Process for producing SiC by CVD with improved gas consumption | |
DE102006018515A1 (en) | CVD reactor with lowerable process chamber ceiling | |
EP2470684B1 (en) | Cvd method and cvd reactor | |
DE102008055582A1 (en) | MOCVD reactor with cylindrical gas inlet member | |
DE102005055252A1 (en) | CVD reactor with slide-mounted susceptor holder | |
DE102014201554A1 (en) | Vapor phase epitaxy device and vapor phase epitaxy method | |
DE112017001127B4 (en) | Film forming device | |
WO2002083978A1 (en) | Device or method for depositing especially crystalline layers from the gas phase onto especially crystalline substrates | |
WO2003038144A1 (en) | Method and device for depositing especially crystalline layers onto especially crystalline substrates | |
WO2002018680A1 (en) | Device and method for the deposition of, in particular, crystalline layers on, in particular, crystalline substrates | |
DE102005055468A1 (en) | Coating one or more substrates comprises supplying gases to process chamber via chambers with gas outlet openings | |
DE102011002145B4 (en) | Device and method for large-area deposition of semiconductor layers with gas-separated HCl feed | |
DE10057134A1 (en) | Process for depositing crystalline layers onto crystalline substrates in a process chamber of a CVD reactor comprises adjusting the kinematic viscosity of the carrier gas mixed | |
DE10055182A1 (en) | CVD reactor with substrate holder rotatably supported and driven by a gas stream | |
DE102005056322A1 (en) | Apparatus for depositing a film on a substrate, especially for semiconductor production, comprises a process chamber that contains a substrate holder and is supplied with process gases through coaxial inlet ports | |
DE19622403C1 (en) | Device for producing a layer on the surface of at least one substrate by CVD | |
EP3475472A1 (en) | Method and device for producing coated semiconductor wafers | |
DE102011007735A1 (en) | System useful for gas treatment of at least one substrate, comprises reaction chamber, substrate support structure for holding one substrate arranged in reaction chamber, static gas injector, and at least one movable gas injector | |
DE102019133704A1 (en) | PLANT FOR CHEMICAL SIC GAS PHASE DEPOSITION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8127 | New person/name/address of the applicant |
Owner name: AIXTRON AG, 52134 HERZOGENRATH, DE |
|
R082 | Change of representative |
Representative=s name: RIEDER & PARTNER PATENTANWAELTE - RECHTSANWALT, DE Representative=s name: RIEDER & PARTNER PATENTANWAELTE - RECHTSANWALT, 42 |
|
R081 | Change of applicant/patentee |
Owner name: AIXTRON SE, DE Free format text: FORMER OWNER: AIXTRON AG, 52134 HERZOGENRATH, DE Effective date: 20111104 |
|
R082 | Change of representative |
Representative=s name: RIEDER & PARTNER PATENTANWAELTE - RECHTSANWALT, DE Effective date: 20111104 Representative=s name: RIEDER & PARTNER MBB PATENTANWAELTE - RECHTSAN, DE Effective date: 20111104 |
|
R012 | Request for examination validly filed |
Effective date: 20121030 |
|
R016 | Response to examination communication | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |