JP6656823B2 - Raw material for producing electrolytic water, electrolytic solution using the same, electrolytic water produced from the electrolytic solution, and method for producing the electrolytic solution and electrolytic water - Google Patents

Raw material for producing electrolytic water, electrolytic solution using the same, electrolytic water produced from the electrolytic solution, and method for producing the electrolytic solution and electrolytic water Download PDF

Info

Publication number
JP6656823B2
JP6656823B2 JP2015118488A JP2015118488A JP6656823B2 JP 6656823 B2 JP6656823 B2 JP 6656823B2 JP 2015118488 A JP2015118488 A JP 2015118488A JP 2015118488 A JP2015118488 A JP 2015118488A JP 6656823 B2 JP6656823 B2 JP 6656823B2
Authority
JP
Japan
Prior art keywords
water
noble metal
electrolytic
electrolyzed water
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015118488A
Other languages
Japanese (ja)
Other versions
JP2017000969A (en
Inventor
浩之 梶
浩之 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENELITE INC.
Original Assignee
GENELITE INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENELITE INC. filed Critical GENELITE INC.
Priority to JP2015118488A priority Critical patent/JP6656823B2/en
Publication of JP2017000969A publication Critical patent/JP2017000969A/en
Application granted granted Critical
Publication of JP6656823B2 publication Critical patent/JP6656823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

本発明は、洗浄消毒等の抗菌性、抗ウィルス性、防カビ性等に加え、皮膚の老化防止等の抗酸化性を有する電解水を製造する原料、それを用いた電解液、及び、その電解液から製造される電解水、並びに、その電解液の製造法に関する。特に、この電解水の製造原料は、貴金属ナノ粒子を担持した塩化物粉末に関するものである。   The present invention is a raw material for producing electrolyzed water having antioxidant properties such as anti-aging of the skin, in addition to antibacterial properties such as washing and disinfecting, antiviral properties, antifungal properties, etc., and an electrolytic solution using the same. The present invention relates to electrolytic water produced from an electrolytic solution and a method for producing the electrolytic solution. In particular, the raw material for producing the electrolyzed water relates to a chloride powder supporting noble metal nanoparticles.

「人為的な処理によって再現性のある有用な機能を獲得した水溶液の中で、処理と機能に関して科学的根拠が明らかにされたもの、及び、明らかにされようとしているもの」と定義される「機能水」は、近年、エレクトロニクス産業、食品加工業、サービス業、農林水産業、保健衛生業、水処理業等、あらゆる産業分野で注目され、使用されている(非特許文献1)。   Defined as "aqueous solutions that have obtained useful and reproducible functions through artificial processing, for which the scientific basis for processing and function has been or will be elucidated" In recent years, "functional water" has been attracting attention and used in various industrial fields such as electronics, food processing, service, agriculture, forestry and fisheries, health and hygiene, and water treatment (Non-Patent Document 1).

「機能水」には、RCA洗浄に代表される過酸化水素水を基本とした薬液添加水、窒素、水素、或いは、二酸化炭素等を溶解した溶解ガス制御水、酸化力の強いオゾンを溶解したオゾン水、溶解ガス制御水に外部からのエネルギーを注入して用いる超音波励起水、液体の水とも気体の水蒸気とも全く異なる挙動を示し、高い酸化分解力を有する超臨界水、純水或い薬剤を添加した水を電気分解して得られる、酸化・還元力を有する電解水等が挙げられる(非特許文献2)。   In "functional water", dissolved chemical control water dissolved nitrogen, hydrogen, or carbon dioxide, etc., and ozone with strong oxidizing power were dissolved. Ultrasonic excitation water used by injecting external energy into ozone water and dissolved gas control water, exhibits completely different behavior from liquid water and gaseous water vapor, and has super oxidizing water with high oxidative decomposition power, pure water or Electrolyzed water having an oxidizing / reducing power, which is obtained by electrolyzing water to which a drug is added, and the like (Non-Patent Document 2).

中でも、電解水は、世界で最も大量に消費されている殺菌剤である次亜塩素酸ソーダ(NaClO)に替わる殺菌剤として注目されている。これは、次亜塩素酸ソーダには、次のような問題点が内在しているためである。第一に、NaClOが有機物と混じると、トリハロメタンという有害物を生成することである。第二に、NaClOが分解すると、有害な塩素酸を生成すると共に、原料の食塩に含まれる臭素化合物から生成される有害な臭素酸が含まれていることである。第三に、食品や食器に塩素臭がついたり、濯ぐための大量の水を必要とすることである。その他、肌荒れを起こしたり、酸と混ぜて塩素発生事故を引き起こす等数々の問題点がある。その点、電解水は、生成原理、生成機器、生成水の規格が明確であり、有効性及び安全性に関する公的及び科学的根拠が示されており、人にも環境にも優しく有効な機能水であることを特徴としており、衛生管理を主目的とする殺菌・除菌剤として幅広く利用されるようになってきた。例えば、食品加工業では、食材原料殺菌、容器殺菌、冷却水、作業衣除菌等、サービス業では、食材殺菌、食器殺菌、生鮮食品乾燥防止、浴湯殺菌、客室除菌等、農林水産業では、種子除菌、果樹除菌、魚介類殺菌、養魚場除菌等、保健衛生業では、厨房衛生管理、トイレ清掃、手指除菌、浴室除菌、介護器具除菌等、水処理業では、上水殺菌、放流廃水殺菌、ビル空気除菌除臭等に適用されている。   Among them, electrolyzed water has been attracting attention as a disinfectant to replace sodium hypochlorite (NaClO), which is the most consumed disinfectant in the world. This is because the following problems are inherent in sodium hypochlorite. First, when NaClO is mixed with organic matter, it produces a harmful substance called trihalomethane. Second, when NaClO is decomposed, harmful chloric acid is generated, and harmful bromic acid generated from a bromine compound contained in the raw material salt is contained. Third, foods and dishes have a chlorine odor and require a large amount of water for rinsing. In addition, there are a number of other problems, such as rough skin and mixing with acids to cause chlorine generation. In that regard, electrolyzed water has a clear generation principle, generation equipment, and standards for generated water, and has a public and scientific basis for its effectiveness and safety. It is characterized by being water, and has come to be widely used as a disinfectant / disinfectant mainly for sanitary management. For example, in the food processing industry, sterilization of food ingredients, container sterilization, cooling water, disinfection of work clothes, etc., in the service industry, disinfection of foodstuffs, tableware, prevention of fresh food drying, bath hot water, sterilization of guest rooms, etc., agriculture, forestry and fisheries In the sanitation industry, such as seed disinfection, fruit tree disinfection, disinfection of fish and shellfish, disinfection of fish farms, etc. It is applied to water sterilization, discharge wastewater sterilization, building air sterilization and deodorization, and the like.

このような電解水は、pHが6.5以下である酸性電解水と、pHが7.5以上のアルカリ性電解水とに大別される。酸性電解水は、水道水や塩化物イオンを含む水溶液の電気分解によって得られる水溶液の総称であり、各種病原細菌、食中毒菌、ウィルス等に強い殺菌活性を示し、その殺菌因子は電気分解によって生じる次亜塩素酸(HClO)である。全ての酸性電解水は安全性も高く、急性毒性試験、皮膚刺激試験、変異原性試験、粘膜刺激試験に合格しているため、健康を損なう恐れがないということから食品添加物にも指定され、次亜塩素酸水という名称が付与されている。一方、アルカリ性電解水は、塩化ナトリウム(NaCl)水溶液の電気分解によって生成する水溶液の総称である。   Such electrolyzed water is roughly classified into acidic electrolyzed water having a pH of 6.5 or less and alkaline electrolyzed water having a pH of 7.5 or more. Acidic electrolyzed water is a general term for aqueous solutions obtained by electrolysis of tap water and aqueous solutions containing chloride ions, and has strong bactericidal activity against various pathogenic bacteria, food poisoning bacteria, viruses, etc., and the bactericidal factor is generated by electrolysis. Hypochlorous acid (HClO). All acidic electrolyzed water has high safety and has passed the acute toxicity test, skin irritation test, mutagenicity test, and mucous membrane irritation test, so it is designated as a food additive because it has no risk of harm to health. , And hypochlorous acid water. On the other hand, alkaline electrolyzed water is a general term for an aqueous solution generated by electrolysis of a sodium chloride (NaCl) aqueous solution.

更に、酸性電解水は、電解液組成、電解装置、電解条件等によって、強酸性電解水(強酸性次亜塩素酸水)、弱酸性電解水(弱酸性次亜塩素酸水)、微酸性電解水(微酸性次亜塩素酸水)、中性電解水に分類される。   Further, the acidic electrolyzed water may be strongly acidic electrolyzed water (strongly acidic hypochlorous acid aqueous solution), weakly acidic electrolyzed water (weakly acidic hypochlorous acid aqueous solution), slightly acidic electrolyzed water, depending on the composition of the electrolytic solution, electrolysis apparatus, electrolysis conditions and the like. It is classified into water (slightly acidic hypochlorous acid water) and neutral electrolyzed water.

強酸性電解水は、0.2%以下のNaCl水溶液を、陽極と陰極が隔膜で仕切られた2室型或いは3室型の電解槽内で電気分解し、陽極側において生じる、有効塩素濃度が20〜60ppmのHClOを主成分とするpH2.7以下の電解水である。有効塩素濃度が40ppmの強酸性電解水は、1,000ppmという高濃度の次亜塩素酸ナトリウムに匹敵する抗菌・抗ウィルス活性を示す。弱酸性電解水は、0.2%以下のNaCl水溶液を、陽極と陰極が隔膜で仕切られた2室型或いは3室型の電解槽内で電気分解し、陽極電解水と陰極電解水を装置内で混合した、有効塩素濃度が10〜60ppmのHClOを主成分とするpH2.7〜5.0の電解水である。強酸性電解水と同様の抗菌・抗ウィルス活性と安全性が確認されている。微酸性電解水は、2〜6%の塩酸水或いは塩酸と塩化ナトリウム水溶液の混合液を、陽極と陰極が隔膜で仕切られていない1室型電解槽で電気分解して生成する、有効塩素濃度が10〜80ppmのHClOを主成分とするpH5〜6.5の電解水である。この微酸性電解水は、生成水全てが殺菌水であることが特徴で、強酸性電解水と同様の抗菌・抗ウィルス活性と安全性が確認されており、飲用目的ではないが、pH5.8〜6.5の塩酸電解微酸性電解水は飲用に相応しい水質を持っている。中性電解水は、塩化物イオン、特に、Cl−を含む水道水を一室型無隔膜電解槽で電気分解して生成することができ、数ppmの有効塩素を有し、pH6.5〜7.5を示す。この電解水も殺菌力があるが、食品添加物等の認可を得ていないので、除菌水として扱われている。   Strongly acidic electrolyzed water electrolyzes a 0.2% or less aqueous NaCl solution in a two-chamber or three-chamber electrolytic cell in which an anode and a cathode are separated by a diaphragm, and the effective chlorine concentration generated on the anode side is reduced. It is electrolyzed water having a pH of 2.7 or less and containing 20 to 60 ppm of HClO as a main component. Strongly acidic electrolyzed water having an effective chlorine concentration of 40 ppm exhibits antibacterial and antiviral activities comparable to sodium hypochlorite having a high concentration of 1,000 ppm. Weakly acidic electrolyzed water is obtained by electrolyzing a 0.2% or less aqueous NaCl solution in a two-chamber or three-chamber electrolytic cell in which an anode and a cathode are separated by a diaphragm. Is an electrolyzed water having a pH of 2.7 to 5.0 and containing HClO having an effective chlorine concentration of 10 to 60 ppm as a main component. Antibacterial and antiviral activities and safety similar to strongly acidic electrolyzed water have been confirmed. Slightly acidic electrolyzed water is produced by electrolyzing a 2 to 6% hydrochloric acid aqueous solution or a mixture of hydrochloric acid and an aqueous solution of sodium chloride in a single-chamber electrolytic cell in which an anode and a cathode are not separated by a diaphragm. Is electrolyzed water having a pH of 5 to 6.5 and containing HClO of 10 to 80 ppm as a main component. This slightly acidic electrolyzed water is characterized in that all the generated water is sterilized water, and the same antibacterial and antiviral activities and safety as those of the strongly acidic electrolyzed water have been confirmed. Although not intended for drinking, the pH is 5.8. Hydrochloric acid electrolyzed slightly acidic electrolyzed water having a water quality of about 6.5 is suitable for drinking. Neutral electrolyzed water can be produced by electrolyzing tap water containing chloride ions, particularly Cl −, in a single-chamber non-diaphragm electrolytic cell, has several ppm of available chlorine, and has a pH of 6.5 to 6.5. 7.5 is shown. This electrolyzed water also has bactericidal activity, but has not been approved for food additives and the like, and is therefore treated as sterilized water.

また、アルカリ性電解水も、同様に、強アルカリ性電解水と電解次亜水に分類される。強アルカリ性電解水は、0.2%以下のNaCl水溶液を、陽極と陰極が隔膜で仕切られた2室型或いは3室型の電解槽内で電気分解し、陰極側において生成する、pHが10.5〜11.5の今日アルカリ性の電解水である。これは、稀薄な水酸化ナトリウム同様、粘膜を損傷する恐れがあり、食品添加物として認可されていない。電解次亜水は、0.2%以下のNaCl水溶液を、陽極と陰極が隔膜で仕切られていない1室型電解装置で電気分解すると生成する、pH7.5以上のアルカリ性の電解水である。この電解水は、陽極反応で生成するHClOの多くが、アルカリ性のために次亜塩素酸イオン(ClO)となり、HClOより殺菌活性が微弱ではあるが、酸性電解水よりも有効塩素濃度(30〜200ppm)が高く、優れた殺菌力を有している。この電解次亜水は、次亜塩素酸ナトリウムの希釈液と同等性があると認められれており、食品添加物と同様に使用できる。 Similarly, the alkaline electrolyzed water is also classified into a strongly alkaline electrolyzed water and an electrolyzed hypochlorite. Strongly alkaline electrolyzed water is obtained by electrolyzing a 0.2% or less aqueous NaCl solution in a two-chamber or three-chamber electrolytic cell in which an anode and a cathode are separated by a diaphragm, and is formed on the cathode side. 0.5 to 11.5 of alkaline electrolyzed water today. It, like dilute sodium hydroxide, can damage mucous membranes and is not approved as a food additive. Electrolyzed hypochlorite is alkaline electrolyzed water having a pH of 7.5 or more, which is generated when an aqueous solution of 0.2% or less NaCl is electrolyzed by a single-chamber electrolysis apparatus in which an anode and a cathode are not separated by a diaphragm. In this electrolyzed water, most of HClO generated by the anodic reaction becomes hypochlorite ion (ClO ) due to alkalinity, and has a weaker bactericidal activity than HClO. -200 ppm), and has excellent bactericidal activity. This electrolytic hypochlorite is recognized to be equivalent to a dilute solution of sodium hypochlorite, and can be used similarly to food additives.

一方、近年、電解水同様、白金(Pt)や金(Au)等の貴金属のナノ粒子の抗酸化、抗菌、除菌、防カビ、鮮度保持、防臭等の効果が注目されている。これは、Pt及びAuも、食品添加物として認可されている安全性の高い素材であり、極めて表面積の大きなナノ粒子を製造することができるようになってきたためである。特に、Pt及びAuナノ粒子の分散液が、癌、糖尿病、アトピー性皮膚炎、アルツハイマー、網膜色素変性症等に関与する活性酸素種(スーパーオキシドアニオン、過酸化水素、ヒドロキシラジカル等)を分解する抗酸化剤としての有用性が高い(特許文献1〜3)。更に、この抗酸化能を利用して、皮膚の老化を防ぐ化粧料や皮膚外用剤等に応用されてきた(特許文献4〜7)。更に、貴金属ナノ粒子は、抗ウィルス能や抗菌能を有することが知られており、NaClOに替わるノロフィルスやインフルエンザ等の抗ウィルス剤(非特許文献3)や、洗濯耐久性に優れた医療用抗菌リネン類、宿泊施設用抗菌リネン類、日用抗菌衣類の抗菌剤(特許文献8)等にも応用されるようになってきた。   On the other hand, in recent years, similar to electrolyzed water, the effects of nanoparticles of noble metals such as platinum (Pt) and gold (Au) such as antioxidant, antibacterial, bacteria-free, mold-proof, freshness-maintaining, and odor-proof have attracted attention. This is because Pt and Au are also highly safe materials approved as food additives, and can now produce nanoparticles having an extremely large surface area. In particular, a dispersion of Pt and Au nanoparticles decomposes reactive oxygen species (superoxide anion, hydrogen peroxide, hydroxy radical, etc.) involved in cancer, diabetes, atopic dermatitis, Alzheimer, retinitis pigmentosa, etc. It is highly useful as an antioxidant (Patent Documents 1 to 3). Furthermore, utilizing this antioxidant ability, it has been applied to cosmetics for preventing skin aging, external preparations for skin, and the like (Patent Documents 4 to 7). Furthermore, noble metal nanoparticles are known to have antiviral and antibacterial properties, and are replaced with NaClO, antiviral agents such as Norofilus and influenza (Non-patent Document 3), and medical antibacterial with excellent washing durability. It has been applied to linens, antibacterial linens for accommodation facilities, antibacterial agents for daily antibacterial clothing (Patent Document 8), and the like.

このように、電解水も貴金属ナノ粒子分散液も、安全性が高い、抗菌性、抗ウィルス性、抗酸化性等の効能を有する素材であるが、それぞれ、その素材に固有の課題がある。   As described above, the electrolyzed water and the noble metal nanoparticle dispersion are both highly safe materials having antibacterial properties, antiviral properties, antioxidant properties, and the like, but each has its own problems.

電解水は、その効能因子であるHClOが光や空気と接触すると分解するため、効果が短いこと、タンパク質やアミノ酸を含むものとの混合で失活すること、電解水の表面張力が高いため、濡れ性や浸透性が悪く、効果が不均一であること等が挙げられる。これらの課題に対し、電解水の濡れ性や浸透性を高める方法として、界面活性剤の添加やマイクロバブル処理が報告されているが(特許文献9〜11)、効果が短いこと、及び、タンパク質やアミノ酸を含むものとの混合で失活することに対する具体的対策が見出されていない。   Electrolyzed water decomposes when HClO, its efficacy factor, comes in contact with light or air, so its effect is short, it is inactivated by mixing with those containing proteins and amino acids, and the surface tension of electrolyzed water is high, Poor wettability and permeability and uneven effect. As a method for improving the wettability and permeability of electrolyzed water to solve these problems, addition of a surfactant and microbubble treatment have been reported (Patent Documents 9 to 11). No specific countermeasure has been found for inactivation by mixing with a substance containing amino acids or amino acids.

一方、貴金属ナノ粒子分散液の課題は、分散剤等の不純物質を含まず、粒子径が小さくてその分布が狭いナノ粒子の製造方法が見出されていないことである。分散剤やその他不純物の存在は貴金属ナノ粒子の表面を被覆することになり、粒子径の大きなものの存在は貴金属ナノ粒子の表面積を減少させ、いずれも、貴金属ナノ粒子が有する抗酸化、抗ウィルス、抗菌、除菌、防カビ、鮮度保持、防臭等の能力を低下する原因になる(特許文献7及び非特許文献4)。   On the other hand, the problem of the noble metal nanoparticle dispersion liquid is that a method for producing nanoparticles that do not contain impurities such as a dispersant and have a small particle diameter and a narrow distribution has not been found. The presence of dispersants and other impurities will cover the surface of the noble metal nanoparticles, and the presence of large particles will reduce the surface area of the noble metal nanoparticles, both of which have the antioxidant, antiviral, It causes a reduction in antibacterial, sterilization, antifungal, freshness preserving, and deodorizing abilities (Patent Document 7 and Non-Patent Document 4).

従来、ナノ粒子は、気相法、液相法、及び、固相法で製造されてきたが、本技術分野においては、貴金属ナノ粒子の分散液として使用されるため、液相法の一つである還元法を利用される例が多い(特許文献1〜6及び8)。この還元法は、貴金属塩化物の水溶液に溶解した貴金属イオンを還元剤で還元することによって貴金属ナノ粒子を容易に生成することができるため、実験室レベルではよく用いられる。しかし、この還元法においては、貴金属ナノ粒子が、安定した分散液として存在するための界面活性能を有する分散剤が必要とされ、これが、貴金属ナノ粒子が有する各種効能を低下する原因になるという課題がある(特許文献7及び非特許文献4)。その他液相法としては、超臨界液体を用いる水熱合成法、加水分解、重縮合という化学反応を用いるゾル−ゲル法、溶解性金属塩から難溶性金属塩に変化させ、その沈殿物を焼成して製造する沈澱法、逆ミセル、ミセルを化学反応の場として利用する液中分散法等があるが、核形成、成長、停止という過程を経るため、粒子径の制御が困難で、数nm以下の微細なナノ粒子を製造することが難しく、分散剤を必要とし、不純物の混入を避けることができないという共通の問題がある。   Conventionally, nanoparticles have been produced by a gas phase method, a liquid phase method, and a solid phase method, but in the present technical field, since they are used as a dispersion of noble metal nanoparticles, one of the liquid phase methods (Patent Documents 1 to 6 and 8). This reduction method is often used at a laboratory level because noble metal nanoparticles can be easily generated by reducing a noble metal ion dissolved in an aqueous solution of a noble metal chloride with a reducing agent. However, in this reduction method, a noble metal nanoparticle is required to have a dispersant having a surfactant activity for being present as a stable dispersion, and this causes a reduction in various effects of the noble metal nanoparticle. There are problems (Patent Document 7 and Non-Patent Document 4). Other liquid phase methods include hydrothermal synthesis using a supercritical liquid, sol-gel method using a chemical reaction called hydrolysis and polycondensation, and changing from a soluble metal salt to a sparingly soluble metal salt, and firing the precipitate. Precipitation method, reverse micelles, submerged dispersion method using micelles as a field for chemical reaction, etc., but the process of nucleation, growth, and termination makes it difficult to control the particle size, and a few nm There is a common problem that it is difficult to produce the following fine nanoparticles, a dispersant is required, and contamination of impurities cannot be avoided.

上記液相法とは異なり、分散剤を必要としないナノ粒子の製造方法としては、固相法及び気相法がある。固相法は、様々な物質の粒子の量産技術として使用されているものの、粒子サイズの限界が1μm程度であり、微細な純度の高いナノ粒子を製造することは困難である上、分級という操作が必要であり、本技術分野のナノ粒子として用いられることは困難である。気相法には、化学蒸着(CVD)法、気相合成法、蒸発・凝集法等がある。CVD法は、プラズマ等によって活性化された反応性モノマーが加熱炉において化学反応し、核生成、凝縮、凝集を経てナノ粒子が形成されるものであるが、生産効率が低く、エネルギー効率が悪いため、製造コストが高い上、核生成、凝縮、凝集というプロセスを経るため、粒子径が不均一になるという課題もある。気相合成法は、金属塩化物の反応ガス中で、酸化・還元・窒化することによって、ナノ粒子を生成する方法であるが、分散剤は用いないが、原料に基づく不純物の混入という問題がある。蒸発・凝集法は、不活性ガス中で、レーザーアブレーション、スパッタリング、真空蒸着等の方法で金属を一旦蒸発させた後、冷却することによってナノ粒子を製造する方法であり、CVD法と同様の問題がある。いずれにしても、本技術分野の分散液として使用する場合には、ナノ粒子を無害な液体に均一に分散するため、分散剤を必要とするという根本的な課題を解決できるものではない。   Unlike the liquid phase method, as a method for producing nanoparticles that do not require a dispersant, there are a solid phase method and a gas phase method. Although the solid phase method is used as a mass production technique for particles of various substances, the particle size limit is about 1 μm, it is difficult to produce fine and high-purity nanoparticles, and the operation of classification is also required. And it is difficult to use as nanoparticles in the technical field. The vapor phase method includes a chemical vapor deposition (CVD) method, a vapor phase synthesis method, an evaporation / aggregation method, and the like. In the CVD method, a reactive monomer activated by plasma or the like chemically reacts in a heating furnace to form nanoparticles through nucleation, condensation, and aggregation, but the production efficiency is low and the energy efficiency is low. Therefore, there is a problem that the production cost is high and the particle diameter becomes non-uniform due to the processes of nucleation, condensation, and aggregation. The gas phase synthesis method is a method of producing nanoparticles by oxidizing, reducing, and nitriding in a reaction gas of metal chloride, but does not use a dispersant, but has the problem of mixing impurities based on raw materials. is there. The evaporation / aggregation method is a method of producing nanoparticles by once evaporating a metal in an inert gas by a method such as laser ablation, sputtering, or vacuum evaporation, and then cooling the same, and has the same problems as the CVD method. There is. In any case, when used as a dispersion in the present technical field, the fundamental problem of requiring a dispersant cannot be solved because the nanoparticles are uniformly dispersed in a harmless liquid.

このような状況において、近年、溶融塩のプラズマ誘起カソード電解や液相レーザーアブレーションを用いた、分散剤を必要としないナノ粒子の製造方法が開発されている(特許文献12〜15)。しかし、プラズマ誘起カソード電解法では、生産性が悪く、エネルギーロスが大きいため、その改良が試みられているが、蒸留水等の洗浄、フィルターによるろ過工程を必要とするという問題は未解決である(特許文献12)。液相レーザーアブレーション法は、液中で貴金属板にレーザーを照射すると同時に超音波を照射する簡単な方法であり、この方法を用いたPtナノ粒子の化粧料が報告されている(特許文献7)。ただし、前段落の気相レーザーアブレーション同様、粒子径が不均一になるという課題があり、レーザーの照射方法の工夫(特許文献13)、ヘキサン、トリエチルアミン、シリコンオイル、重水等の溶媒の選択(特許文献14及び15)、プラズマ発生装置の併設(特許文献15)等が検討されているが、装置が複雑になり、生産性が悪い上、溶媒が高価で、安全性に乏しい貴金属ナノ粒子の分散液となってしまう。従って、貴金属ナノ粒子の効能をより効果的に発揮でき、安全性の高い、貴金属ナノ粒子を用いた抗酸化剤、抗ウィルス剤、抗菌剤等とするために克服しなければならない製造方法の問題がある。   Under these circumstances, in recent years, a method for producing nanoparticles that does not require a dispersant by using plasma-induced cathodic electrolysis of molten salt or liquid-phase laser ablation has been developed (Patent Documents 12 to 15). However, the plasma-induced cathodic electrolysis method has been attempted to improve the productivity and energy loss because of poor productivity, but the problem of requiring a washing step with distilled water or the like and a filtration step using a filter has not been solved. (Patent Document 12). The liquid phase laser ablation method is a simple method of irradiating a laser to a precious metal plate in a liquid and simultaneously irradiating an ultrasonic wave, and a cosmetic of Pt nanoparticles using this method has been reported (Patent Document 7). . However, similarly to the gas-phase laser ablation in the preceding paragraph, there is a problem that the particle diameter becomes non-uniform, and a method of irradiating the laser (Patent Document 13), selection of a solvent such as hexane, triethylamine, silicon oil, and heavy water (Patent) Literatures 14 and 15) and the addition of a plasma generator (Patent Literature 15) have been studied, but the apparatus becomes complicated, the productivity is low, the solvent is expensive, and the safety of the noble metal nanoparticles is poor. It becomes liquid. Therefore, the problem of a manufacturing method that can exert the effects of the noble metal nanoparticles more effectively and must be overcome in order to make the antioxidant, antiviral agent, antibacterial agent, etc. using the noble metal nanoparticles highly safe. There is.

更に、真空蒸着やスパッタリングによって放出された金属蒸気を、基板や担持体上で金属ナノ粒子として堆積させる物理蒸着(PVD)法が開発されている。この方法は、真空蒸着法やスパッタリング法による成膜プロセスの制御、すなわち、成膜初期において形成される島状の金属粒で成長を止めることによって金属ナノ粒子を生成する方法であり、粒子径及びその分布を制御しやすく、不純物を含まない金属ナノ粒子の製造方法として注目され、抗菌・滅菌を必要とする生活用品、排ガス・排水処理の触媒、太陽電池等のエレクトロニクス部品等様々な分野で期待されている(特許文献16〜18)。   Further, a physical vapor deposition (PVD) method has been developed in which metal vapor emitted by vacuum deposition or sputtering is deposited as metal nanoparticles on a substrate or a carrier. This method is a method of controlling a film formation process by a vacuum evaporation method or a sputtering method, that is, a method of generating metal nanoparticles by stopping growth at island-shaped metal particles formed at an early stage of film formation, and forming a particle diameter and It is easy to control its distribution and attracts attention as a method for producing metal nanoparticles containing no impurities, and is expected in various fields such as household goods requiring antibacterial and sterilization, catalysts for exhaust gas and wastewater treatment, and electronic components such as solar cells. (Patent Documents 16 to 18).

国際公開第2005/023467号パンフレットWO 2005/023467 pamphlet 国際公開第2006/101106号パンフレットWO 2006/101106 pamphlet 特開2007−176944号公報JP 2007-176944 A 特開2005−139102号公報JP 2005-139102 A 特開2005−179500号公報JP 2005-179500 A 特開2008−063295号公報JP 2008-063295 A 特開2015−067556号公報JP-A-2005-067556 特開2008−056592号公報Japanese Patent Application Laid-Open No. 2008-056552 特開2006−176475号公報JP 2006-176475 A 特開2006−176489号公報JP 2006-176489 A 特開2013−010758号公報JP 2013-010758 A 特開2008−106309号公報JP 2008-106309 A 特開2009−299112号公報JP 2009-299112 A 特開2010−077458号公報JP 2010-077458 A 特開2010−144201号公報JP 2010-144201 A 特開2009−511754号公報JP 2009-511754 A 国際公開第2012/150804号パンフレットWO 2012/150804 pamphlet 特開2009−246025号公報JP 2009-246025 A

一般財団法人機能水研究振興財団ホームページ,http://www.fwf.or.jp/index.html,「機能水とは」Functional water research promotion foundation homepage, http: // www. fwf. or. jp / index. html, "What is functional water?" 都田昌之監修,日本産業洗浄協議会編,「初歩から学ぶ機能水」,株式会社工業調査会発行,2002年8月15日Supervised by Masayuki Tsuda, edited by the Japan Industrial Cleaning Council, “Functional Water Learned from the Beginning”, published by the Industrial Research Institute, August 15, 2002 日刊工業新聞Business Line,http://www.nikkan.co.jp/news/nkx1020140206ccas.html,「Eu−BS、白金ナノでノロウィルスを破壊する抗ウィルススプレー発売」Nikkan Kogyo Shimbun Business Line, http: // www. nikkan. co. jp / news / nkx1020140206ccas. html, "Eu-BS launches antiviral spray to destroy norovirus with platinum nano" 株式会社エブリウェアーホームページ,http://www.pt−nano.net/index.html,「ナノプラチナ粒子溶液」Everyware homepage, http: // www. pt-nano. net / index. html, “Nano-platinum particle solution” 多賀康訓,「薄膜プロセス技術の研究」,総合工学,第22巻(2010)53−64.Yasunori Taga, "Research on Thin Film Process Technology", Integrated Engineering, Vol. 22, (2010) 53-64.

本発明は、電解水が有する課題(その効能因子であるHClOが光や空気で分解して効果が短いこと、タンパク質やアミノ酸を含むものとの混合で失活すること、電解水の濡れ性や浸透性が悪くて効果が不均一であること)、並びに、貴金属ナノ粒子分散液が有する課題(粒子径が大きくて粒子径分布が広く、貴金属ナノ粒子の分散液が分散剤等の不純物を含むために、貴金属ナノ粒子の効能を効果的に発揮できないこと)を解決した抗酸化性、抗ウィルス性、抗菌性、防カビ性、鮮度保持、防臭等を効果的に長期間発揮でき、安全性が高い電解水を製造することができる原料を提供することである。また、本発明は、その原料を用いた電解液及びその電解液を電気分解した電解水、並びに、その電解液及び電解水の製造方法を提供することである。   The present invention has been developed to solve the problems of electrolyzed water (the effect factor is that HClO is decomposed by light or air to have a short effect, is inactivated by mixing with protein or amino acid-containing water, Poor permeability and non-uniform effect) and the problems of the noble metal nanoparticle dispersion (large particle size and wide particle size distribution, the noble metal nanoparticle dispersion contains impurities such as dispersants) Therefore, the antioxidant, antiviral, antibacterial, antifungal, antifungal, freshness, deodorant, etc. that can solve the effects of noble metal nanoparticles can be effectively exhibited for a long period of time. It is to provide a raw material capable of producing electrolyzed water having a high water content. Another object of the present invention is to provide an electrolytic solution using the raw material, electrolytic water obtained by electrolyzing the electrolytic solution, and a method for producing the electrolytic solution and the electrolytic water.

本発明者らは、PVD法によって貴金属ナノ粒子を担持した塩化物粉末を作製し、これらの粉末を水に溶解した後、電気分解することによって得られる、貴金属ナノ粒子を含む電解水が、電解水と貴金属ナノ粒子とが有する、抗酸化性、抗ウィルス性、抗菌性、防カビ性、鮮度保持、防臭等の効能を効果的に長期間発揮でき、安全性が高い電解水であることを見出し、本発明を完成した。特に、本発明の貴金属ナノ粒子を担持した塩化物粉末は、塩化ナトリウム(NaCl)又は塩化カリウム(KCl)を、貴金属として、白金(Pt)、金(Au)、銀(Ag)、イリジウム(Ir)、又は、これらの合金を用いて製造されるものが好ましいことを見出した。   The present inventors have prepared chloride powders supporting noble metal nanoparticles by a PVD method, and after dissolving these powders in water, obtained by electrolysis. It is an electrolyzed water that can effectively demonstrate the antioxidant, antiviral, antibacterial, antifungal, antifungal, freshness, deodorant, and other effects of water and noble metal nanoparticles for a long period of time, and has high safety. Heading, the present invention has been completed. In particular, the chloride powder supporting the noble metal nanoparticles of the present invention uses sodium chloride (NaCl) or potassium chloride (KCl) as a noble metal, and includes platinum (Pt), gold (Au), silver (Ag), and iridium (Ir). ) Or those produced using these alloys have been found to be preferable.

すなわち、本発明は、貴金属ナノ粒子を含む電解水を製造する原料となる貴金属ナノ粒子をPVD法で担持した塩化物粉末を提供するものである。更に、この貴金属ナノ粒子を担持した塩化物を水に溶解した電解液及びその電解液の電気分解によって製造される電解水、並びに、その電解液及び電解水の製造法を提供するものである。   That is, the present invention provides a chloride powder in which noble metal nanoparticles, which are raw materials for producing electrolyzed water containing noble metal nanoparticles, are supported by a PVD method. Further, the present invention provides an electrolytic solution obtained by dissolving a chloride supporting the noble metal nanoparticles in water, electrolytic water produced by electrolysis of the electrolytic solution, and a method for producing the electrolytic solution and electrolytic water.

本発明の貴金属ナノ粒子を担持した塩化物粉末を水に溶解した電解液を電気分解して得られる電解水は、電解水及び貴金属ナノ粒子の洗浄・消毒・防臭等の衛生管理や生鮮食品の鮮度維持等に求められる抗菌性、抗ウィルス性、抗カビ性等に加え、貴金属ナノ粒子の皮膚の老化防止や美肌効果等の健康保全に求められる抗酸化性を有し、電解水の効能因子であるHClOが分解しても、貴金属ナノ粒子による効能が半永久的に持続することができる。また、従来の電解水は、タンパク質やアミノ酸を含むものとの混合で失活したり、電解水の濡れ性や浸透性が悪くて効果が不均一となったりするが、貴金属ナノ粒子の存在により、これらの問題を解決することができる。更に、貴金属ナノ粒子は、PVD法によって塩化物粉末上に担持されるため、分散剤を含まず、粒子径が小さく、粒子径分布の狭い上、これを水に溶解すると、貴金属ナノ粒子が均一に分散した電解液になるため、従来の金属ナノ粒子の効能を凌駕することができる。ただし、分散剤を必要とせず、均一に分散する理由は明らかではないが、塩化物の粉体に貴金属ナノ粒子が担持された状態で水に溶解、分散する工程が関与しているものと考えられる。   Electrolyzed water obtained by electrolyzing an electrolytic solution obtained by dissolving chloride powder carrying noble metal nanoparticles of the present invention in water is used for sanitary control such as washing, disinfection, deodorization, etc. of electrolytic water and noble metal nanoparticles, and for fresh foods. In addition to antibacterial properties, antiviral properties, antifungal properties, etc. required for maintaining freshness, etc., it also has antioxidant properties required for health preservation such as skin aging prevention and beautiful skin effect of precious metal nanoparticles, and the efficacy factor of electrolyzed water Even if HClO is decomposed, the effect of the noble metal nanoparticles can be maintained semipermanently. In addition, conventional electrolyzed water is inactivated by mixing with those containing proteins and amino acids, or the effect is poor due to poor wettability and permeability of electrolyzed water, but due to the presence of noble metal nanoparticles, , Can solve these problems. Furthermore, noble metal nanoparticles are supported on chloride powder by the PVD method, so they do not contain a dispersant, have a small particle size, have a narrow particle size distribution, and when dissolved in water, noble metal nanoparticles become uniform. Since the electrolyte solution is dispersed in the metal nanoparticles, the effect of the conventional metal nanoparticles can be surpassed. However, it is not clear why the dispersant is not required and the dispersion is uniform, but it is considered that the process involves dissolving and dispersing the noble metal nanoparticles in water with the chloride powder supported. Can be

従って、貴金属ナノ粒子を担持した塩化物を水溶液に溶解するだけで、貴金属ナノ粒子が均一に分散した電解液が得られる。更に、この電解液をそのまま電気分解することによって、洗浄・消毒・防臭等の衛生管理や生鮮食品の鮮度維持等に求められる抗菌性、抗ウィルス性、抗カビ性等に加え、皮膚の老化防止や美肌効果等の健康保全に求められる抗酸化性を有する貴金属ナノ粒子が均一に分散した電解水が簡便に得られる。そして、この電解水は、人体や衣類等に塗布した初期においては、電解水と貴金属ナノ粒子の両効能が相乗的に作用し、電解水のHClOが分解した後は、貴金属ナノ粒子の効能が半永久的に持続することになる。   Therefore, an electrolytic solution in which the noble metal nanoparticles are uniformly dispersed can be obtained only by dissolving the chloride supporting the noble metal nanoparticles in the aqueous solution. Furthermore, by electrolyzing this electrolytic solution as it is, in addition to the antibacterial properties, antiviral properties, antifungal properties, etc. required for sanitary control such as washing, disinfection, deodorization, etc. and maintaining freshness of fresh foods, it also prevents skin aging. Electrolyzed water in which noble metal nanoparticles having antioxidant properties required for health preservation such as skin care and skin effect are uniformly dispersed can be easily obtained. In the early stage of application of the electrolyzed water to the human body or clothing, the effects of the electrolyzed water and the noble metal nanoparticles act synergistically, and after the HClO of the electrolyzed water is decomposed, the effect of the noble metal nanoparticles is increased. It will last semipermanently.

更に、農業の分野、特に、土壌や果樹の殺菌や除菌、噴霧冷却等において、貴金属ナノ粒子を担持したKCl粉末を溶解した電解液を用いて製造された電解水を用いると、土壌に肥料成分であるKが供給され、殺菌、除菌、冷却等の効果に加え、農作物に優れた育成効果をもたらすことができる。   Further, in the field of agriculture, particularly in the sterilization and disinfection of soil and fruit trees, spray cooling, and the like, the use of electrolytic water produced using an electrolytic solution in which KCl powder carrying noble metal nanoparticles is dissolved can be used to fertilize soil. The component K is supplied, and in addition to effects such as sterilization, bacteria elimination, cooling, and the like, it is possible to bring about excellent growth effects on agricultural crops.

塩化物粉末に担持された貴金属ナノ粒子を製造する代表的な装置の概略図である。1 is a schematic view of a typical apparatus for producing noble metal nanoparticles supported on chloride powder. 二室型電解槽の原理図である。It is a principle diagram of a two-chamber type electrolytic cell. 三室型電解槽の原理図である。It is a principle figure of a three-chamber type electrolytic cell. 一室型電解槽の原理図である。It is a principle diagram of a single-chamber type electrolytic cell.

貴金属は、明確な科学的定義が存在するものではないが、一般的に、化学的変化を容易に受けず、常に金属光沢を保ち、生産量が少なく、高価であることを特徴とする、一般的に、金(Au)、銀(Ag)、及び、白金族(白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os))を指すものである。本発明のナノ粒子を形成する貴金属についても、上記貴金属が適しているが、これらの合金であっても良い。特に、Pt、Au、Ag、Ir、及び、これらの合金であることが好ましい。中でも、食品添加物として、安全性が認められている、Pt、Au、及び、Agがより更に好ましい。   Noble metals do not have a clear scientific definition, but are generally characterized by being not easily subject to chemical changes, always having a metallic luster, being produced in small quantities, and being expensive. Specifically, it refers to gold (Au), silver (Ag), and the platinum group (platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), osmium (Os)). Things. Although the above-mentioned noble metals are suitable for the noble metals forming the nanoparticles of the present invention, alloys thereof may be used. In particular, Pt, Au, Ag, Ir, and alloys thereof are preferable. Among them, Pt, Au and Ag, which are recognized as safe as food additives, are even more preferable.

貴金属ナノ粒子を担持する塩化物は、塩化ナトリウム(NaCl)又は塩化カリウム(KCl)であり、不純物の少ない、平均粒子径が1μm〜3mmの粉末にして用いる。特に、水に対する溶解性を考慮すると、平均粒子径が1μm〜1mmであることがより好ましく、1μm〜500μmであることがより更に好ましい。また、塩化物の粉末は、貴金属ナノ粒子が堆積しやすい球状であることが好ましい。   The chloride supporting the noble metal nanoparticles is sodium chloride (NaCl) or potassium chloride (KCl), and is used as a powder having a small amount of impurities and an average particle diameter of 1 μm to 3 mm. In particular, considering the solubility in water, the average particle diameter is more preferably 1 μm to 1 mm, and still more preferably 1 μm to 500 μm. Further, the chloride powder is preferably spherical in which noble metal nanoparticles are easily deposited.

上記塩化物粉末に貴金属ナノ粒子を担持させる方法には、PVD法が適しており、真空蒸着法、イオンビーム蒸着法、イオンプレーティング法、及び、各種スパッタリング法を用いることができる。図1には、代表例として、イオンビームスパッタリング法を用いた金属ナノ粒子の製造装置の概略図を示した。この製造装置では、イオン源2、貴金属又はその合金である蒸着源3、不活性ガス導入系8、真空排気系9を少なくとも有する物理蒸着槽1において、蒸着源3と蒸着源3の下部に設けられた、蒸着物質7が堆積する被蒸着物質である塩化物粉末10との間に、モーター6で精密に回転するスリット5を設けたシャッター4を設置することによって、イオン源2によって蒸着源3から叩き出される蒸着物質7が、間欠的に塩化物粉末10表面上に蒸着される。しかも、塩化物粉末10が均等に蒸着物質7に暴露されるように、製造装置の底部にスクリュー11が設けられている。このスクリュー11によって、製造装置の底にある塩化物粉末10−1が、塩化物粉末10−2のように持ち上げられ、塩化物粉末10−3で間欠的に蒸着され貴金属ナノ粒子が付着する。その後、一定の時間蒸着源に暴露されない塩化物粉末10−4に至る。図1には、シャッター機構が配設されているが、必ずしもシャッター機構である必要はなく、精度よく塩化物粉末10上に貴金属ナノ粒子が堆積されるように、塩化物粉末10が蒸着物質7に暴露される時間を制御できる機構であれば、どのような方法でも採用することができる。例えば、イオン源2から放出されるイオンビームを制御する方法が挙げられる。   The PVD method is suitable for supporting the noble metal nanoparticles on the chloride powder, and a vacuum evaporation method, an ion beam evaporation method, an ion plating method, and various sputtering methods can be used. FIG. 1 shows a schematic diagram of a production apparatus of metal nanoparticles using an ion beam sputtering method as a representative example. In this manufacturing apparatus, a physical vapor deposition tank 1 having at least an ion source 2, a vapor deposition source 3 of a noble metal or an alloy thereof, an inert gas introduction system 8, and a vacuum exhaust system 9 is provided below the vapor deposition source 3 and the vapor deposition source 3. By installing a shutter 4 provided with a slit 5 that is precisely rotated by a motor 6 between the deposited powder 7 and a chloride powder 10 that is a substance to be deposited on which the deposition substance 7 is deposited, The deposition material 7 beaten out from the substrate is intermittently deposited on the surface of the chloride powder 10. Moreover, a screw 11 is provided at the bottom of the manufacturing apparatus so that the chloride powder 10 is evenly exposed to the deposition material 7. The chloride powder 10-1 at the bottom of the manufacturing apparatus is lifted up by the screw 11 like the chloride powder 10-2, and is intermittently vapor-deposited with the chloride powder 10-3 to attach the noble metal nanoparticles. Then, it reaches the chloride powder 10-4 which is not exposed to the deposition source for a certain period of time. Although a shutter mechanism is provided in FIG. 1, the shutter mechanism is not necessarily required, and the chloride powder 10 is deposited on the chloride material 10 so that the noble metal nanoparticles are accurately deposited on the chloride powder 10. Any method can be adopted as long as the mechanism can control the time of exposure to the compound. For example, there is a method of controlling an ion beam emitted from the ion source 2.

塩化物粉末に貴金属ナノ粒子を担持させる上記方法において、貴金属ナノ粒子が母材となる塩化物粉末表面上に生成する機構は定かではないが、次のように推測されている。一般的な蒸着やスパッタリング等の成膜機構は、Volmer−Weber(VW)成長、Frank−van der Merwe(FM)成長、Stranski−Krastanov(SK)成長の3様式があると言われている(非特許文献5)。中でも、VW成長様式、つまり、成長の初期段階から三次元的な島状の核が形成され,それらが蒸着量の増加とともに成長して合体しやがて連続的な膜となる「島状成長(Island Growth)様式」に着目すると、物理蒸着物質と基板に関する表面エネルギー、温度等様々なパラメーターによって成膜機構に差が生じるが、成膜初期において、VW成長となる条件を見出し、上記母材を撹拌しながら物理蒸着を行えば、常に新しい堆積面が蒸着物質に対して向けられるため、3次元の海−島構造、すなわち、貴金属ナノ粒子が塩化物粉末表面上に次々と生成していくものと考えられる(特許文献18)。   In the above method of supporting the noble metal nanoparticles on the chloride powder, the mechanism of generation of the noble metal nanoparticles on the surface of the chloride powder serving as the base material is not clear, but is presumed as follows. It is said that there are three general film formation mechanisms such as vapor deposition and sputtering, such as Volmer-Weber (VW) growth, Frank-van der Merwe (FM) growth, and Transki-Krastanov (SK) growth (non-film formation). Patent Document 5). Among them, the VW growth mode, that is, a three-dimensional island-like nucleus is formed from the initial stage of growth, grows with an increase in the deposition amount, coalesces, and eventually forms a continuous film “Island growth (Island growth)”. Focusing on the (Growth) mode, there are differences in the film formation mechanism due to various parameters such as the surface energy and temperature of the physical vapor deposition material and the substrate. While performing physical vapor deposition, a new deposition surface is always pointed at the deposition material, so that a three-dimensional sea-island structure, that is, one in which noble metal nanoparticles are successively generated on the surface of the chloride powder. It is possible (Patent Document 18).

ここで、貴金属ナノ粒子が担持した塩化物粉末の製造における塩化物粉末に対する貴金属ナノ粒子の平均粒子径は、100nm以下であれば、貴金属ナノ粒子の様々な効能を発揮するが、その表面積が大きい程活性が高くなるため、50nm以下であることがより好ましく、10nm以下であることがより更に好ましい。また、貴金属ナノ粒子の堆積量は、貴金属ナノ粒子が担持した塩化物粉末を水又は希塩酸に溶解した電解液の組成に応じて設定されるが、この電解液を電気分解することによって最終的に製造される電解水に、電解水の課題を解決するために必要な貴金属ナノ粒子が存在すれば、その濃度は、特に限定されものではない。ただし、効果的かつ経済的には、電解水の種類に係わらず、電解水中に存在する貴金属ナノ粒子の濃度が、0.1〜100μMであることが好ましく、0.1〜5μMであることがより好ましく、0.1〜1μMであることがより更に好ましく、このような濃度となるように、塩化物粉末に貴金属ナノ粒子を堆積する。   Here, the average particle diameter of the noble metal nanoparticles with respect to the chloride powder in the production of the chloride powder supported by the noble metal nanoparticles exhibits various effects of the noble metal nanoparticles if it is 100 nm or less, but the surface area is large. Since the higher the activity, the more preferably it is 50 nm or less, more preferably 10 nm or less. The deposition amount of the noble metal nanoparticles is set according to the composition of the electrolytic solution obtained by dissolving the chloride powder supported by the noble metal nanoparticles in water or dilute hydrochloric acid. The concentration of the noble metal nanoparticles required to solve the problem of the electrolyzed water in the manufactured electrolyzed water is not particularly limited as long as the noble metal nanoparticles are present. However, effectively and economically, regardless of the type of the electrolyzed water, the concentration of the noble metal nanoparticles present in the electrolyzed water is preferably 0.1 to 100 μM, and preferably 0.1 to 5 μM. More preferably, the concentration is more preferably 0.1 to 1 μM, and noble metal nanoparticles are deposited on the chloride powder so as to have such a concentration.

従って、一般的な強酸性電解水、弱酸性電解水、微酸性電解水、電解次亜水、強アルカリ性電解水を製造するための塩化物水溶液は、0.2%以下の濃度で使用されることが多いので、例えば、0.2%のNaCl水溶液100Lから製造する電解水中に貴金属ナノ粒子を0.1〜100μMの濃度で存在させるには、NaCl粉末200gに対して堆積させるPtナノ粒子は、約1.95×10−4〜1.95gとなる。これは、Pt/NaClの重量比が約1×10−6〜1×10−3に相当する。このようにして、それぞれの塩化物粉末に対するそれぞれの貴金属ナノ粒子の堆積量を適宜決定することができる。ところで、中性電解水を製造するための塩化物水溶液は、通常、水道水を用いるが、塩化物濃度約2〜6%、塩酸濃度約0.2〜0.6%の電解液を電気分解しても製造できるため、塩化物単体を上記貴金属ナノ粒子を溶解させた塩化物水溶液に加えて濃度を調整して使用される。 Therefore, the aqueous chloride solution for producing general strongly acidic electrolyzed water, weakly acidic electrolyzed water, slightly acidic electrolyzed water, electrolyzed hypochlorite, and strongly alkaline electrolyzed water is used at a concentration of 0.2% or less. For example, in order to have noble metal nanoparticles at a concentration of 0.1 to 100 μM in electrolytic water produced from 100 L of a 0.2% NaCl aqueous solution, for example, Pt nanoparticles deposited on 200 g of NaCl powder must be , About 1.95 × 10 −4 to 1.95 g. This corresponds to a weight ratio of Pt / NaCl of about 1 × 10 −6 to 1 × 10 −3 . In this way, the amount of each noble metal nanoparticle deposited on each chloride powder can be appropriately determined. By the way, tap water is usually used as a chloride aqueous solution for producing neutral electrolyzed water, and an electrolytic solution having a chloride concentration of about 2 to 6% and a hydrochloric acid concentration of about 0.2 to 0.6% is electrolyzed. Therefore, the chloride alone is added to a chloride aqueous solution in which the noble metal nanoparticles are dissolved to adjust the concentration and used.

具体的には、図1に示した物理蒸着槽1内に、平均粒子径が1μm〜3mmである球状の塩化物粉末を投入し、蒸着源3に貴金属又はその合金を備え付ける。次いで、物理蒸着槽1の真空度が1×10−4〜1torrになるように真空排気系9から排気しながら、不活性ガス導入系8から不活性ガスArを物理蒸着槽1内に導入する。真空度が安定したら、スクリュー11及び回転モーター6を回転させながら、蒸着源3の貴金属又はその合金を、固定された平面基板上において単位面積当たり1Å〜10μm/分の速度で蒸発させ、所定量の貴金属ナノ粒子の重量となるまでナノ粒子を形成する。なお、上記蒸発速度は、一般的な重量法で、予め予備実験において設定する。 Specifically, spherical chloride powder having an average particle diameter of 1 μm to 3 mm is charged into the physical vapor deposition tank 1 shown in FIG. 1, and the vapor deposition source 3 is provided with a noble metal or an alloy thereof. Next, the inert gas Ar is introduced into the physical vapor deposition tank 1 from the inert gas introduction system 8 while evacuating from the vacuum evacuation system 9 so that the degree of vacuum of the physical vapor deposition tank 1 is 1 × 10 −4 to 1 torr. . When the degree of vacuum is stabilized, the precious metal or its alloy of the evaporation source 3 is evaporated on the fixed flat substrate at a rate of 1 分 の to 10 μm / min per unit area while rotating the screw 11 and the rotary motor 6, and the predetermined amount is Nanoparticles are formed up to the weight of the noble metal nanoparticles. The evaporation rate is set in advance in a preliminary experiment by a general gravimetric method.

このようにして製造された貴金属ナノ粒子は、電気分解するための電解液とするため、強酸性電解水、弱酸性電解水、電解次亜水、強アルカリ性電解水の場合には水に、約0.2%以下の塩化物濃度、すなわち、NaCl又はKCl濃度となるように溶解される。微酸性電解水の場合には、約2〜6%の希塩酸、或いは、約2〜6%の希塩酸に、約0.2%以下の塩化物濃度、すなわち、NaCl又はKCl濃度となるように溶解される。いずれの場合にも、使用する水は、水道水、地下水、純水(蒸留水、脱イオン水、RO水等)等、人為的に塩化物を添加していないものであれば制限されるものではないが、不純物の影響が少ない純水が好ましい。   The noble metal nanoparticles produced in this way are used as an electrolytic solution for electrolysis, and in the case of strongly acidic electrolyzed water, weakly acidic electrolyzed water, electrolytic hypochlorite, or strongly alkaline electrolyzed water, it is added to water. It is dissolved to a chloride concentration of 0.2% or less, that is, a NaCl or KCl concentration. In the case of slightly acidic electrolyzed water, it is dissolved in about 2 to 6% of dilute hydrochloric acid or about 2 to 6% of dilute hydrochloric acid so as to have a chloride concentration of about 0.2% or less, that is, a NaCl or KCl concentration. Is done. In any case, the water used is limited as long as it does not contain any artificially added chlorides, such as tap water, groundwater, pure water (distilled water, deionized water, RO water, etc.). However, pure water that is less affected by impurities is preferable.

このように調整された電解液は、強電解性電解水、弱酸性電解水、又は、強アルカリ性電解水を製造する場合、図2及び3に示した二室型電解槽及び三室型電解槽を用い、微酸性電解水、中性電解水、又は、電解次亜水を製造する場合は、図4に示した一室型電解槽を用いて、それぞれ、一般的な製造条件で製造される。ここで、電極も、既存の電解槽で使用される炭素(C)、Pt、Au、PtやAuを被覆したチタン(Ti)等を用いることができる。ただし、陰極には、Ti等の様々な材質の電極を用いることができるが、C、Pt、Au等の不溶性電極を用いることが好ましい。これは、陽極と陰極を入れ替える極性反転によって、電極の寿命を延ばすことができるからである。図2〜4は、電解槽の原理図であり、特別な電解槽が必要とされるものではない。一般的に、株式会社東芝、ホシザキ電機株式会社等で市販されている電解槽を用いることができる。   The electrolytic solution adjusted in this way is a two-chamber electrolytic cell and a three-chamber electrolytic cell shown in FIGS. 2 and 3 when producing strongly electrolytic electrolyzed water, weakly acidic electrolyzed water, or strongly alkaline electrolyzed water. In the case of using slightly acidic electrolyzed water, neutral electrolyzed water, or electrolyzed hypochlorite, each is manufactured under general manufacturing conditions using a single-chamber electrolysis tank shown in FIG. Here, as the electrode, carbon (C), Pt, Au, titanium (Ti) coated with Pt or Au, or the like used in an existing electrolytic cell can be used. However, electrodes of various materials such as Ti can be used for the cathode, but it is preferable to use insoluble electrodes such as C, Pt, and Au. This is because the polarity can be reversed by switching the anode and the cathode, so that the life of the electrode can be extended. 2 to 4 are principle diagrams of the electrolytic cell, and do not require a special electrolytic cell. Generally, an electrolytic cell commercially available from Toshiba Corporation, Hoshizaki Electric Co., Ltd. or the like can be used.

以下、Ptナノ粒子を含有する微酸性電解水を製造するための原料、その原料を用いて製造した電解液、及び、その電解液の電気分解によって製造した電解水を実施例として、本発明をより具体的に説明するが、本発明の技術思想が実施例によって制限されるものではない。   Hereinafter, the present invention will be described by using a raw material for producing slightly acidic electrolyzed water containing Pt nanoparticles, an electrolytic solution produced using the raw material, and electrolytic water produced by electrolysis of the electrolytic solution as examples. Although described more specifically, the technical idea of the present invention is not limited by the embodiments.

NaCl粉末は、平均粒子径180〜500μmが85%以上のNaCl粉末(日本精塩製)を80メッシュ(線径0.14mm)のファインメッシュで篩にかけ、180μm以下の微粉を除去したものを用いた。   For the NaCl powder, a powder obtained by sieving NaCl powder (manufactured by Nippon Seisho) having an average particle diameter of 180 to 500 μm of 85% or more with a fine mesh of 80 mesh (wire diameter 0.14 mm) to remove fine powder of 180 μm or less is used. Was.

次いで、図1に示した物理蒸着槽1を用い、Ptナノ粒子をNaCl粉末に堆積させた。上記NaCl粉末を物理蒸着槽1に投入すると共に、Ptを蒸着源3に固定した後、物理蒸着槽1を密閉し、真空度が約1×10−4torrになるように真空排気系9から排気しながら、不活性ガス導入系8から不活性ガスArを物理蒸着槽1内に導入した。真空度が安定した後、スクリュー11及び回転モーター6を回転させながら、蒸着源3のPtを、単位面積当たり1000Å/分の速度で蒸発させ、Pt/NaClの重量比が約1×10−4となるまでナノ粒子を形成した。形成されたPtナノ粒子の粒子径は、1〜5nmであることを透過型電子顕微鏡で確認した。 Next, Pt nanoparticles were deposited on the NaCl powder using the physical vapor deposition tank 1 shown in FIG. After charging the NaCl powder into the physical vapor deposition tank 1 and fixing Pt to the vapor deposition source 3, the physical vapor deposition tank 1 is sealed, and the vacuum evacuation system 9 is set to a degree of vacuum of about 1 × 10 −4 torr. While evacuating, inert gas Ar was introduced into the physical vapor deposition tank 1 from the inert gas introduction system 8. After the degree of vacuum is stabilized, Pt of the vapor deposition source 3 is evaporated at a rate of 1000 ° / min per unit area while rotating the screw 11 and the rotating motor 6, and the weight ratio of Pt / NaCl is about 1 × 10 −4. Nanoparticles were formed until It was confirmed by a transmission electron microscope that the particle size of the formed Pt nanoparticles was 1 to 5 nm.

(実施例1)Ptナノ粒子が分散した微酸性電解水
このようにして作製されたPtナノ粒子を担持したNaCl粉末を、35%塩酸(旭硝子製)を水道水で希釈した5%の希塩酸に溶解し、0.1%のNaCl濃度となるように調整したところ、Ptナノ粒子が均一に分散した微酸性電解水用の電解液(1)が得られた。
(Example 1) Slightly acidic electrolyzed water in which Pt nanoparticles are dispersed The thus prepared NaCl powder supporting Pt nanoparticles is diluted with 5% diluted hydrochloric acid obtained by diluting 35% hydrochloric acid (produced by Asahi Glass) with tap water. When dissolved and adjusted to have a NaCl concentration of 0.1%, an electrolyte solution (1) for slightly acidic electrolyzed water in which Pt nanoparticles were uniformly dispersed was obtained.

図4に示した一室型電解槽を用い、上記電解液(1)を、直流電源約3〜4V×4Aで電気分解した後、水道水で希釈し、pH約6、有効塩素濃度約10ppmのPtナノ粒子を含有する微酸性電解水が得られた。このPtナノ粒子が分散した微酸性電解水は、塗布直後の抗酸化性、抗菌性、抗ウィルス性、抗カビ性等は、Ptナノ粒子と微酸性電解水との相乗効果を示し、しかも、これらの効能がPtナノ粒子により半永久的に保持された。   The electrolytic solution (1) was electrolyzed with a DC power supply of about 3 to 4 V × 4 A using a one-chamber electrolytic cell shown in FIG. 4, then diluted with tap water, pH was about 6, and effective chlorine concentration was about 10 ppm. The slightly acidic electrolyzed water containing Pt nanoparticles was obtained. The slightly acidic electrolyzed water in which the Pt nanoparticles are dispersed has antioxidant properties, antibacterial properties, antiviral properties, antifungal properties, etc., immediately after application, and shows a synergistic effect between the Pt nanoparticles and the slightly acidic electrolyzed water. These effects were semipermanently retained by the Pt nanoparticles.

(実施例2)Ptナノ粒子が分散した電解次亜水
実施例1のPtナノ粒子を担持したNaCl粉末を、0.1%NaCl水溶液となるように水道水に溶解したところ、Ptナノ粒子が均一に分散した。このPtナノ粒子が分散したNaCl水溶液に、同量の5%NaCl水溶液を加え、Ptナノ粒子が分散した電解次亜水用の電解液(2)が得られた。
(Example 2) Electrolytic hypochlorite in which Pt nanoparticles were dispersed The NaCl powder carrying the Pt nanoparticles of Example 1 was dissolved in tap water so as to be a 0.1% NaCl aqueous solution. Dispersed uniformly. The same amount of a 5% aqueous NaCl solution was added to the aqueous NaCl solution in which the Pt nanoparticles were dispersed, and an electrolytic solution (2) for electrolytic hypochlorite in which the Pt nanoparticles were dispersed was obtained.

図4に示した一室型電解槽を用い、上記電解液(2)を、直流電源約3〜4V×4Aで電気分解した後、水道水で希釈し、pH約8、有効塩素濃度約10ppmのPtナノ粒子を含有する電解次亜水が得られた。このPtナノ粒子が分散した電解次亜水も、塗布直後の抗酸化性、抗菌性、抗ウィルス性、抗カビ性等は、Ptナノ粒子と電解次亜水との相乗効果を示し、しかも、これらの効能がPtナノ粒子により半永久的に保持された。   The electrolytic solution (2) was electrolyzed with a DC power supply of about 3 to 4 V × 4 A using a one-chamber electrolytic cell shown in FIG. 4, then diluted with tap water, pH was about 8, and effective chlorine concentration was about 10 ppm. Of the electrolysis hypothermia containing Pt nanoparticles was obtained. This Pt nanoparticle-dispersed electrolytic hypochlorite also has a synergistic effect between the Pt nanoparticle and the electrolytic hypochlorite in antioxidant properties, antibacterial properties, antiviral properties, antifungal properties, etc. immediately after application, and These effects were semipermanently retained by the Pt nanoparticles.

(実施例3)Ptナノ粒子が分散した中性電解水
実施例1のPtナノ粒子を担持したNaCl粉末を、0.1%NaCl水溶液となるように水道水に溶解したところ、Ptナノ粒子が均一に分散した。このPtナノ粒子が分散したNaCl水溶液に、NaCl担体を溶解し、4%のNaCl水溶液とし、更に、35%塩酸(旭硝子製)を加えて、塩酸濃度を0.4%とし、Ptナノ粒子が分散した中性電解水用電解液(3)が得られた。
(Example 3) Neutral electrolyzed water in which Pt nanoparticles were dispersed The NaCl powder supporting the Pt nanoparticles of Example 1 was dissolved in tap water so as to be a 0.1% NaCl aqueous solution. Dispersed uniformly. In a NaCl aqueous solution in which the Pt nanoparticles are dispersed, a NaCl carrier is dissolved to form a 4% NaCl aqueous solution, and 35% hydrochloric acid (manufactured by Asahi Glass) is added to adjust the hydrochloric acid concentration to 0.4%. A dispersed electrolyte solution (3) for neutral electrolyzed water was obtained.

図4に示した一室型電解槽を用い、上記電解液(2)を、直流電源約3〜4V×4Aで電気分解した後、水道水で希釈し、pH約7、有効塩素濃度約10ppmのPtナノ粒子を含有する中性電解水が得られた。このPtナノ粒子が分散した中性電解水も、塗布直後の抗酸化性、抗菌性、抗ウィルス性、抗カビ性等は、Ptナノ粒子と中性電解水との相乗効果を示し、しかも、これらの効能がPtナノ粒子により半永久的に保持された。   Using the one-chamber electrolytic cell shown in FIG. 4, the above-mentioned electrolytic solution (2) was electrolyzed with a DC power supply of about 3 to 4 V × 4 A, then diluted with tap water, pH was about 7, and effective chlorine concentration was about 10 ppm. Neutral water containing Pt nanoparticles was obtained. The neutral electrolyzed water in which the Pt nanoparticles are dispersed also exhibits antioxidant properties, antibacterial properties, antiviral properties, antifungal properties, etc., immediately after application, exhibiting a synergistic effect between the Pt nanoparticles and the neutral electrolyzed water, and These effects were semipermanently retained by the Pt nanoparticles.

本発明は、食品加工業、農業、水産業、サービス業、医療・介護、上下水処理・空気処理等の様々な業種において利用できる。そして、いずれの業種においても、各種食材、作業衣、容器・器具、加工・搬送装置、食指、トイレ、作業場・施設、冷却水・給水・上水・排水等の殺菌、除菌、洗浄、清掃等に用いられるばかりか、防臭、除臭、防カビ等幅広い用途で使用することができる。特に、農業分野で用いる場合、殺菌、除菌、洗浄等の効能に加え、肥料成分が供給されるため、農作物の育成に優れた効能を発揮する。   INDUSTRIAL APPLICABILITY The present invention can be used in various industries such as food processing, agriculture, fisheries, service, medical care and nursing, water and sewage treatment, and air treatment. And in all industries, various foods, work clothes, containers and utensils, processing and transport equipment, fingers, toilets, workplaces and facilities, sterilization, sanitization, washing, cleaning of cooling water, water supply, clean water, drainage, etc. Not only can it be used for a wide range of applications, such as deodorization, deodorization, and mold control. In particular, when used in the agricultural field, fertilizer components are supplied in addition to the effects of sterilization, sterilization, washing, and the like, so that they exhibit excellent effects in growing crops.

1 物理蒸着槽
2 イオン源
3 蒸着源
4 シャッター
5 スリット
6 回転モーター
7 蒸着物質
8 不活性ガス導入系
9 真空排気系
10 塩化物粉末(被蒸着物質・母材)
11 スクリュー
12 撹拌モーター
13 塩化物粉末の移動経路
14 電解槽
15 陽極
16 陰極
17 電源
18 陽イオン交換膜
18’陰イオン交換膜
19 電解液導入口
20 酸性電解水出口
21 アルカリ性電解水出口
22 電解液出口
23 水導入口
DESCRIPTION OF SYMBOLS 1 Physical vapor deposition tank 2 Ion source 3 Deposition source 4 Shutter 5 Slit 6 Rotary motor 7 Deposition substance 8 Inert gas introduction system 9 Vacuum exhaust system 10 Chloride powder (substance to be vapor-deposited / base material)
DESCRIPTION OF SYMBOLS 11 Screw 12 Stirring motor 13 Moving path of chloride powder 14 Electrolyzer 15 Anode 16 Cathode 17 Power supply 18 Cation exchange membrane 18 'Anion exchange membrane 19 Electrolyte inlet 20 Acidic electrolyzed water outlet 21 Alkaline electrolyzed water outlet 22 Electrolyte Exit 23 Water inlet

Claims (2)

物理蒸着法を用いて貴金属又は貴金属合金のナノ粒子を塩化物粉末上に堆積する第1の工程と、第1の工程で製造された貴金属又は貴金属合金のナノ粒子が担持した塩化物粉末を水又は希塩酸に溶解する第2の工程とから成ることを特徴とする電解液の製造方法。 A first step of depositing noble metal or noble metal alloy nanoparticles on the chloride powder by using a physical vapor deposition method, and a step of depositing the noble metal or noble metal alloy nanoparticles produced in the first step on the chloride powder with water. Or a second step of dissolving in dilute hydrochloric acid. 物理蒸着法を用いて貴金属又は貴金属合金のナノ粒子を塩化物粉末上に堆積する第1の工程と、第1の工程で製造された貴金属又は貴金属合金のナノ粒子が担持した塩化物粉末を水又は希塩酸に溶解する第2の工程と、第2の工程で製造された電解液を電気分解する工程とから成ることを特徴とする電解水の製造方法。
A first step of depositing noble metal or noble metal alloy nanoparticles on the chloride powder by using a physical vapor deposition method, and a step of depositing the noble metal or noble metal alloy nanoparticles produced in the first step on the chloride powder with water. Alternatively, a method for producing electrolyzed water, comprising: a second step of dissolving in dilute hydrochloric acid; and a step of electrolyzing the electrolytic solution produced in the second step.
JP2015118488A 2015-06-11 2015-06-11 Raw material for producing electrolytic water, electrolytic solution using the same, electrolytic water produced from the electrolytic solution, and method for producing the electrolytic solution and electrolytic water Active JP6656823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118488A JP6656823B2 (en) 2015-06-11 2015-06-11 Raw material for producing electrolytic water, electrolytic solution using the same, electrolytic water produced from the electrolytic solution, and method for producing the electrolytic solution and electrolytic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118488A JP6656823B2 (en) 2015-06-11 2015-06-11 Raw material for producing electrolytic water, electrolytic solution using the same, electrolytic water produced from the electrolytic solution, and method for producing the electrolytic solution and electrolytic water

Publications (2)

Publication Number Publication Date
JP2017000969A JP2017000969A (en) 2017-01-05
JP6656823B2 true JP6656823B2 (en) 2020-03-04

Family

ID=57753543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118488A Active JP6656823B2 (en) 2015-06-11 2015-06-11 Raw material for producing electrolytic water, electrolytic solution using the same, electrolytic water produced from the electrolytic solution, and method for producing the electrolytic solution and electrolytic water

Country Status (1)

Country Link
JP (1) JP6656823B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105098A1 (en) * 2016-12-09 2018-06-14 株式会社ジェネライツ Electrolyzed water production starting material and electrolytic solution using same, and methods for producing said production starting material, said electrolytic solution and said electrlyzed water
JP2018134589A (en) * 2017-02-21 2018-08-30 株式会社ジーエル・マテリアルズホールディングス Material for producing electrolyzed water, electrolytic solution using the same, production material thereof, electrolytic solution thereof, and method for producing electrolyzed water
JP2020028223A (en) * 2018-08-20 2020-02-27 株式会社微酸研 Plant nutrient liquid and method for producing the same
JP7223065B2 (en) * 2021-06-15 2023-02-15 株式会社日本トリム Electrolyzed water generator and electrolysis control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253650A (en) * 1996-03-22 1997-09-30 Japan Storage Battery Co Ltd Sterilized water making apparatus
CN1296290C (en) * 2001-06-29 2007-01-24 水株式会社 Method for antioxidation and antioxidative functional water
JP2004330146A (en) * 2003-05-09 2004-11-25 Nippon Torimu:Kk Production method of active hydrogen dissolved water, and active hydrogen dissolved water and carcinogenesis inhibitor obtained by the production method
JP4769434B2 (en) * 2004-06-25 2011-09-07 孝之 阿部 Microcapsule and manufacturing method thereof
KR20070044879A (en) * 2005-10-26 2007-05-02 주식회사 피앤아이 Manufacture method of powder and the device that metal, alloy and ceramic nano particle is vacuum-metallized evenly

Also Published As

Publication number Publication date
JP2017000969A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
RU2469537C2 (en) Electrochemical device for biocidal treatments in agricultural use
JP4365413B2 (en) Neutral electrolyzed water, neutral electrolyzed water production method, and neutral electrolyzed water production apparatus
Martínez‐Huitle et al. Electrochemical alternatives for drinking water disinfection
JP6656823B2 (en) Raw material for producing electrolytic water, electrolytic solution using the same, electrolytic water produced from the electrolytic solution, and method for producing the electrolytic solution and electrolytic water
Selcuk Disinfection and formation of disinfection by-products in a photoelectrocatalytic system
ZA200300009B (en) Method and equipment for washing, disinfecting and/or sterilizing health care devices.
JP2009066594A (en) Visible light-responsive photocatalyst coating film, method for producing the same, sterilization method using the same and sterilization apparatus
KR20120002189A (en) A porous 3-dimensional bipolar electrode, an electrolyzer having the porous 3-dimensional bipolar electrode, and water treatment method using the electrolyzer having the porous 3-dimensional bipolar electrode
Caballero et al. Photocatalytic inactivation of Escherichia coli using doped titanium dioxide under fluorescent irradiation
KR20130049031A (en) Germicidal sterilizer composition for hypochlrous acid solution and method for manufacturing sterilized water using the same
US20140302168A1 (en) Microbiocidal Solution with Ozone and Methods
JP2018134589A (en) Material for producing electrolyzed water, electrolytic solution using the same, production material thereof, electrolytic solution thereof, and method for producing electrolyzed water
Ming et al. Effect of electrode material and electrolysis process on the preparation of electrolyzed oxidizing water
JP2002104908A (en) Disinfectant agricultural electrolytic water and production unit therefor
Dos Santos et al. Electrochemically assisted photocatalysis: Highly efficient treatment using thermal titanium oxides doped and non-doped electrodes for water disinfection
WO2018105098A1 (en) Electrolyzed water production starting material and electrolytic solution using same, and methods for producing said production starting material, said electrolytic solution and said electrlyzed water
Su et al. The role of high voltage electrode material in the inactivation of E. coli by direct-in-liquid electrical discharge plasma
Bodzek Nanoparticles for water disinfection by photocatalysis: A review
KR101362966B1 (en) Electrodes structure for high concentration hypochlrous acid solution from soidum chloride solution and method for manufacturing sterilized water using the same
Martínez-Huitle Conductive diamond electrodes for water purification
WO2013068599A2 (en) Process for producing an anolyte composition
Magagnin et al. Photocatalytic and antimicrobial coatings by electrodeposition of silver/TiO2 nano-composites
WO2020122258A1 (en) Radical-water production method, production device and radical water
JP7397430B2 (en) Sterilizing liquid and its production method
RU2569546C1 (en) Photochemical method of producing stabilised silver nanoparticles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200205

R150 Certificate of patent or registration of utility model

Ref document number: 6656823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250