JP4624698B2 - Photocatalyst carrying board - Google Patents

Photocatalyst carrying board Download PDF

Info

Publication number
JP4624698B2
JP4624698B2 JP2004071776A JP2004071776A JP4624698B2 JP 4624698 B2 JP4624698 B2 JP 4624698B2 JP 2004071776 A JP2004071776 A JP 2004071776A JP 2004071776 A JP2004071776 A JP 2004071776A JP 4624698 B2 JP4624698 B2 JP 4624698B2
Authority
JP
Japan
Prior art keywords
board
photocatalyst
carrying board
mixed powder
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004071776A
Other languages
Japanese (ja)
Other versions
JP2005254185A (en
Inventor
成和 石幸
勝年 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUGEN KAISHA YAMAKATSU LABO.
Original Assignee
YUGEN KAISHA YAMAKATSU LABO.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUGEN KAISHA YAMAKATSU LABO. filed Critical YUGEN KAISHA YAMAKATSU LABO.
Priority to JP2004071776A priority Critical patent/JP4624698B2/en
Publication of JP2005254185A publication Critical patent/JP2005254185A/en
Application granted granted Critical
Publication of JP4624698B2 publication Critical patent/JP4624698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、光触媒粒子、主として酸化チタンの微粒子を担持したボードであって、大気の環境浄化や脱臭、あるいは水の環境浄化に好適な光触媒担持ボードに関する。   The present invention relates to a board carrying photocatalyst particles, mainly titanium oxide fine particles, which is suitable for environmental purification and deodorization of the atmosphere, or water environmental purification.

金属や金属の酸化物に触媒作用があり、特に光の照射により触媒作用を果たす物質、いわゆる光触媒としては微粒子酸化チタンが知られており、この微粒子酸化チタンの光触媒作用が有機物の酸化や微生物の増殖抑制及び死滅等の顕著な効果を有することに注目されている。   Metallic and metal oxides have a catalytic action, and as a so-called photocatalyst, a substance that catalyzes in particular by irradiation with light, so-called particulate titanium oxide is known. It has been noticed that it has remarkable effects such as growth inhibition and death.

ところが微粒子酸化チタンを単体の粒子の状態で利用することは甚だ困難である。それは空気中で微粒子酸化チタンを単体の粒子の状態で使用すれば飛散してしまい、水中で使用すれば即座に水中に分散してしまうため、環境を悪化させる欠点があることによる。しかも飛散や分散した粒子は容易に回収できないという問題が生ずる。したがって、微粒子酸化チタンを活用するためには、飛散・分散しない任意の造形物の形態に加工する必要がある。   However, it is very difficult to use fine titanium oxide in the form of single particles. This is because the particulate titanium oxide is scattered in the air when used in the form of a single particle, and when used in water, it is immediately dispersed in the water, which has the disadvantage of deteriorating the environment. In addition, there arises a problem that scattered or dispersed particles cannot be easily recovered. Therefore, in order to utilize fine particle titanium oxide, it is necessary to process into the form of the arbitrary shaped objects which are not scattered and disperse | distributed.

そこで、微粒子酸化チタンをセメントや石膏に混ぜたりして造形する方法が提案されている。また、微粒子酸化チタンを一般的な有機化合物に混ぜると微粒子酸化チタンの酸化作用により有機化合物そのものが分解して劣化してしまうため、特定の難分解性有機化合物を使用し、結着剤と共に微粒子酸化チタンを混合して造形する方法、あるいは微粒子酸化チタンの表面の一部をシリカなどで覆うことにより微粒子酸化チタンと有機化合物とが直接接触しないようにして造形する方法等が提案されている。
特開平6−315614号 特開平6−256540号 特開平7−171408号 特開平9−290165号 特開平10−225640号 竹内浩士・指宿堯嗣編著「光触媒ビジネス最前線」工業調査会2001年11月8日発行 藤島昭・橋本和仁・渡部俊也著「光触媒のしくみ」日本実業出版社2003年2月10日発行
Therefore, a method of modeling by mixing fine particle titanium oxide with cement or gypsum has been proposed. In addition, mixing fine particle titanium oxide with a general organic compound causes the organic compound itself to decompose and deteriorate due to the oxidizing action of the fine particle titanium oxide, so use a specific persistent organic compound and fine particles together with the binder. A method of modeling by mixing titanium oxide, or a method of modeling by covering a part of the surface of the fine particle titanium oxide with silica or the like so that the fine particle titanium oxide and the organic compound do not directly contact each other has been proposed.
JP-A-6-315614 JP-A-6-256540 JP 7-171408 A JP-A-9-290165 JP-A-10-225640 Published by Hiroshi Takeuchi and Satoshi Ibusuki, “The Forefront of Photocatalyst Business”, Industrial Research Committee, November 8, 2001 Akira Fujishima, Kazuhito Hashimoto, Toshiya Watanabe “Photocatalyst Mechanism” published by Nihon Jitsugyo Publishing Co., Ltd. February 10, 2003

しかし、これら提案に係る造形方法による造形物は、その微粒子酸化チタンの表面積当たりの光触媒作用が充分に発揮されない点で問題がある。すなわち、これらの造形方法によれば、造形物に強度をもたせるために、あるいは微粒子酸化チタンの粒子表面をシリカのような物質で覆うために、微粒子酸化チタンが造形物内に埋没して造形物の表面に充分に露出しないので、光触媒作用が低下してしまうことにある。   However, there is a problem in the modeled object by the modeling method according to these proposals in that the photocatalytic action per surface area of the fine particle titanium oxide is not sufficiently exhibited. That is, according to these modeling methods, in order to give strength to the modeled object or to cover the particle surface of the particulate titanium oxide with a substance such as silica, the fine particle titanium oxide is buried in the modeled object and the modeled object This is because the photocatalytic action is lowered because the surface is not sufficiently exposed.

また、ポリテトラフルオロエチレン(以下、単に「PTFE」という。)が光触媒作用の影響を受けないので、このPTFEと微粒子酸化チタンとの混合粉末を利用して造形する方法が採用されている。しかしながら、光触媒作用を十分に発揮させるには微粒子酸化チタンの含有量を増やさなければならず、その逆にPTFEの含有量が少なくなるので、微粒子酸化チタンの含有量を増やした混合粉末は、その造形性が著しく低下し、造形しても崩壊しやすい欠点がある。   Further, since polytetrafluoroethylene (hereinafter simply referred to as “PTFE”) is not affected by the photocatalytic action, a method of modeling using a mixed powder of PTFE and fine particle titanium oxide is employed. However, in order to fully exert the photocatalytic action, the content of fine particle titanium oxide must be increased, and conversely, the content of PTFE decreases, so that the mixed powder with an increased content of fine particle titanium oxide is There is a drawback that the formability is remarkably lowered and it is easy to collapse even if shaped.

そこで、本発明者は、PTFEを攪拌してフィブリル化することによる担持効果により、微粒子酸化チタンを担持させて造形しようと考えた。しかし、PTFEの含有量が少ないために、微粒子酸化チタンを十分に担持することができず簡単に崩壊するであろうとの結論に至った。そこで、さらに本発明者は、微粒子酸化チタンとPTFEの混合粉末を攪拌してPTFEをフィブリル化した後、プレス成形してPTFEの融点(約350℃)で焼結してフィブリルを固定する方法を考えた。しかし、やはりPTFEの含有量が少ないために造形物に適度な強度が得られず、未だ脆弱な状態にあるであろうとの結論に至った。   Therefore, the present inventor considered that fine titanium oxide was supported and shaped by the supporting effect obtained by stirring and fibrillating PTFE. However, since the content of PTFE is small, it was concluded that the fine particle titanium oxide could not be sufficiently supported and would easily collapse. In view of this, the present inventor further stirs a mixed powder of fine titanium oxide and PTFE to fibrillate PTFE, and then press-molds and sinters at the melting point of PTFE (about 350 ° C.) to fix the fibrils. Thought. However, since the content of PTFE is small, it is concluded that the molded article cannot have an appropriate strength and is still in a fragile state.

なお、PTFEの含有量を50重量%程度にすると、前記のようにPTFEを焼結してフィブリルを固定する方法であれば十分な造形性が得られることが知られている。しかしながら、このようにPTFEの含有量を増やして造形すると、PTFEが酸化チタンの表面を覆いすぎるために酸化チタンと気体や液体との接触をPTFEが阻害することになるので光触媒作用が著しく低下してしまう欠点がある。   It is known that when the content of PTFE is about 50% by weight, sufficient formability can be obtained if the PTFE is sintered as described above to fix the fibrils. However, when the PTFE content is increased in this way, PTFE covers the surface of the titanium oxide too much, so that PTFE inhibits the contact between the titanium oxide and the gas or liquid, so the photocatalytic action is significantly reduced. There is a drawback.

そこで、本発明者は、鋭意研究を重ね、上記の問題点に鑑み、微粒子酸化チタンを大量に含有させることにより微粒子酸化チタンの光触媒作用を最大限に発揮し、かつ、造形物として十分な強度を備えた光触媒担持ボードを開発した。   Therefore, the present inventor has intensively studied, and in view of the above problems, the photocatalytic action of fine particle titanium oxide is maximized by containing a large amount of fine particle titanium oxide, and has sufficient strength as a molded article. Developed a photocatalyst carrying board with

本発明に係る光触媒担持ボードは、光触媒粒子及びPTFE粒子を主とする混合粉末を、多数の孔部を有する金属製多孔板に、該孔部が閉塞するように付着させて構成し、その表裏両面を光触媒作用面としたものであって、前記金属製多孔板はエキスパンドメタルよりなることを特徴とするものである。 The photocatalyst carrying board according to the present invention is configured by adhering a mixed powder mainly composed of photocatalyst particles and PTFE particles to a metal perforated plate having a large number of holes so that the holes are closed. Both surfaces are photocatalytic surfaces, and the metal porous plate is made of expanded metal .

また、上記の光触媒担持ボードについて、混合粉末が、光触媒粒子とフィブリル化可能なPTFE粒子とを混合攪拌してPTFE粒子をフィブリル化させたものであり、該混合粉末を、金属製多孔板に、該孔部が閉塞するように充填加圧した後、PTFEの融点以上で熱処理して焼結させる構成としてもよい。 Further, the above photocatalyst-carrying board, mixed powder, and the photocatalyst particles and the fibrillatable PTFE particles mixed and stirred to are those of the PTFE particles are fibrillated, the mixed powder, the metallic porous plate, It is good also as a structure which heat-processes above melting | fusing point of PTFE and sinters after filling and pressurizing so that this hole part may block | close.

さらに、上記の光触媒粒子を75重量%以上、PTFE粒子を25重量%以下としてもよく、また上記光触媒粒子をアナターゼ型酸化チタンとしてもよく、さらに前記アナターゼ型酸化チタンの比表面積を100m/g以上としてもよく、好ましくは200m/g以上としてもよい。アナターゼ型酸化チタンはルチル型酸化チタンに比べ、光触媒作用が大きく、粒子径が微小であるから1g当たりの比表面積が大きく、この点からも光触媒作用を増大させる効果を有し、本発明に係る光触媒担持ボードに使用する光触媒粒子として最適である。 Further, the photocatalyst particles may be 75% by weight or more and the PTFE particles may be 25% by weight or less, the photocatalyst particles may be anatase-type titanium oxide, and the specific surface area of the anatase-type titanium oxide may be 100 m 2 / g. It is good also as above, Preferably it is good also as 200 m < 2 > / g or more. Anatase-type titanium oxide has a larger photocatalytic action than rutile-type titanium oxide, and has a specific surface area per gram that is small because the particle size is very small. From this point of view, it has the effect of increasing the photocatalytic action. It is most suitable as a photocatalyst particle used for a photocatalyst carrying board.

なお、上記本発明に係る光触媒担持ボードは、光触媒粒子及びPTFE粒子を主とするものであり、少量であれば必要又は目的に応じて他の物質を混合してもよい。   The photocatalyst carrying board according to the present invention is mainly composed of photocatalyst particles and PTFE particles, and other substances may be mixed depending on necessity or purpose as long as the amount is small.

さらにまた、上記のエキスパンドメタル製の金属製多孔板は、その厚みを0.4mm〜3mmとし、金属製多孔板の孔部の一つの孔部の面積を4mm〜100mmとすることが、酸化チタン等の光触媒物質を効率よく光触媒作用に使用でき、かつ、混合粉末を金属製多孔板に十分に担持させて光触媒担持ボードの強度を保持させる点で好ましい。このエキスパンドメタル製の金属製多孔板としては、孔部の形状が四角形や六角形のものを採用することができる。 Furthermore, the above-mentioned expanded metal made of metallic porous plate, it its thickness and 0.4Mm~3mm, the area of the one hole portion of the hole portion of the metallic porous plate and 4 mm 2 100 mm 2, A photocatalytic substance such as titanium oxide can be used efficiently for photocatalysis, and the mixed powder is preferably supported on a metal porous plate to maintain the strength of the photocatalyst carrying board. As the expanded metal metal porous plate, a hole having a quadrangular or hexagonal shape can be adopted.

また、上記金属製多孔板の周囲に補強枠体を配設してもよく、補強枠体を配設すると、金属製多孔板が曲げなどの応力により変形するのを防止することできるので、孔部に付着させた混合粉末が脱落するのを防止することができる。さらに金属製多孔板の周囲に配設した補強枠体を相互に平面的又は立体的に接合可能な連結構造を有する構成とし、タイルを敷き詰めるように平面的に連結できるようにしたり、立方体形状に立体的に連結して組み立てることができるようにしてもよい。   In addition, a reinforcing frame body may be disposed around the metal porous plate, and when the reinforcing frame body is disposed, the metal porous plate can be prevented from being deformed by stress such as bending. It is possible to prevent the mixed powder adhered to the part from dropping off. In addition, the reinforcing frame arranged around the metal perforated plate has a connection structure that can be joined to each other in a planar or three-dimensional manner, and can be connected in a planar manner so as to spread tiles, or in a cubic shape. You may enable it to connect and assemble in three dimensions.

さらにまた、これら金属製多孔板及び補強枠体の双方又はいずれか一方がアルミニウム製又はステンレス製としてもよく、アルミニウム製の場合は、加工しやすい上に軽量であり、長期間液体に接触させる状況にあるときには腐食防止のためにアルマイト処理をしてもよい。また、ステンレス製の場合は、耐食性があり、かつ、頑丈であるため、耐久性に優れる利点がある。なお、これら金属製多孔板及び補強枠体の双方又はいずれか一方の材質は上記に限られるものではなく、鉄にニッケルメッキしたものなど種々の材質を使用してもよい。さらに補強枠体の材質は、本発明に係る光触媒担持ボードの実施状況に応じて、合成樹脂やセラミック等の種々の材質を適宜選択してもよい。   Furthermore, both or any one of these metal perforated plates and reinforcing frame may be made of aluminum or stainless steel. In the case of aluminum, it is easy to work and is lightweight and is in contact with liquid for a long time. In order to prevent corrosion, alumite treatment may be performed. Moreover, in the case of being made of stainless steel, there is an advantage that it is excellent in durability because it is corrosion-resistant and sturdy. In addition, the material of both or any one of these metallic perforated plates and the reinforcing frame is not limited to the above, and various materials such as iron plated with nickel may be used. Furthermore, the material of the reinforcing frame may be appropriately selected from various materials such as synthetic resin and ceramic according to the implementation status of the photocatalyst carrying board according to the present invention.

また、上記の光触媒担持ボードは、これを大気の環境浄化専用としてもよく、また大気の脱臭専用としてもよく、いずれの場合にも光触媒担持ボードに担持された混合粉末が空中に飛散しないので好適である。さらに光触媒担持ボードは、これによる大気中のアンモニア中和速度係数が2.3×1021個/m・時間以上であるとするのが望ましく、この場合には、極めて優れた光触媒作用の効果が発揮できる大気中専用の光触媒担持ボードが得られる。 In addition, the above-mentioned photocatalyst carrying board may be used exclusively for purifying the atmosphere of the atmosphere, or may be used exclusively for deodorizing the atmosphere. In any case, the mixed powder carried on the photocatalyst carrying board is not scattered in the air. It is. Further, it is desirable that the photocatalyst carrying board has an ammonia neutralization rate coefficient in the atmosphere of 2.3 × 10 21 pieces / m 2 · hour or more. In this case, an extremely excellent photocatalytic effect In this way, a photocatalyst carrying board exclusively for use in the atmosphere can be obtained.

さらに、上記の光触媒担持ボードを淡水又は海水の環境浄化専用としてもよく、また、淡水中又は海水中の生物の飼育又は観賞のための淡水又は海水の浄化専用としてもよく、いずれの場合にも光触媒担持ボードに担持された混合粉末が水中に分散しないので好適である。さらに光触媒担持ボードは、これによる水中のアンモニア中和速度係数が7.5×1020個/m・時間以上であるとするのが望ましく、この場合には、極めて優れた光触媒作用の効果が発揮できる水中専用の光触媒担持ボードが得られる。 Further, the above-mentioned photocatalyst carrying board may be dedicated to freshwater or seawater environmental purification, and may be dedicated to freshwater or seawater purification for breeding or watching freshwater or seawater organisms. The mixed powder carried on the photocatalyst carrying board is preferable because it does not disperse in water. Further, it is desirable that the photocatalyst-carrying board has an ammonia neutralization rate coefficient of 7.5 × 10 20 pieces / m 2 · hour or more, and in this case, an extremely excellent photocatalytic effect is obtained. An underwater-only photocatalyst carrying board that can be used is obtained.

上記のように本発明に係る光触媒担持ボードを構成したことにより、微粒子酸化チタンを大量に含有させて微粒子酸化チタンの光触媒作用を最大限に発揮でき、かつ、造形物として十分な強度を備え、実用上好適な光触媒担持ボードが得られた。   By configuring the photocatalyst carrying board according to the present invention as described above, it is possible to maximize the photocatalytic action of fine particle titanium oxide by containing a large amount of fine particle titanium oxide, and has sufficient strength as a modeled object, A photocatalyst carrying board suitable for practical use was obtained.

以下に発明を実施するための最良の形態について説明する。   The best mode for carrying out the invention will be described below.

以下、添付の図面に基づいて、本発明に係る光触媒担持ボードの実施例を詳細に説明する。図1は実施例1に係る光触媒担持ボード作製に使用するエキスパンドメタルの部分拡大図付斜視図であり、図2は混合粉末を充填したエキスパンドメタルにゴム製スポンジシート及びゴムシートを重ね、金属製の上下加圧用押し型により加圧成形している状態を示す概略断面図であり、図3は実施例1に係る光触媒担持ボードの完成品の部分拡大図付一部切欠斜視図であり、図4は実施例1に係る光触媒担持ボードの完成品の断面図である。 Hereinafter, embodiments of the photocatalyst carrying board according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view with a partially enlarged view of an expanded metal used for producing a photocatalyst carrying board according to Example 1, and FIG. 2 is a diagram illustrating a metal made by overlapping a rubber sponge sheet and a rubber sheet on an expanded metal filled with mixed powder. FIG. 3 is a schematic cross-sectional view showing a state where pressure molding is performed by a vertical pressing die, and FIG. 3 is a partially cutaway perspective view with a partially enlarged view of a completed photocatalyst carrying board according to Example 1. 4 is a cross-sectional view of a finished product of the photocatalyst carrying board according to the first embodiment.

(混合粉末の作製)
アナターゼ型酸化チタン粉末90g(テイカ株式会社製、品番;AMT100、同社のカタログによる仕様:結晶形;アナタース、比表面積;260m/g、平均粒子径;6nm)とフィブリル化可能なPTFE粉末10g(ダイキン工業株式会社製、品番;ファインパウダーF104)とを、混合機(SUNBEAM−OSTER社製、PHOENIX BLENDER‐KB‐1)で混合した粉末を50℃の恒温下において、回転数16800rpmで2分間攪拌しての混合粉末Aを作製した。
(Production of mixed powder)
90 g of anatase type titanium oxide powder (manufactured by Teika Co., Ltd., product number: AMT100, specification according to the catalog of the company: crystal form; anatase, specific surface area: 260 m 2 / g, average particle size: 6 nm) and 10 g of PTFE powder capable of fibrillation ( Daikin Kogyo Co., Ltd., product number; Fine Powder F104) was mixed with a mixer (SUNBEAM-OSTER, PHOENIX BLENDER-KB-1) and stirred at a constant temperature of 50 ° C. for 2 minutes at 16800 rpm. A mixed powder A was prepared.

(光触媒担持ボード未焼成品の作製)
図1に示すように、厚み1.55mm、1つの孔部の面積15mmのアルミニウム製エキスパンドメタルE(関西鉄工株式会社製、カンテツエキスパンドメタル4mm(メッシュ短目方向の中心間距離)×8mm(メッシュ長目方向の中心間距離)×0.8mm(板厚)×0.8mm(刻み巾))に、図2に示すように、上記の混合粉末Aを、前記エキスパンドメタルEの孔部eが閉塞するように充填する。そして、少なくともエキスパンドメタルEにおける混合粉末Aを充填した部分e’に、上下から厚み2mmのゴム製スポンジシートSを重ね、さらにその上下両外側に厚み1mmのゴムシートGを重ね、さらにその上下両外側から金属製の上下加圧用押し型Pにより50kg/cmで加圧成形した。なお、混合粉末Aを使用して作製した光触媒担持ボード未焼成品をボードAと称する。ここで作製したボードAを水槽に浸漬したところ、水槽は即座に白濁し酸化チタン粒子が流出した。
(Preparation of unfired photocatalyst carrying board)
As shown in FIG. 1, an expanded metal E made of aluminum having a thickness of 1.55 mm and an area of 15 mm 2 of one hole (manufactured by Kansai Tekko Co., Ltd., 4 mm of expanded metal of Kanetetsu (center distance in the mesh short direction) × 8 mm) 2), the mixed powder A is mixed with the above-mentioned mixed powder A in the hole e of the expanded metal E (distance between centers in the mesh long direction) × 0.8 mm (plate thickness) × 0.8 mm (step width)). Is filled so as to close. A rubber sponge sheet S having a thickness of 2 mm is stacked from above and below at least a portion e ′ filled with the mixed powder A in the expanded metal E, and further a rubber sheet G having a thickness of 1 mm is stacked on both the upper and lower sides. From the outside, pressing was performed at 50 kg / cm 2 by a metal vertical pressing die P. In addition, the photocatalyst carrying board unbaked product produced using the mixed powder A is referred to as a board A. When board A produced here was immersed in a water tank, the water tank immediately became cloudy and titanium oxide particles flowed out.

(光触媒担持ボードの作製)
そこで、上記ボードAを、PTFEの融点を少し超える370℃に加熱された電気炉で10分間加熱処理を行って焼成し、焼成後の該ボードAを、外法11cm、内法10cm四方のステンレス製の補強枠体Fに挟持されるように嵌め込んで光触媒担持ボードLの完成品を得た。この完成品を図3及び図4に示す。前記補強枠体Fの内側面にはボードAが狭持できる内溝fが形成されている。外側面には他の補強枠体と接合可能な凹凸f’が形成されていて、タイルを敷き詰めるように平面的に連結したり、立方体形状に立体的に連結して組み立てることができるようになっている。なお、混合粉末Aを使用して作製した光触媒担持ボード完成品をボードAHと称する。このボードAHを水槽に浸漬しても水槽は白濁しなかった。
(Production of photocatalyst carrying board)
Therefore, the board A is baked by performing a heat treatment for 10 minutes in an electric furnace heated to 370 ° C. slightly exceeding the melting point of PTFE, and the baked board A is a stainless steel having an outer method of 11 cm and an inner method of 10 cm square. The finished product of the photocatalyst carrying board L was obtained by being fitted so as to be sandwiched between the reinforcing frames F made of metal. This finished product is shown in FIGS. An inner groove f in which the board A can be held is formed on the inner side surface of the reinforcing frame F. Concave and convex f ′ that can be joined to another reinforcing frame body is formed on the outer side surface, so that it can be connected in a plane so as to spread tiles or can be assembled in a cubic shape. ing. A finished photocatalyst carrying board manufactured using the mixed powder A is referred to as a board AH. Even when this board AH was immersed in the water tank, the water tank did not become cloudy.

なお、本実施例の製造工程のフローチャートを図5に示す。   In addition, the flowchart of the manufacturing process of a present Example is shown in FIG.

(混合粉末の作製)
アナターゼ型酸化チタン粉末80g(テイカ株式会社製、品番;AMT100、同社のカタログによる仕様:結晶形;アナタース、比表面積;260m/g、平均粒子径;6nm)とフィブリル化可能なPTFE粉末20g(ダイキン工業株式会社製、品番;ファインパウダーF104)とを、混合機(SUNBEAM−OSTER社製、PHOENIX BLENDER‐KB‐1)で混合した粉末を50℃の恒温下において、回転数16800rpmで2分間攪拌しての混合粉末Bを作製した。
(Production of mixed powder)
80 g of anatase type titanium oxide powder (manufactured by Teika Co., Ltd., product number: AMT100, specification according to the company's catalog: crystal form; anatase, specific surface area: 260 m 2 / g, average particle size: 6 nm) and 20 g of PTFE powder capable of fibrillation ( Daikin Kogyo Co., Ltd., product number; Fine Powder F104) was mixed with a mixer (SUNBEAM-OSTER, PHOENIX BLENDER-KB-1) and stirred at a constant temperature of 50 ° C. for 2 minutes at 16800 rpm. A mixed powder B was prepared.

(光触媒担持ボード未焼成品の作製)
厚み1.55mm、1つの開口部の面積15mmのアルミニウム製エキスパンドメタル(関西鉄工株式会社製、カンテツエキスパンドメタル4mm(メッシュ短目方向の中心間距離)×8mm(メッシュ長目方向の中心間距離)×0.8mm(板厚)×0.8mm(刻み巾))に、上記の混合粉末Bを前記エキスパンドメタルの孔部が閉塞するように充填する。そして、少なくともエキスパンドメタルにおける混合粉末Bを充填した部分に、上下から厚み2mmのゴム製スポンジシートを重ね、さらにその上下両外側に厚み1mmのゴムシートを重ね、さらにその上下両外側に金属製の上下加圧用押し型により50kg/cmで加圧成形した。なお、混合粉末Bを使用して作製した光触媒担持ボード未焼成品をボードBと称する。ここで作製したボードBを水槽に浸漬したところ、水槽は即座に白濁し酸化チタン粒子が流出した。
(Preparation of unfired photocatalyst carrying board)
Aluminum expanded metal with a thickness of 1.55 mm, an area of 15 mm 2 for one opening (manufactured by Kansai Tekko Co., Ltd., 4 mm expanded metal distance from the center of the mesh) × 8 mm (center distance in the mesh long direction) ) × 0.8 mm (plate thickness) × 0.8 mm (step width)) so that the above-mentioned mixed powder B is filled so that the hole of the expanded metal is closed. A rubber sponge sheet having a thickness of 2 mm is stacked from above and below at least on the portion filled with the mixed powder B in expanded metal, and further a rubber sheet having a thickness of 1 mm is stacked on both the upper and lower sides. It pressure-molded at 50 kg / cm < 2 > with the vertical and vertical press die. In addition, the photocatalyst carrying board unbaked product produced using the mixed powder B is referred to as a board B. When the board B produced here was immersed in a water tank, the water tank immediately became cloudy and titanium oxide particles flowed out.

(光触媒担持ボードの作製)
そこで、上記ボードBを、PTFEの融点を少し超える370℃に加熱された電気炉で10分間加熱処理を行って焼成し、焼成後のボードBを、外法11cm、内法10cm四方のステンレス製の補強枠体に挟持されるように嵌め込んで光触媒担持ボードの完成品を得た。前記補強枠体の内側面にはボードBが狭持できる溝が形成されている。外側面には他の補強枠体と接合可能な凹凸が形成されていて、タイルを敷き詰めるように平面的に連結したり、立方体形状に立体的に連結して組み立てることができるようになっている。なお、混合粉末Bを使用して作製した光触媒担持ボード完成品をボードBHと称する。このボードBHを水槽に浸漬しても水槽は白濁しなかった。
(Production of photocatalyst carrying board)
Therefore, the board B is fired for 10 minutes in an electric furnace heated to 370 ° C. slightly exceeding the melting point of PTFE, and the fired board B is made of stainless steel with an outer method of 11 cm and an inner method of 10 cm square. The photocatalyst carrying board was completed by being fitted so as to be sandwiched between the reinforcing frame bodies. A groove in which the board B can be held is formed on the inner surface of the reinforcing frame. The outer surface is formed with irregularities that can be joined to other reinforcing frames, and can be connected in a planar manner so that tiles can be laid down, or can be assembled in a cubic shape in three dimensions. . A finished photocatalyst carrying board manufactured using the mixed powder B is referred to as a board BH. Even when this board BH was immersed in the water tank, the water tank did not become cloudy.

[比較例1]
上記実施例1は、酸化チタン粉末90g、PTFE粉末10gを混合して光触媒担持ボードを作製したが、本比較例1は、酸化チタン粉末60g、PTFE粉末40gに変更して光触媒担持ボードを作製したものである。
[Comparative Example 1]
In Example 1, 90 g of titanium oxide powder and 10 g of PTFE powder were mixed to produce a photocatalyst carrying board. In Comparative Example 1, the photocatalyst carrying board was produced by changing to 60 g of titanium oxide powder and 40 g of PTFE powder. Is.

すなわち、酸化チタン粉末60g(テイカ株式会社製、品番;AMT100、同社のカタログによる仕様:結晶形;アナタース、比表面積;260m/g、平均粒子径;6nm)とフィブリル化可能なPTFE粉末40g(ダイキン工業株式会社製、品番;ファインパウダーF104)とを使用し、実施例1に示す混合粉末の作製と同様の作製方法により混合粉末Cを作製する。この混合粉末Cを使用して、実施例1に示す光触媒担持ボード未焼成品の作製と同様の作製方法により光触媒担持ボード未焼成品を作製し、これをボードCと称する。そして、このボードCを使用し、実施例1に示す光触媒担持ボードの作製と同様の作製方法により光触媒担持ボードを作製し、これをボードCHと称する。 That is, 60 g of titanium oxide powder (manufactured by Teika Co., Ltd., product number: AMT100, specification according to the company's catalog: crystal form; anatase, specific surface area: 260 m 2 / g, average particle size: 6 nm) and 40 g of PTFE powder capable of fibrillation ( Daikin Industry Co., Ltd., product number; fine powder F104) is used to produce mixed powder C by the same production method as the mixed powder shown in Example 1. Using this mixed powder C, a photocatalyst-carrying board unfired product is produced by the same production method as the production of the photocatalyst-carrying board unfired product shown in Example 1, and this is referred to as board C. Then, using this board C, a photocatalyst carrying board is produced by a production method similar to the production of the photocatalyst carrying board shown in Example 1, and this is referred to as a board CH.

[比較例2]
上記実施例1は、酸化チタン粉末90g、PTFE粉末10gを混合して光触媒担持ボードを作製したが、本比較例2は、酸化チタン粉末30g、PTFE粉末70gに変更して光触媒担持ボードを作製したものである。
[Comparative Example 2]
In Example 1, 90 g of titanium oxide powder and 10 g of PTFE powder were mixed to produce a photocatalyst carrying board. However, in Comparative Example 2, the photocatalyst carrying board was produced by changing to 30 g of titanium oxide powder and 70 g of PTFE powder. Is.

すなわち、酸化チタン粉末30g(テイカ株式会社製、品番;AMT100、同社のカタログによる仕様:結晶形;アナタース、比表面積;260m/g、平均粒子径;6nm)とフィブリル化可能なPTFE粉末70g(ダイキン工業株式会社製、品番;ファインパウダーF104)とを使用し、実施例1に示す混合粉末の作製と同様の作製方法により混合粉末を作製する。この混合粉末を使用して、実施例1に示す光触媒担持ボード未焼成品の作製と同様の作製方法により光触媒担持ボード未焼成品を作製し、これをボードDと称する。そして、このボードDを使用し、実施例1に示す光触媒担持ボードの作製と同様の作製方法により光触媒担持ボードを作製し、これをボードDHと称する。 That is, 30 g of titanium oxide powder (manufactured by Teika Co., Ltd., product number: AMT100, specification according to the catalog of the company: crystal form; anatase, specific surface area: 260 m 2 / g, average particle size: 6 nm) and 70 g of PTFE powder capable of fibrillation ( Daikin Industries, Ltd., product number; fine powder F104) is used to produce mixed powder D by the same production method as the mixed powder shown in Example 1. Using this mixed powder D , a photocatalyst-carrying board unfired product is produced by the same production method as the production of the photocatalyst-carrying board unfired product shown in Example 1, and this is referred to as board D. Then, using this board D, a photocatalyst carrying board is produced by a production method similar to the production of the photocatalyst carrying board shown in Example 1, and this is referred to as a board DH.

上記の実施例により作製した混合粉末A及び混合粉末Bと、比較例により作製した混合粉末C及び混合粉末Dの各成分の重量を表1に示す。   Table 1 shows the weights of the components of the mixed powder A and the mixed powder B prepared according to the above examples, and the mixed powder C and the mixed powder D prepared according to the comparative example.

Figure 0004624698
Figure 0004624698

[比較試験]
上記実施例におけるボードAH及びボードBH、比較例におけるボードCH及びボードDHに対して、以下のように空気中及び水中においてアンモニアが中和するに至る時間を測定する試験を行い、実施例におけるボードAH及びボードBHが短時間でアンモニアを中和させ、光触媒作用が顕著であることを実証した。
[Comparison test]
The board AH and the board BH in the above embodiment, the board CH and the board DH in the comparative example are subjected to a test for measuring the time until ammonia is neutralized in air and water as follows, and the board in the embodiment AH and board BH neutralize ammonia in a short time, demonstrating that photocatalysis is significant.

なお、比較の参考として、市販の光触媒セラミックボール(発売元大塚濾過槽研究所、光触媒・特殊セラミック、商品名「ストリカ」、1個の直径約6.6mmの球状)約70gをほぼ10cm四方に敷き詰めたものを使用し、同様の測定を行った。さらに、リファレンスとしてアンモニアのみを注入してアンモニアの経時変化を確認した。   As a reference for comparison, about 70 g of a commercially available photocatalytic ceramic ball (release source Otsuka Filtration Tank Laboratory, photocatalyst / special ceramic, trade name “Strica”, one sphere with a diameter of about 6.6 mm) is approximately 10 cm square. The same measurement was performed using a spread material. Furthermore, only ammonia was injected as a reference, and changes with time of ammonia were confirmed.

[空気中におけるアンモニアの中和試験]
・試験方法
ボードAH、ボードBH、ボードCH及びボードDHを、それぞれポリプロピレン製で無色透明の蓋付き密閉容器(11.5cm四方、高さ3cm)に収納し、リトマス試験紙(アドバンテック東洋株式会社製;幅9mm)をほぼ正方形に切断して各ボードの隅角部と中央部に載置する。そして、各容器の片隅にピペットを用いて濃度28%のアンモニアの水溶液0・05ml(化学天秤で校正した重量は0.047g)を注入してリトマス試験紙が中和に達する時間を測定した。
[Neutralization test of ammonia in air]
・ Test method Board AH, Board BH, Board CH and Board DH are each stored in a sealed container (11.5 cm square, height 3 cm) made of polypropylene and colorless and transparent, and litmus paper (manufactured by Advantech Toyo Co., Ltd .; width) 9mm) is cut into a substantially square shape and placed on the corner and center of each board. Then, using a pipette at each corner of each container, 0.05 ml of an aqueous solution of 28% concentration ammonia (the weight calibrated with an analytical balance was 0.047 g) was injected, and the time taken for the litmus paper to reach neutralization was measured.

・測定環境
5月の晴れの日、大阪において、午前10時に測定を開始し、24時間後に終了した。日中は直射日光下で、日没後の午後6時頃から翌朝日の出後の午前6時頃までは蛍光灯下で測定した。
Measurement environment Measurement started at 10:00 am in Osaka on a clear day in May, and ended 24 hours later. Measurements were taken under direct sunlight during the day, from about 6 pm after sunset to about 6 am after sunrise the next morning under fluorescent light.

・確認方法
PHの数値は、試験によりリトマス試験紙が表示する色とリトマス試験紙規定の標準色とを比較して決定する。また、標準色との比較において中間的な状態、例えばリトマス試験紙が表示する色がPH7とPH8の標準色の中間的な色を呈している場合には大きい方の数値、すなわちPH8を採用した。さらに、PH7と判断される場合には、無臭であることを確認した。
-Confirmation method The value of PH is determined by comparing the color displayed on the litmus paper with the standard color specified by the litmus paper. In comparison with the standard color, an intermediate state, for example, when the color displayed on the litmus paper shows an intermediate color between PH7 and PH8, the larger numerical value, that is, PH8 was adopted. Furthermore, when it was judged as PH7, it confirmed that it was odorless.

各ボードの測定結果を表2に示す。なお、粉末重量は、各ボードの形成に使用された各混合粉末の重量である。また、アンモニア中和速度係数とは、アンモニアが中和に至る速度であり、一定濃度下のアンモニアの分子数を光触媒担持ボードの両表面積と中和に至った時間との積で除した値である。当該中和試験におけるアンモニアの分子数は、0.047g(アンモニア水溶液の重量)×28%(濃度)÷17g(1モル当たりのアンモニアの重量)×6×1023(アボガドロ数)=4.6×1020個(有効数字2桁)である。この分子数を光触媒担持ボードの両表面積0.02mと中和に至った時間との積で割ればアンモニア中和速度係数が算出される。 Table 2 shows the measurement results of each board. The powder weight is the weight of each mixed powder used for forming each board. The ammonia neutralization rate coefficient is the rate at which ammonia reaches neutralization, and is the value obtained by dividing the number of ammonia molecules under a certain concentration by the product of both surface areas of the photocatalyst-carrying board and the time until neutralization. is there. The number of ammonia molecules in the neutralization test was 0.047 g (weight of aqueous ammonia) × 28% (concentration) ÷ 17 g (weight of ammonia per mole) × 6 × 10 23 (Avocado number) = 4.6. × 10 20 (2 significant digits). The ammonia neutralization rate coefficient is calculated by dividing the number of molecules by the product of both surface areas of 0.02 m 2 of the photocatalyst carrying board and the time required for neutralization.

Figure 0004624698
Figure 0004624698

[評価]
上記の試験結果により、ボードAHを収納した容器内の気体は、PH11のアンモニアが、試験開始から1時間で中和に達し、ボードAHの光触媒作用が顕著に発揮されることを確認した。また、ボードBHを収納した容器内の気体は5時間で中和し、ボードBHについても光触媒作用が十分に発揮されることを確認した。これに対し、ボードCHを収納した容器内の気体は24時間でようやく中和に達し、ボードCHの光触媒作用が十分でないことを確認した。また、ボードDH及びセラミックボールを収納した容器内の気体は24時間経過しても中和に達せず、光触媒としての実用性が低いことを確認した。以上の結果により、光触媒担持ボードのアンモニア中和速度係数が、2.3×1021個/m・時間以上である場合には、極めて優れた光触媒作用の効果が発揮できる大気中専用の光触媒担持ボードが得られることが実証され、光触媒担持ボード製造に使用する混合粉末における光触媒粒子の含有量を75%以上、PTFEの含有量を25%以下にすれば達成可能である。なお、リファレンスは24時間経過しても容器内の気体のPHが変化せず、これにより試験方法が正確であり、かつ、測定結果が信頼できるものであることを確認した。
[Evaluation]
From the above test results, it was confirmed that the ammonia in the PH11 of the gas in the container containing the board AH reached neutralization in 1 hour from the start of the test, and the photocatalytic action of the board AH was remarkably exhibited. In addition, the gas in the container containing the board BH was neutralized in 5 hours, and it was confirmed that the photocatalytic action was sufficiently exhibited for the board BH. In contrast, the gas in the container containing the board CH finally reached neutralization in 24 hours, and it was confirmed that the photocatalytic action of the board CH was not sufficient. Further, it was confirmed that the gas in the container containing the board DH and the ceramic balls did not reach neutralization even after 24 hours, and the practicality as a photocatalyst was low. As a result, when the ammonia neutralization rate coefficient of the photocatalyst carrying board is 2.3 × 10 21 pieces / m 2 · hour or more, the photocatalyst exclusively for use in the atmosphere capable of exhibiting an extremely excellent photocatalytic effect. It is demonstrated that a supporting board can be obtained, and this can be achieved by setting the content of the photocatalyst particles in the mixed powder used for manufacturing the photocatalyst supporting board to 75% or more and the content of PTFE to 25% or less. In addition, it was confirmed that the pH of the gas in the container did not change even after the lapse of 24 hours, so that the test method was accurate and the measurement result was reliable.

[水中におけるアンモニアの中和試験]
・試験方法
前記の「空気中におけるアンモニアの中和試験」において使用したのと同様の容器に、200mlの水を入れ、ピペットを用いて濃度28%のアンモニアの水溶液0・05ml(化学天秤で校正した重量は0.047g)を注入した後、各容器に、ボードAH、ボードBH、ボードCH及びボードDHを収納し、一定時間経過毎にそれぞれの容器から注入した水一滴を採取し、リトマス試験紙に滴下してPHの変化を測定した。
[Neutralization test of ammonia in water]
Test method 200 ml of water is put in the same container as used in the above-mentioned “neutralization test of ammonia in air”, and 0.05 ml of an aqueous solution of 28% concentration of ammonia using a pipette (calibrated with an analytical balance). The weight is 0.047g), and then each board contains board AH, board BH, board CH and board DH, and a drop of water is taken from each container every time, and put on litmus paper. It was dripped and the change of PH was measured.

・測定環境
5月の晴れの日、大阪において、午前10時に測定を開始し、48時間後に終了した。日中は直射日光を避けた屋外で、日没後の午後6時頃から翌朝日の出後の午前6時頃までは蛍光灯下で測定した。
Measurement environment Measurement started at 10:00 am in Osaka on a clear day in May and ended after 48 hours. During the daytime, measurements were taken under fluorescent light outdoors from around 6 pm after sunset until 6 am after sunrise the next morning, avoiding direct sunlight.

なお、確認方法は、前記の「空気中におけるアンモニアの中和試験」における確認方法と同じである。   The confirmation method is the same as the confirmation method in the “neutralization test of ammonia in air”.

測定結果を表3に示す。なお、各ボードの形成に使用された粉末重量は、前記の「空気中におけるアンモニアの中和試験」における粉末重量と同じである。また、アンモニア中和速度係数は、「空気中におけるアンモニアの中和試験」で述べた方法により算出される。   Table 3 shows the measurement results. In addition, the powder weight used for formation of each board is the same as the powder weight in the above-mentioned “neutralization test of ammonia in air”. The ammonia neutralization rate coefficient is calculated by the method described in “Neutralization test of ammonia in air”.

Figure 0004624698
Figure 0004624698

[評価]
上記の試験結果により、ボードAHを収納した容器内の液体は、PH11のアンモニアが、試験開始から5時間で中和に達し、ボードAHの光触媒作用が顕著であることを確認した。また、ボードBHを収納した容器内の液体は24時間で中和し、ボードBHについても十分な光触媒作用があることを確認した。これに対し、ボードCHを収納した容器内の液体は48時間でようやく中和に達し、ボードCHの光触媒作用が十分でないことを確認した。また、ボードDH及びセラミックボールを収納した容器内の空気は48時間経過しても中和に達せず、光触媒として実用性が低いことを確認した。以上の結果により、光触媒担持ボードのアンモニア中和速度係数が、7.5×1020個/m・時間以上である場合には、極めて優れた光触媒作用の効果が発揮できる水中専用の光触媒担持ボードが得られることが実証され、光触媒担持ボード製造に使用する混合粉末における光触媒粒子の含有量を75%以上、PTFEの含有量を25%以下にすれば達成可能である。なお、リファレンスは24時間経過しても容器内の液体のPHが変化せず、これにより試験方法が正確であり、かつ、測定結果が信頼できるものであることを確認した。
[Evaluation]
From the above test results, it was confirmed that the ammonia in the PH11 of the liquid in the container containing the board AH reached neutralization in 5 hours from the start of the test, and the photocatalytic action of the board AH was remarkable. Further, the liquid in the container containing the board BH was neutralized in 24 hours, and it was confirmed that the board BH also has a sufficient photocatalytic action. In contrast, the liquid in the container containing the board CH finally reached neutralization in 48 hours, and it was confirmed that the photocatalytic action of the board CH was not sufficient. Further, it was confirmed that the air in the container containing the board DH and the ceramic balls did not reach neutralization even after 48 hours, and the practicality as a photocatalyst was low. As a result, when the ammonia neutralization rate coefficient of the photocatalyst-carrying board is 7.5 × 10 20 pieces / m 2 · hour or more, the photocatalyst-carrying carrier dedicated to water that can exhibit a very excellent photocatalytic effect It is proved that a board can be obtained, and it can be achieved if the content of the photocatalyst particles in the mixed powder used for the production of the photocatalyst carrying board is 75% or more and the content of PTFE is 25% or less. In addition, it was confirmed that the pH of the liquid in the container did not change even after the lapse of 24 hours, and that the test method was accurate and the measurement result was reliable.

本発明に係る光触媒担持ボードは、これを使用すると液体及び気体の脱臭及び浄化作用が顕著であり、かつ、十分な強度を有するものである。したがって、産業上の利用価値が高いものである。
When the photocatalyst carrying board according to the present invention is used, the deodorizing and purifying action of liquid and gas is remarkable, and it has sufficient strength. Therefore, the industrial utility value is high.

実施例1に係る光触媒担持ボード作製に使用するエキスパンドメタルの部分拡大図付斜視図である。It is a perspective view with a partial enlarged view of the expanded metal used for photocatalyst carrying board manufacture concerning Example 1. FIG. 混合粉末を充填したエキスパンドメタルにゴム製スポンジシート及びゴムシートを重ね、金属製の上下加圧用押し型により加圧成形している状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which piled up the rubber sponge sheet and the rubber sheet on the expanded metal with which mixed powder was filled, and was pressure-molded with the metal up-down pressurization die. 実施例1に係る光触媒担持ボードの完成品の部分拡大図付一部切欠斜視図である。It is a partially cutaway perspective view with a partial enlarged view of a finished product of the photocatalyst carrying board according to the first embodiment. 実施例1に係る光触媒担持ボードの完成品の断面図である。1 is a cross-sectional view of a finished product of a photocatalyst carrying board according to Example 1. FIG. 実施例1に係る光触媒担持ボードの製造工程を示すフローチャートである。3 is a flowchart showing manufacturing steps of the photocatalyst carrying board according to the first embodiment.

符号の説明Explanation of symbols

A・・・混合粉末
E・・・エキスパンドメタル
e・・・孔部
e’・・混合粉末を充填した部分
S・・・ゴム製スポンジシート
G・・・ゴムシート
P・・・金属製の上下加圧用押し型
F・・・補強枠体
f・・・補強枠体の内溝
f’・・接合可能な凹凸
L・・・光触媒担持ボード
A ... Mixed powder E ... Expanded metal e ... Hole e '... Portion filled with mixed powder S ... Rubber sponge sheet G ... Rubber sheet P ... Metal upper and lower Pressing die F ... Reinforcing frame body f ... Inner groove of reinforcing frame body f '...

Claims (4)

光触媒粒子及びポリテトラフルオロエチレン粒子を主とする混合粉末を、多数の孔部を有する金属製多孔板に、該孔部が閉塞するように付着させて構成し、その表裏両面を光触媒作用面としたものであって、前記金属製多孔板はエキスパンドメタルよりなることを特徴とする光触媒担持ボード。   A mixed powder mainly composed of photocatalyst particles and polytetrafluoroethylene particles is constituted by adhering to a metal porous plate having a large number of holes so that the holes are closed, and both the front and back surfaces are defined as photocatalytic surfaces. The photocatalyst carrying board is characterized in that the metal porous plate is made of expanded metal. 混合粉末が、光触媒粒子とフィブリル化可能なポリテトラフルオロエチレン粒子とを混合攪拌してポリテトラフルオロエチレン粒子をフィブリル化させたものであり、該混合粉末を、金属製多孔板に、該孔部が閉塞するように充填加圧した後、ポリテトラフルオロエチレンの融点以上で熱処理して焼結させたことを特徴とする請求項1に記載の光触媒担持ボード。   The mixed powder is obtained by mixing and stirring the photocatalyst particles and polytetrafluoroethylene particles capable of fibrillation to fibrillate the polytetrafluoroethylene particles. 2. The photocatalyst carrying board according to claim 1, wherein the photocatalyst carrying board is sintered by heat treatment at a temperature equal to or higher than the melting point of polytetrafluoroethylene after filling and pressurizing so as to close. 混合粉末は、光触媒粒子が75重量%以上、ポリテトラフルオロエチレン粒子が25重量%以下の配合であることを特徴とする請求項1又は2に記載の光触媒担持ボード。   3. The photocatalyst carrying board according to claim 1, wherein the mixed powder contains 75% by weight or more of photocatalyst particles and 25% by weight or less of polytetrafluoroethylene particles. 金属製多孔板は、その厚みが0.4mm〜3mmであり、一つの孔部の面積が4mm〜100mmであるエキスパンドメタルよりなることを特徴とする請求項1〜3のいずれか1項に記載の光触媒担持ボード。 Metallic porous plate is its thickness 0.4Mm~3mm, any one of claims 1 to 3, characterized in that the area of one hole portion is formed of expanded metal is 4 mm 2 100 mm 2 The photocatalyst carrying board described in 1 .
JP2004071776A 2004-03-12 2004-03-12 Photocatalyst carrying board Expired - Lifetime JP4624698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071776A JP4624698B2 (en) 2004-03-12 2004-03-12 Photocatalyst carrying board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071776A JP4624698B2 (en) 2004-03-12 2004-03-12 Photocatalyst carrying board

Publications (2)

Publication Number Publication Date
JP2005254185A JP2005254185A (en) 2005-09-22
JP4624698B2 true JP4624698B2 (en) 2011-02-02

Family

ID=35080444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071776A Expired - Lifetime JP4624698B2 (en) 2004-03-12 2004-03-12 Photocatalyst carrying board

Country Status (1)

Country Link
JP (1) JP4624698B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327851A (en) * 1991-04-26 1992-11-17 Japan Storage Battery Co Ltd Photocatalyst body
JPH06256540A (en) * 1993-03-08 1994-09-13 Mitsui Eng & Shipbuild Co Ltd Production of biological activity inhibiting material
JPH06315614A (en) * 1993-03-11 1994-11-15 Agency Of Ind Science & Technol Method for removing contaminants and cleaning material
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
JPH09290165A (en) * 1996-04-30 1997-11-11 Fuji Electric Co Ltd Photocatalyst and water treatment using the same
JPH10225640A (en) * 1998-03-20 1998-08-25 Ishihara Sangyo Kaisha Ltd Photocataltst and its production
JP2000093808A (en) * 1998-09-26 2000-04-04 Nitto Denko Corp Photocatalyst sheet and photocatalyst sheet structure
JP2000262903A (en) * 1999-03-17 2000-09-26 Seiwa Kogyo Kk Photocatalyst carrier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04327851A (en) * 1991-04-26 1992-11-17 Japan Storage Battery Co Ltd Photocatalyst body
JPH06256540A (en) * 1993-03-08 1994-09-13 Mitsui Eng & Shipbuild Co Ltd Production of biological activity inhibiting material
JPH06315614A (en) * 1993-03-11 1994-11-15 Agency Of Ind Science & Technol Method for removing contaminants and cleaning material
JPH07171408A (en) * 1993-06-28 1995-07-11 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
JPH09290165A (en) * 1996-04-30 1997-11-11 Fuji Electric Co Ltd Photocatalyst and water treatment using the same
JPH10225640A (en) * 1998-03-20 1998-08-25 Ishihara Sangyo Kaisha Ltd Photocataltst and its production
JP2000093808A (en) * 1998-09-26 2000-04-04 Nitto Denko Corp Photocatalyst sheet and photocatalyst sheet structure
JP2000262903A (en) * 1999-03-17 2000-09-26 Seiwa Kogyo Kk Photocatalyst carrier

Also Published As

Publication number Publication date
JP2005254185A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
CA2222869C (en) Photocatalytic body and method for making same
CN1222580C (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparating same
Bokhimi et al. Effect of copper precursor on the stabilization of titania phases, and the optical properties of Cu/TiO2 prepared with the sol− gel technique
CN106215869A (en) Porous silica ceramic load Cu MOF adsorbent and preparation method thereof
JPH09157060A (en) Inorganic sintered porous body and filter
Plesch et al. Zr doped anatase supported reticulated ceramic foams for photocatalytic water purification
WO1998058736A1 (en) Titanium oxide-based photocatalyst, process for preparing the same, and use thereof
JP4624698B2 (en) Photocatalyst carrying board
Zhang et al. Influence of pH and surface orientation on the photochemical reactivity of SrTiO3
CN1384152A (en) Titania nano-paint for photocatalytic decomposition of organic matter and its prepn
US7157115B2 (en) Porous ceramic, polymer and metal materials with pores created by biological fermentation
CN109772305A (en) A kind of metallic substrates carried noble metal integral catalyzer and its one-step preppn process and application
JP2023500295A (en) Nano-functional polymer carrier with titanium oxide-based photocatalyst nanoparticles and its use as a photocatalyst
Zhu et al. Surface charge measurements with scanning ion conductance microscopy provide insights into nitrous acid speciation at the Kaolin mineral–air interface
Putri et al. Performance test of gelcasted porous ceramic as adsorbent of azo dyes
JP2005007298A (en) Porous metal catalyst
CN109603853B (en) Normal temperature catalyst, composite filter screen and application thereof
JP3734029B2 (en) Water surface floating water purification catalyst, production method thereof, and water purification method using the same
JP3431301B2 (en) Tile with photocatalytic function
CN101879391B (en) High-efficiency filtering and purifying environmental-friendly filling material
JP2017104809A (en) Method for producing photocatalyst-silica composite molding
US20070202176A1 (en) Bacteria Support Material
JP2004224641A (en) Environmental purification tile and its manufacturing method
JPH11179211A (en) Titanium dioxide-base photocatalyst, its production, multifunctional member and method for using same
JP2010005163A (en) Clarification instrument using photocatalyst support board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Ref document number: 4624698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250