JPH06256540A - Production of biological activity inhibiting material - Google Patents

Production of biological activity inhibiting material

Info

Publication number
JPH06256540A
JPH06256540A JP5046866A JP4686693A JPH06256540A JP H06256540 A JPH06256540 A JP H06256540A JP 5046866 A JP5046866 A JP 5046866A JP 4686693 A JP4686693 A JP 4686693A JP H06256540 A JPH06256540 A JP H06256540A
Authority
JP
Japan
Prior art keywords
biological activity
water
titania
mixture
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5046866A
Other languages
Japanese (ja)
Other versions
JP2716644B2 (en
Inventor
Toshiaki Murata
逞詮 村田
Hitoshi Saegusa
等 三枝
Tsukasa Sakurada
司 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSHU CERAMICS KK
Shinshu Ceramics Co Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
SHINSHU CERAMICS KK
Shinshu Ceramics Co Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSHU CERAMICS KK, Shinshu Ceramics Co Ltd, Mitsui Engineering and Shipbuilding Co Ltd filed Critical SHINSHU CERAMICS KK
Priority to JP5046866A priority Critical patent/JP2716644B2/en
Publication of JPH06256540A publication Critical patent/JPH06256540A/en
Application granted granted Critical
Publication of JP2716644B2 publication Critical patent/JP2716644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a coating film capable of easily and effectively sterilizing or inhibiting biological activity without requiring a complicated device. CONSTITUTION:To a photoelectric chemical cell of titania powders carrying Ni is mixed 90wt.% tetrafluoroethylene powder, and the mixture is sprayed on a polyester nonwoven fabric surfaces so as to make 50mum film thickness by using a low temperature thermal spray gun. It is possible to sterilize E.coli, etc., or inhibit activity of sphagnum, etc., by this biological activity inhibiting coating film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生物活性抑制材の製法
に係り、特に、大腸菌をはじめとする各種菌類、水槽の
水苔等の殺菌またはその活性を抑制することができる生
物活性抑制材の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bioactivity inhibitor, and more particularly to a bioactivity inhibitor capable of sterilizing various fungi such as Escherichia coli and water moss in an aquarium or inhibiting its activity. Regarding the manufacturing method of.

【0002】[0002]

【従来の技術】従来から、微生物の殺菌またはその活性
を抑制する方法として、例えば加熱殺菌法、紫外線殺菌
法、超音波による細胞膜破壊法、電気またはガスを用い
た殺菌法、毒物による殺菌法、高磁場殺菌法、ハロゲン
系または界面活性剤系の薬剤を用いた薬剤殺菌法等、種
々の方法が広範囲な分野で利用されている。
2. Description of the Related Art Conventionally, as a method for sterilizing microorganisms or suppressing their activity, for example, heat sterilization method, ultraviolet sterilization method, cell membrane destruction method by ultrasonic wave, sterilization method using electricity or gas, sterilization method by poisons, Various methods such as a high magnetic field sterilization method and a chemical sterilization method using a halogen-based or surfactant-based agent are used in a wide range of fields.

【0003】しかしながら、このような微生物の殺菌ま
たはその活性を抑制する方法は、何れも比較的大掛かり
な装置を必要とし、また、即効性を重視するあまり、殺
菌と同時に菌が付着した製品そのものを破壊または損傷
するおそれが伴うことが多かった。
However, each of the methods for sterilizing microorganisms or suppressing the activity thereof requires a relatively large-scale apparatus, and since the immediate effect is so important, the product itself to which bacteria are attached at the same time as sterilization is used. Often associated with the risk of destruction or damage.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の問題点を解決し、複雑な装置を必要とするこ
となく、生物活性を抑制しようとする水系に浸漬するだ
けで、手軽に、しかも効果的に殺菌またはその生物活性
を抑制することができる生物活性抑制材の製法を提供す
ることにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems of the prior art, and without the need for a complicated device, simply by immersing it in an aqueous system in which biological activity is suppressed, it is easy. Another object of the present invention is to provide a method for producing a bioactivity-suppressing material capable of effectively sterilizing or suppressing its bioactivity.

【0005】[0005]

【課題を解決するための手段】本発明者は、光半導体、
例えばチタニア(TiO2 )粉末に、酸素の存在下に紫
外光を照射すると安定な炭化水素を分解する特性を発揮
すること、および前記チタニア粉末に金属を担持した光
電気化学セルに、水の存在下に紫外光を照射すると強い
酸化力を発揮し、水を酸化して酸素を発生する特性があ
ることに着目し、このような光電気化学セルの特性を微
生物の殺菌またはその活性を抑制する分野で利用するた
めに鋭意研究の結果、チタニア粒子に金属を担持した光
電気化学セルにフッ素樹脂粉末を混合した混合物から形
成した被膜は水系に浸漬されると各種菌類、水苔等の微
生物を殺菌またはその活性を抑制する特性を発揮するこ
と、および油等の汚染物質が付着しにくく、また疏水性
および耐久性に優れたものになることを見出し、本発明
に到達した。
SUMMARY OF THE INVENTION The present inventor has found that an optical semiconductor,
For example, when titania (TiO 2 ) powder is exposed to ultraviolet light in the presence of oxygen, it exhibits the property of decomposing stable hydrocarbons, and the presence of water in the photoelectrochemical cell in which the titania powder carries a metal. Focusing on the fact that when irradiated with ultraviolet light below, it exerts a strong oxidizing power and oxidizes water to generate oxygen, the characteristics of such a photoelectrochemical cell are sterilized by microorganisms or its activity is suppressed. As a result of diligent research for use in the field, a coating formed from a mixture of fluororesin powder in a photoelectrochemical cell supporting a metal on titania particles, when immersed in a water system, various fungi, microorganisms such as water moss, etc. The present invention has been accomplished by finding that the material exhibits bactericidal properties or suppresses its activity, that contaminants such as oil do not easily adhere, and that it is excellent in hydrophobicity and durability.

【0006】すなわち本願の第1の発明は、光半導体微
粒子に金属を担持した光電気化学セルとフッ素樹脂粉末
との混合物を前記フッ素樹脂の融点以上に加熱して被膜
状に成形することを特徴とする生物活性抑制材の製法に
関する。第2の発明は、光半導体微粒子に金属を担持し
た光電気化学セルとフッ素樹脂粉末との混合物を基材表
面に溶射して被膜を形成することを特徴とする生物活性
抑制材の製法に関する。
That is, the first invention of the present application is characterized in that a mixture of a photoelectrochemical cell in which a metal is supported on optical semiconductor fine particles and a fluororesin powder is heated to a temperature not lower than the melting point of the fluororesin to form a film. The present invention relates to a method for producing a biological activity suppressing material. A second invention relates to a method for producing a bioactivity-suppressing material, which comprises spraying a mixture of a photoelectrochemical cell in which a metal is supported on optical semiconductor fine particles and a fluororesin powder onto a surface of a base material to form a coating film.

【0007】[0007]

【作用】光半導体微粒子、例えばチタニアに金属を担持
した光電気化学セルとフッ素樹脂粉末との混合物からな
る被膜(または該被膜を有する基材)に紫外光(波長4
00nm以下)が照射されると、前記チタニアの価電子
帯の電子が伝導帯に励起され、価電子帯には正孔が生じ
る。この正孔はチタニア表面付近に生じた電位勾配に沿
って表面に移動する。この正孔は、ほぼバンドギャップ
のエネルギ分だけ強い酸化力を有しているので、この酸
化力によって前記チタニア表面に水が存在すると、その
水が酸化され、酸素が発生する。従ってこの被膜または
基材を水系に浸漬すると、この活性酸素によって微生物
活性が抑制されるかまたは微生物そのものを死滅させる
ことができる。なお伝導帯に励起された電子は対極であ
る前記チタニアに担持された金属に移動し、水を還元し
て水素を発生する。
[Function] Ultraviolet light (wavelength: 4) is applied to a film (or a substrate having the film) made of a mixture of a photoelectrochemical cell in which a metal is supported on fine particles of photo-semiconductor, for example, titania and a fluororesin powder.
(00 nm or less), electrons in the valence band of the titania are excited into the conduction band, and holes are generated in the valence band. The holes move to the surface along the potential gradient generated near the surface of titania. The holes have a strong oxidizing power corresponding to the energy of the band gap. Therefore, when water is present on the titania surface by the oxidizing power, the water is oxidized and oxygen is generated. Therefore, when this coating or substrate is immersed in an aqueous system, the active oxygen can suppress the microbial activity or kill the microorganism itself. The electrons excited in the conduction band move to the metal supported on the titania, which is the counter electrode, and reduce water to generate hydrogen.

【0008】本発明において光半導体としては、例えば
チタニア、チタン酸ストロンチウム、ニオブ酸カリ等が
あげられ、中でもチタニアが好ましく用いられる。チタ
ニア(4価)としては、結晶構造がルチル型のものも使
用可能であるが、アナターゼ型のものが表面積が大きく
より活性であるところから、好ましく用いられる。生物
活性抑制の機能は光半導体セラミックおよび担持金属い
ずれにおいても、表面積との関わりが極めて大きいた
め、原理的には、細いほうがよい。チタニア粒子の粒子
径は、0.1〜60μmが好ましく、特に1.0〜10
μmであることが好ましい。チタニア粒子に担持する金
属としては、例えば銀(Ag)、ニッケル(Ni)、白
金(Pt)等の毒性の少ない導電性金属があげられる。
例えばAgは医療用生物活性抑制材に、Niは水苔の発
生抑制等を目的とする一般産業用生物活性抑制材に好適
に使用される。
In the present invention, examples of the optical semiconductor include titania, strontium titanate, potassium niobate and the like. Among them, titania is preferably used. As the titania (tetravalent), a rutile type having a crystal structure can be used, but an anatase type is preferable because it has a large surface area and is more active. In both the photosemiconductor ceramic and the supported metal, the function of suppressing the biological activity is very closely related to the surface area, and therefore, in principle, the thinner the better. The particle size of the titania particles is preferably 0.1 to 60 μm, particularly 1.0 to 10 μm.
It is preferably μm. Examples of the metal supported on the titania particles include conductive metals having low toxicity such as silver (Ag), nickel (Ni), and platinum (Pt).
For example, Ag is preferably used as a bioactivity suppressing material for medical use, and Ni is suitably used as a bioactivity suppressing material for general industry for the purpose of suppressing the generation of water moss.

【0009】本発明において、チタニア粒子への金属の
担持方法としては、例えば遠心力を利用した物理的な方
法、電解メッキ法、超微粒子の金属パウダーを用いた複
合被膜形成法、溶射法、金属塩溶液への浸漬法、有機系
金属、例えばアルコキシドに浸漬した後、熱処理する方
法等の公知の方法が適用でき、特に限定されない。ま
た、金属の担持量は、0.5〜30重量%が好ましく、
特に5〜15%が好ましい。
In the present invention, the method of supporting the metal on the titania particles includes, for example, a physical method utilizing centrifugal force, an electrolytic plating method, a composite coating forming method using ultrafine metal powder, a thermal spraying method, and a metal. A known method such as a method of immersing in a salt solution or a method of immersing in an organic metal such as an alkoxide and then heat-treating can be applied and is not particularly limited. The amount of metal supported is preferably 0.5 to 30% by weight,
Particularly, 5 to 15% is preferable.

【0010】チタニア粒子に金属を担持した光電気化学
セルと混合するフッ素樹脂粉末の粒子径は、均一な混合
物を形成することができれば特に限定されない。チタニ
ア光電気化学セルへのフッ素樹脂粉末の混合割合は重量
比で、例えば5〜50%であり、好ましくは、10〜2
0%である。本発明において、チタニア微粒子に金属を
担持した光電気化学セルとフッ素樹脂粉末との混合物
(以下、原料混合物ということがある)を該フッ素樹脂
の融点以上に加熱し、被膜状に成形する方法としては、
公知の被膜形成方法、例えばインフレージョン法、カレ
ンダーロール法、流延法等をあげることができる。被膜
の厚さは用途により適宜選択することができる。
The particle size of the fluororesin powder to be mixed with the photoelectrochemical cell in which titania particles carry a metal is not particularly limited as long as a uniform mixture can be formed. The mixing ratio of the fluororesin powder to the titania photoelectrochemical cell is, for example, 5 to 50% by weight, and preferably 10 to 2
It is 0%. In the present invention, a method of heating a mixture of a photoelectrochemical cell in which a metal is supported on titania fine particles and a fluororesin powder (hereinafter sometimes referred to as a raw material mixture) to a temperature equal to or higher than the melting point of the fluororesin to form a film Is
Known film forming methods such as an inflation method, a calendar roll method, a casting method and the like can be mentioned. The thickness of the coating can be appropriately selected depending on the application.

【0011】本発明において、基材上に前記原料混合物
の被膜を形成するには、基材上に原料混合物を溶射する
方法が好適である。溶射はスプレーガンを用いて行なう
ことができるが、原料中のフッ素樹脂の劣化を最小限に
するために、低温溶射装置を用いることが望ましい。こ
の種の装置としては、例えばガスノズルの先端部に形成
されるガスフレームの外周にエアジェット流によるエア
カーテンを形成し、該エアカーテンの外側から溶射材を
供給し、前記ガスフレームの熱を間接的に溶射材に与え
ることにより、該溶射材を軟化し、この軟化した溶射材
を被覆基材表面に噴射すると同時に、あらかじめ基材に
与えられた予熱によって溶射粒子を互いに溶融融合して
無気孔の、強い結合被膜を形成するものである。このよ
うな低温溶射ガンとしては、例えばフランスSocie
te Nouvelle deMetallisati
on Industries社製のJET−PMR型ガ
ンがあげられる。
In the present invention, the method of spraying the raw material mixture on the substrate is suitable for forming the coating film of the raw material mixture on the substrate. Thermal spraying can be performed using a spray gun, but it is desirable to use a low temperature thermal spraying device in order to minimize deterioration of the fluororesin in the raw material. As an apparatus of this type, for example, an air curtain is formed by an air jet flow on the outer periphery of a gas frame formed at the tip of a gas nozzle, and a thermal spray material is supplied from the outside of the air curtain to indirectly heat the gas frame. The thermal spray material is softened by applying it to the thermal spray material, and the softened thermal spray material is sprayed onto the surface of the coated base material. To form a strong bond film. As such a low temperature spray gun, for example, France Socie
te Nouvelle de Metallisati
A JET-PMR type gun manufactured by On Industries Co., Ltd. can be given.

【0012】基材としては、前記原料混合物の被膜を表
面に形成できるものであれば、特に限定されないが、例
えば各種高分子材料からなるシート、フィルム、円筒、
リングハニカム等の成形品、板、紙、布、不織布、繊維
積層体(ウエッブ)等をあげることができる。本発明に
おけるフッ素樹脂は、原料混合物に被膜形成性を与える
とともに、被膜または基材の發水性、疏水性を向上さ
せ、また耐汚染性、例えば油等の汚染物質の付着を抑制
し、耐久性を向上させるはたらきをする。
The base material is not particularly limited as long as it can form a coating film of the raw material mixture on the surface, and for example, a sheet, a film, a cylinder made of various polymer materials,
Examples thereof include molded products such as ring honeycombs, plates, papers, cloths, non-woven fabrics, fiber laminates (webs), and the like. The fluororesin in the present invention imparts a film-forming property to the raw material mixture, improves the water-repellency and water-repellency of the film or the base material, and also stain resistance, for example, suppresses adhesion of pollutants such as oil, and durability. Work to improve.

【0013】本発明によって製造された生物活性抑制材
は、単独で、または他の素材と組み合わせて用いられ、
殺菌または生物活性を抑制しようとする水系に浸漬また
は接触させることにより、その系に存在する微生物等の
活性を抑制することができる。本発明の生物活性抑制材
の適用分野としては、例えば以下の分野があげられる。
すなわち、医療分野で、例えば高温滅菌することが不可
能な器具の消毒、消毒液の殺菌、黄色ブドウ球菌の殺菌
等への適用、食品工業の分野で、例えば豆腐等の鮮度保
持、各種水槽の浄化、食品貯蔵容器の殺菌、食用油の腐
敗防止等への適用、バイオケミカルの分野で、例えば無
菌状態での植物の育苗、水耕栽培等への適用、一般工業
の分野で、例えば切削油の腐食防止、取水および排水口
の藻の発生防止、水関連公害防止等への適用、および海
洋開発、一般家庭等のあらゆる分野における植物活性の
抑制被膜として使用することができる。本発明によって
製造した生物活性抑制材を船底に適用することにより、
船底への貝類および藻類の付着を防止することができ
る。
The bioactivity-suppressing material produced according to the present invention may be used alone or in combination with other materials,
By immersing or contacting with an aqueous system in which sterilization or biological activity is to be suppressed, it is possible to suppress the activity of microorganisms and the like existing in the system. The fields of application of the bioactivity suppressing material of the present invention include, for example, the following fields.
That is, in the medical field, for example, disinfection of equipment that cannot be sterilized at high temperature, sterilization of disinfectant, application to sterilization of Staphylococcus aureus, etc. in the field of food industry, for example, keeping freshness of tofu etc. Purification, sterilization of food storage containers, application to prevention of rot of edible oil, etc., in the field of biochemicals, for example, seedling raising of plants under aseptic conditions, application to hydroponic cultivation, in the field of general industry, for example cutting oil It can be used as a coating for preventing corrosion of water, prevention of algae generation at water intake and drainage, prevention of water-related pollution, etc., and a coating for suppressing plant activity in all fields such as marine development and general households. By applying the bioactivity suppressing material produced by the present invention to the ship bottom,
It is possible to prevent shellfish and algae from adhering to the ship bottom.

【0014】[0014]

【実施例】次に本発明を実施例によってさらに詳細に説
明する。 実施例1 5〜15μmのチタニア粒子に複合被膜形成法により、
Niを10重量%担持して光電気化学セルとし、この光
電気化学セルに、粒径1.0μm以下のテトラフルオロ
エチレン粉末(商品名テフロン:デュポン社の商標)を
90重量%混合し、この混合物を、SNMI社製のJE
T−PMR型ガンを用いて、約3000℃で、パインダ
ーを用いることなく、直接ポリエステル不織布に、その
膜圧が50μmになるように溶射して被膜を形成し、本
発明の光半導体クロスを形成した。これを切断して1
3.8cm×17.8cmの光半導体クロス2枚を得
た。
EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 By the method of forming a composite coating on titania particles of 5 to 15 μm,
A photoelectrochemical cell supporting 10% by weight of Ni was prepared, and 90% by weight of tetrafluoroethylene powder (trade name: Teflon: trademark of DuPont) having a particle size of 1.0 μm or less was mixed with the photoelectrochemical cell. Mix the mixture with SNMI JE
A T-PMR type gun is used to form a coating film by spraying directly on a polyester nonwoven fabric at a temperature of about 3000 ° C. without using a pineder so that the film pressure becomes 50 μm, thereby forming the optical semiconductor cloth of the present invention. did. Cut this and 1
Two optical semiconductor cloths of 3.8 cm × 17.8 cm were obtained.

【0015】次いで、容量7リットルの水槽(日本水槽
工業社製)に、栄養塩類としてアンモニア性窒素1mg
/リットル、リン0.1mg/リットル、藻類殖種5m
lを添加した水道水を満たし、前記光半導体クロス2枚
を浸漬し、水苔の発生状況を観察した。なお、水温は1
9℃±1℃に保持され、減量した水に相当する量の水を
追加して観察を継続した。また水槽は、散気管によって
散気を続けた。その結果、観察開始後22日経過しても
水苔の発生は認められなかった。観察開始後22日目に
光半導体クロスの一枚を取り除き、藻類殖種をさらに5
ml添加してさらに観察を続けたところ、その後18日
経過しても水苔の発生は認められなかった。観察開始後
40日目に残りの光半導体クロスを取り出してさらに観
察を続けたところ、観察開始後44日経過しても水苔の
発生は認められなかった。
Then, 1 mg of ammonia nitrogen as nutrients is placed in a water tank (manufactured by Japan Aquarium Industry Co., Ltd.) having a capacity of 7 liters.
/ Liter, phosphorus 0.1mg / liter, algae breed 5m
1 of tap water was added, the two pieces of the optical semiconductor cloth were dipped, and the occurrence of water moss was observed. The water temperature is 1
The temperature was maintained at 9 ° C. ± 1 ° C., and the observation was continued by adding an amount of water corresponding to the reduced amount of water. The aquarium continued to diffuse air by the diffuser. As a result, no water moss was observed even 22 days after the start of observation. On the 22nd day after the start of observation, one piece of opto-semiconductor cloth was removed, and an algae breed was further added.
When ml was added and the observation was continued, the generation of water moss was not recognized even after 18 days. When the remaining photosemiconductor cloth was taken out 40 days after the start of the observation and the observation was further continued, no water moss was observed even after 44 days from the start of the observation.

【0016】本実施例において、光半導体クロスを全部
抜き出した後も発藻抑制効果が持続することが分かっ
た。 比較例1 光半導体クロスを浸漬しない以外は前記実施例1と同様
にして水苔の発生を観察したところ、観察開始後6日目
に散気管、壁面等に薄く緑色の藻類が発生した。また観
察開始後8日目には緑色がさらに濃くなった。観察開始
後22日目には、藻類の死滅によって水の色が茶色に変
化した。
In this example, it was found that the algal control effect continues even after all the optical semiconductor cloth is extracted. Comparative Example 1 When water moss generation was observed in the same manner as in Example 1 except that the optical semiconductor cloth was not dipped, thin green algae were generated on the air diffuser, wall surface, etc. 6 days after the start of observation. The green color became darker on the 8th day after the start of observation. Twenty-two days after the start of observation, the color of water changed to brown due to the death of algae.

【0017】実施例1および比較例1における水中の栄
養塩類濃度の変化を表1に示す。
Table 1 shows changes in nutrient salt concentration in water in Example 1 and Comparative Example 1.

【0018】[0018]

【表1】 註1)添加したNH3 −Nは試験開始後6日目には全て
硝酸性窒素に変化した。
[Table 1] Note 1) The added NH 3 —N changed to nitrate nitrogen on the 6th day after the start of the test.

【0019】註2)試験開始後12日目には比較例1の
窒素は全て藻類に取り込まれた。表1から、光半導体ク
ロスを浸漬した実施例1は藻類の発生が効果的に抑制さ
れたことが分かる。 実施例2 実施例1で作成した光半導体クロスを5mm×5mmに
切断し、これに1ml当り約106個になるように調整
した大腸菌培養液を一様に接種し、20〜25℃(室
温)で、750〜800lux(市販40w螢光灯)の
光を照射しながら保存し、一定時間後にSCDLP(日
本製薬製)10mlで供試品片上の生残菌を洗い出し、
この洗い出し液について菌数測定用培地による混釈平板
培養法(35℃2日間)により生菌数を測定し、供試品
片1枚当りの生菌数に換算したところ、当初9.0×1
5 個あった菌数は0.5時間経過後以降は10以下と
なった。
Note 2) On the 12th day after the start of the test, all the nitrogen of Comparative Example 1 was taken up by the algae. From Table 1, it can be seen that in Example 1 in which the optical semiconductor cloth was immersed, the generation of algae was effectively suppressed. Example 2 The optical semiconductor cloth prepared in Example 1 was cut into 5 mm × 5 mm, and Escherichia coli culture solution adjusted to about 10 6 pieces per 1 ml was uniformly inoculated into the optical semiconductor cloth, and 20 to 25 ° C. (room temperature). ), While irradiating with light of 750 to 800 lux (commercial 40w fluorescent lamp), and after a certain time, wash out the surviving bacteria on the test piece with 10 ml of SCDLP (Nippon Pharmaceutical Co., Ltd.),
The number of viable bacteria in this washout solution was measured by the pour plate culture method (35 ° C. for 2 days) using a medium for measuring the number of bacteria, and when converted into the number of viable bacteria per one test piece, it was initially 9.0 ×. 1
0 5 was the number of bacteria after after 0.5 hours was 10 or less.

【0020】比較例2 実施例2で供試品片に接種したものと同様の菌液を同量
シャーレに分注し、同様に保存して同様の試験を行った
ところ、当初9.0×105 個あった菌数は、1時間後
に8.7×105 個、6時間後には1.1×106 個、
24時間後には1.1×106 個となった。
Comparative Example 2 When the same amount of the bacterial solution as that inoculated to the test piece in Example 2 was dispensed in the same amount in a petri dish, and the same test was carried out by storing the same, the initial test was 9.0 ×. The number of bacteria that was 10 5 was 8.7 × 10 5 after 1 hour and 1.1 × 10 6 after 6 hours,
After 24 hours, the number was 1.1 × 10 6 .

【0021】実施例2および比較例2の結果を表2に示
The results of Example 2 and Comparative Example 2 are shown in Table 2.

【0022】[0022]

【表2】 なお、実施例2において、光半導体クロスの製作過程で
チタニア粒子に担持したAgによる殺菌機能を補正する
ためにAgを無電解メッキした基材の殺菌機能を実施例
2と同様にして調べたことろ、30分程度の経時におい
ては決定的な効果はみられなかった。
[Table 2] In Example 2, the sterilizing function of the base material electrolessly plated with Ag in order to correct the sterilizing function of Ag carried on the titania particles in the process of manufacturing the optical semiconductor cloth was examined in the same manner as in Example 2. By the way, no definite effect was observed after about 30 minutes.

【0023】以上から、本実施例2の光半導体クロスは
顕著な大腸菌殺菌作用があることが分かる。 実施例3 実施例1で用いた原料混合物をスリットノズルを有する
溶融押出機に供給し、約300℃でシート状に押出し、
厚さ約1mmのシート状物を得た。このシート状物を実
施例1と同じ寸法の試験片に切断し、実施例1と同様に
テストしたところ、同様なテスト結果が得られた。
From the above, it can be seen that the optical semiconductor cloth of Example 2 has a remarkable bactericidal effect on Escherichia coli. Example 3 The raw material mixture used in Example 1 was fed to a melt extruder having a slit nozzle and extruded into a sheet at about 300 ° C.
A sheet-shaped material having a thickness of about 1 mm was obtained. When this sheet-like material was cut into test pieces having the same dimensions as in Example 1 and tested in the same manner as in Example 1, similar test results were obtained.

【0024】[0024]

【発明の効果】本願の請求項1または2記載の発明によ
れば、光半導体微粒子であるチタニアに金属を担持した
光電気化学セルとフッ素樹脂粉末との混合物によって成
形した被膜または該被膜を有する基材を被処理水中に浸
漬またはこれと接触させることにより、優れた殺菌作用
および生物活性抑制作用が得られるので、各種産業にお
いて生物活性抑制材として有用に使用することができ
る。
According to the invention described in claim 1 or 2, the present invention has a coating formed by a mixture of a photoelectrochemical cell in which a metal is supported on titania which is a photo-semiconductor fine particle and a fluororesin powder, or the coating. By immersing the base material in the water to be treated or bringing it into contact with the water, excellent bactericidal action and biological activity suppressing action can be obtained, and therefore it can be usefully used as a biological activity suppressing material in various industries.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 A23L 3/26 A61L 2/16 Z 9163−4C C08J 7/04 Z 7/06 Z D06M 15/256 D21H 19/10 (72)発明者 三枝 等 東京都中央区築地5丁目6番4号 三井造 船株式会社内 (72)発明者 桜田 司 長野県木曽郡上松町荻原1391−3 株式会 社信州セラミックス内Front page continuation (51) Int.Cl. 5 Identification code Office reference number FI Technical display location A23L 3/26 A61L 2/16 Z 9163-4C C08J 7/04 Z 7/06 Z D06M 15/256 D21H 19 / 10 (72) Inventor Saegusa Mitsui Shipbuilding Co., Ltd. 5-6-4 Tsukiji, Chuo-ku, Tokyo (72) Inventor Tsukasa Sakurada 1391-3 Ogihara, Kamimatsu-cho, Kiso-gun, Nagano Stock Company Shinshu Ceramics

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光半導体微粒子に金属を担持した光電気
化学セルとフッ素樹脂粉末との混合物を前記フッ素樹脂
の融点以上に加熱して被膜状に成形することを特徴とす
る生物活性抑制材の製法。
1. A bioactivity-suppressing material, characterized in that a mixture of a photoelectrochemical cell in which a metal is supported on photo-semiconductor fine particles and a fluororesin powder is heated to a temperature not lower than the melting point of the fluororesin to form a film. Manufacturing method.
【請求項2】 光半導体微粒子に金属を担持した光電気
化学セルとフッ素樹脂粉末との混合物を基材表面に溶射
して被膜を形成することを特徴とする生物活性抑制材の
製法。
2. A method for producing a bioactivity-suppressing material, which comprises spraying a mixture of a photoelectrochemical cell in which a metal is supported on photo-semiconductor fine particles and a fluororesin powder onto a surface of a base material to form a coating film.
JP5046866A 1993-03-08 1993-03-08 Production method of bioactivity inhibitor Expired - Lifetime JP2716644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5046866A JP2716644B2 (en) 1993-03-08 1993-03-08 Production method of bioactivity inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5046866A JP2716644B2 (en) 1993-03-08 1993-03-08 Production method of bioactivity inhibitor

Publications (2)

Publication Number Publication Date
JPH06256540A true JPH06256540A (en) 1994-09-13
JP2716644B2 JP2716644B2 (en) 1998-02-18

Family

ID=12759268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5046866A Expired - Lifetime JP2716644B2 (en) 1993-03-08 1993-03-08 Production method of bioactivity inhibitor

Country Status (1)

Country Link
JP (1) JP2716644B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976395A (en) * 1995-03-20 1997-03-25 Toto Ltd Fluororesin member, process to make its surface hydrophilic, protection method against contamination and cleaning method
JP2005254185A (en) * 2004-03-12 2005-09-22 Narikazu Ishiyuki Photocatalyst support board
JP2020515768A (en) * 2017-04-04 2020-05-28 ビーエーエスエフ コーポレーション On-board hydrogen generation and use in an exhaust stream

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176160A (en) * 1984-09-21 1986-04-18 松永 是 Cell killing method
JPS63278954A (en) * 1987-05-09 1988-11-16 Nitto Electric Ind Co Ltd Photoconductive polytetrafluoroethylene sheet and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176160A (en) * 1984-09-21 1986-04-18 松永 是 Cell killing method
JPS63278954A (en) * 1987-05-09 1988-11-16 Nitto Electric Ind Co Ltd Photoconductive polytetrafluoroethylene sheet and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976395A (en) * 1995-03-20 1997-03-25 Toto Ltd Fluororesin member, process to make its surface hydrophilic, protection method against contamination and cleaning method
JP2005254185A (en) * 2004-03-12 2005-09-22 Narikazu Ishiyuki Photocatalyst support board
JP4624698B2 (en) * 2004-03-12 2011-02-02 有限会社ヤマカツラボ Photocatalyst carrying board
JP2020515768A (en) * 2017-04-04 2020-05-28 ビーエーエスエフ コーポレーション On-board hydrogen generation and use in an exhaust stream

Also Published As

Publication number Publication date
JP2716644B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
Xu et al. Antimicrobial polysulfone blended ultrafiltration membranes prepared with Ag/Cu2O hybrid nanowires
JP5069637B2 (en) Visible light responsive photocatalytic coating
Singh et al. Laser-induced graphene biofilm inhibition: texture does matter
Jalvo et al. Antibacterial surfaces prepared by electrospray coating of photocatalytic nanoparticles
Kumar et al. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process
AU2008303538B2 (en) Electrochemical device for biocide treatment in agricultural applications
Gaw et al. Electrochemical approach for effective antifouling and antimicrobial surfaces
CN102317537A (en) The living polymer film
KR20190002709A (en) Antibacterial and antimicrobial functional membrane spacers
CN107018991B (en) Antibacterial film modified by silver-lysozyme nanoclusters
Cushnie et al. Photobactericidal effects of TiO2 thin films at low temperatures—A preliminary study
JPH038448A (en) Photocatalytic functional body and multifunctional material using the same
Su et al. Antimicrobial finishing of cotton textile with nanosized silver colloids synthesized using polyethylene glycol
Tang et al. Three-phase interface photocatalysis for the enhanced degradation and antibacterial property
JP2006231150A (en) Photocatalyst, method for manufacturing the same and method and apparatus for treating water by using the same
JP2716644B2 (en) Production method of bioactivity inhibitor
JP6656823B2 (en) Raw material for producing electrolytic water, electrolytic solution using the same, electrolytic water produced from the electrolytic solution, and method for producing the electrolytic solution and electrolytic water
CN114059047A (en) Method for constructing antibacterial micro-nano structure on surface of metal substrate
CN109622020A (en) A kind of photocatalyzed gel material and preparation method thereof
Sanito et al. Novel TiO2/PANI composites as a disinfectant for the elimination of Escherichia coli and Staphylococcus aureus in aquaculture water
Monetta et al. Strong and durable antibacterial effect of titanium treated in Rf oxygen plasma: Preliminary results
JP5523777B2 (en) Aquatic organism adhesion prevention member and method for producing the same
CN1357235A (en) Polyoxy alkene guanidine disinfectant
CN101879440A (en) Nano electro-catalytic contact sterilizing material and preparation method thereof
JPWO2020122258A1 (en) Radical water production method, production equipment and radical water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971007