JP2017104809A - Method for producing photocatalyst-silica composite molding - Google Patents

Method for producing photocatalyst-silica composite molding Download PDF

Info

Publication number
JP2017104809A
JP2017104809A JP2015240794A JP2015240794A JP2017104809A JP 2017104809 A JP2017104809 A JP 2017104809A JP 2015240794 A JP2015240794 A JP 2015240794A JP 2015240794 A JP2015240794 A JP 2015240794A JP 2017104809 A JP2017104809 A JP 2017104809A
Authority
JP
Japan
Prior art keywords
photocatalyst
fine particles
silica
composite molded
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015240794A
Other languages
Japanese (ja)
Inventor
藤田 直樹
Naoki Fujita
直樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015240794A priority Critical patent/JP2017104809A/en
Publication of JP2017104809A publication Critical patent/JP2017104809A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a photocatalyst-silica composite molding that makes it possible to produce a composite molding having photocatalyst fine particles dispersed in silica by a simple process, and facilitates bulk molding.SOLUTION: A method for producing a photocatalyst-silica composite molding is characterized by mixing silica fine particles, photocatalyst fine particles and organic polymers to obtaine a precursor, before firing the precursor.SELECTED DRAWING: None

Description

本発明は、有害化学物質で汚染された水や空気等の浄化剤として好適な光触媒−シリカ複合成形体の製造方法に関する。   The present invention relates to a method for producing a photocatalyst-silica composite molded article suitable as a purifier such as water or air contaminated with harmful chemical substances.

近年、環境問題への関心の高まりから、環境汚染の要因の一つである有害化学物質(揮発性有機化合物、内分泌散乱物質等)による水、土壌、大気等の汚染が問題視されており、有害化学物質除去に対するニーズが多くなっている。有害化学物質の除去方法として、チタニア等の光触媒活性微粒子を用いた有害化学物質の分解除去方法が挙げられる。例えば、光触媒微粒子を含む塗膜を基材表面に形成して、空気浄化用途に使用されている。   In recent years, due to increasing interest in environmental issues, pollution of water, soil, air, etc. due to harmful chemical substances (volatile organic compounds, endocrine scattering materials, etc.), which is one of the causes of environmental pollution, is regarded as a problem. There is an increasing need for removal of hazardous chemicals. As a method for removing harmful chemical substances, there is a method for decomposing and removing harmful chemical substances using photocatalytically active fine particles such as titania. For example, a coating film containing photocatalyst fine particles is formed on a substrate surface and used for air purification.

光触媒粒子による有害化学物質の分解効果を高めるため、吸着作用のある多孔質基材表面に光触媒微粒子を担持させる方法が提案されている。光触媒微粒子の担持方法としては、高周波スパッタリング法、蒸着法、イオンプレーティング法や、多孔質基材に対して光触媒粒子分散液を含浸またはコーティングした後、加熱焼成する方法が挙げられる(例えば特許文献1〜3参照)。しかしながら、当該方法では、基材に対する光触媒微粒子の担持量を増やしにくく、また担持量の調節も困難であるという問題がある。そこで、特許文献4には、シリカ源としてトリブロック共重合体と水ガラスからなる溶液にチタニアナノ粒子を分散させて、加熱焼成することによってチタニア複合化多孔質シリカ光触媒粒子を得る方法が提案されている。   In order to enhance the decomposition effect of harmful chemical substances by photocatalyst particles, a method of supporting photocatalyst fine particles on the surface of a porous substrate having an adsorption action has been proposed. Examples of the method for supporting the photocatalyst fine particles include a high-frequency sputtering method, a vapor deposition method, an ion plating method, and a method in which a porous substrate is impregnated or coated with a photocatalyst particle dispersion and then heated and fired (for example, Patent Documents). 1-3). However, this method has a problem that it is difficult to increase the amount of photocatalyst fine particles supported on the base material and it is difficult to adjust the amount supported. Therefore, Patent Document 4 proposes a method for obtaining titania-composite porous silica photocatalyst particles by dispersing titania nanoparticles in a solution comprising a triblock copolymer and water glass as a silica source, followed by heating and firing. Yes.

特開2003−73997号公報JP 2003-73997 A 特開2002−45650号公報JP 2002-45650 A 特許第3231733号Japanese Patent No. 3321733 特開2014−024041号公報JP 2014-024041 A

特許文献4に記載の方法は製造工程が複雑であり、また所定の構造を有するシリカ粒子を得るために、溶液の反応条件を厳密に規制する必要があるという問題がある。さらに、特許文献4に記載の方法ではバルク状の成形体を作製することが困難であるという問題がある。   The method described in Patent Document 4 has a problem that the production process is complicated, and the reaction conditions of the solution must be strictly regulated in order to obtain silica particles having a predetermined structure. Furthermore, the method described in Patent Document 4 has a problem that it is difficult to produce a bulk molded body.

以上に鑑み、本発明は、光触媒微粒子をシリカ中に分散させた複合成形体を簡易な方法で製造可能であり、かつバルク成形も容易である光触媒−シリカ複合成形体の製造方法を提供することを目的とする。   In view of the above, the present invention provides a method for producing a photocatalyst-silica composite molded body in which a composite molded body in which photocatalyst fine particles are dispersed in silica can be produced by a simple method and bulk molding is also easy. With the goal.

本発明の光触媒−シリカ複合成形体の製造方法は、シリカ微粒子、光触媒微粒子及び有機高分子を混合することにより前駆体を得た後、前駆体を焼成することを特徴とする。   The method for producing a photocatalyst-silica composite molded article of the present invention is characterized in that a precursor is obtained by mixing silica fine particles, photocatalyst fine particles and an organic polymer, and then the precursor is fired.

シリカ微粒子と有機高分子が互いに結合することにより三次元構造のマトリクスが形成され、当該マトリクス内に光触媒微粒子が分散された前駆体が得られる。得られた前駆体を焼成することによりシリカ中に光触媒微粒子が分散した光触媒−シリカ複合成形体を得ることができる。このように、本発明によれば原料の反応条件等を厳密に規制する必要がなく、比較的簡易な方法により光触媒−シリカ複合成形体を作製することができる。なお、本発明の方法により得られた光触媒−シリカ複合成形体は多孔質構造を有し、各気孔中に光触媒微粒子が担持された構造を有する。これにより、成形体内において触媒として機能するサイトが多くなり、触媒効果が高めることが可能となる。   The silica fine particles and the organic polymer are bonded to each other to form a three-dimensional matrix, and a precursor in which the photocatalyst fine particles are dispersed in the matrix is obtained. By calcining the obtained precursor, a photocatalyst-silica composite molded body in which photocatalyst fine particles are dispersed in silica can be obtained. Thus, according to the present invention, it is not necessary to strictly regulate the reaction conditions of the raw material, and the photocatalyst-silica composite molded body can be produced by a relatively simple method. In addition, the photocatalyst-silica composite molded body obtained by the method of the present invention has a porous structure, and has a structure in which photocatalyst fine particles are supported in each pore. Thereby, the site which functions as a catalyst in the molded body increases, and the catalytic effect can be enhanced.

本発明の光触媒−シリカ複合成形体の製造方法において、シリカ微粒子と光触媒微粒子の合量100質量部に対して、有機高分子を1〜100質量部混合することが好ましい。   In the method for producing a photocatalyst-silica composite molded article of the present invention, it is preferable to mix 1 to 100 parts by mass of an organic polymer with respect to 100 parts by mass of the total amount of silica fine particles and photocatalyst fine particles.

本発明の光触媒−シリカ複合成形体の製造方法において、有機高分子がビニル系樹脂、アクリル系樹脂及びアミド系樹脂から選択される少なくとも1種であることが好ましい。これらの有機高分子を使用することにより、シリカ微粒子と混合した際に三次元構造のマトリクスを形成しやすくなり、バルク状の前駆体が得られやすくなる。また、前駆体焼成後に多孔質の光触媒−シリカ複合成形体が得られやすくなる。   In the method for producing a photocatalyst-silica composite molded article of the present invention, the organic polymer is preferably at least one selected from vinyl resins, acrylic resins and amide resins. By using these organic polymers, a matrix having a three-dimensional structure can be easily formed when mixed with silica fine particles, and a bulk precursor can be easily obtained. Moreover, it becomes easy to obtain a porous photocatalyst-silica composite molded body after firing the precursor.

本発明の光触媒−シリカ複合成形体の製造方法において、有機高分子がポリビニルアルコールであることが好ましい。   In the method for producing a photocatalyst-silica composite molded article of the present invention, the organic polymer is preferably polyvinyl alcohol.

本発明の光触媒−シリカ複合成形体の製造方法において、光触媒微粒子が、酸化チタン、酸化スズ、酸化亜鉛、酸化バナジウム、酸化ビスマス、酸化タングステン、酸化鉄及びチタン酸ストロンチウムから選択される少なくとも1種であることが好ましい。   In the method for producing a photocatalyst-silica composite molded article of the present invention, the photocatalyst fine particles are at least one selected from titanium oxide, tin oxide, zinc oxide, vanadium oxide, bismuth oxide, tungsten oxide, iron oxide, and strontium titanate. Preferably there is.

本発明の光触媒−シリカ複合成形体の製造方法において、光触媒微粒子が酸化チタンであることが好ましい。   In the method for producing a photocatalyst-silica composite molded article of the present invention, the photocatalyst fine particles are preferably titanium oxide.

本発明の光触媒−シリカ複合成形体用前駆体は、シリカ微粒子、光触媒微粒子及び有機高分子を含有する光触媒複合成形体用前駆体であって、シリカ微粒子と有機高分子が互いに結合することにより構成されたマトリクス内に光触媒微粒子が分散されてなることを特徴とする。   The precursor for a photocatalyst-silica composite molded article of the present invention is a precursor for a photocatalyst composite molded article containing silica fine particles, photocatalyst fine particles and an organic polymer, and is constituted by bonding silica fine particles and an organic polymer to each other. The photocatalyst fine particles are dispersed in the formed matrix.

本発明によれば、光触媒微粒子をシリカ中に分散させた複合成形体を簡易な方法で製造可能であり、かつバルク成形も容易である。   According to the present invention, a composite molded body in which photocatalyst fine particles are dispersed in silica can be produced by a simple method, and bulk molding is also easy.

本発明の光触媒−シリカ複合成形体の製造方法は、シリカ微粒子、光触媒微粒子及び有機高分子を混合することにより前駆体を得た後、前駆体を焼成することを特徴とする。   The method for producing a photocatalyst-silica composite molded article of the present invention is characterized in that a precursor is obtained by mixing silica fine particles, photocatalyst fine particles and an organic polymer, and then the precursor is fired.

シリカ微粒子の平均粒子径(D50)は100nm以下、特に5〜50nm以下であることが好ましい。シリカ微粒子の平均粒子径が大きすぎると、光触媒−シリカ複合成形体の多孔質性が低下して触媒効果が低下しやすくなる。また、前駆体焼成時においてシリカ微粒子同士の反応性が低下することにより焼結状態が不十分になり、得られた光触媒−シリカ複合成形体の機械的強度に劣る傾向がある。   The average particle diameter (D50) of the silica fine particles is preferably 100 nm or less, particularly preferably 5 to 50 nm. If the average particle diameter of the silica fine particles is too large, the porous property of the photocatalyst-silica composite molded body is lowered, and the catalytic effect is likely to be lowered. Moreover, the sintering state becomes insufficient due to a decrease in the reactivity between the silica fine particles during firing of the precursor, and the resulting photocatalyst-silica composite molded product tends to be inferior in mechanical strength.

光触媒微粒子としては、例えば酸化チタン、酸化スズ、酸化亜鉛、酸化バナジウム、酸化ビスマス、酸化タングステン、酸化鉄(酸化第二鉄)及びチタン酸ストロンチウムが挙げられる。これらは単独または2種以上を混合して使用することができる。なかでも、触媒活性効果の高い酸化チタンが好ましい。酸化チタンとしては、窒素ドープ型酸化チタンや酸素欠乏型酸化チタン等も使用することができる。   Examples of the photocatalyst fine particles include titanium oxide, tin oxide, zinc oxide, vanadium oxide, bismuth oxide, tungsten oxide, iron oxide (ferric oxide), and strontium titanate. These can be used individually or in mixture of 2 or more types. Of these, titanium oxide having a high catalytic activity effect is preferable. As titanium oxide, nitrogen-doped titanium oxide, oxygen-deficient titanium oxide, or the like can also be used.

光触媒微粒子の粒径は特に限定されるものではなく、マイクロオーダーからナノオーダーの粒径のものを用いることができる。なお、光触媒微粒子と被分解有害物質との接触面積を増やすという観点からは粒径はなるべく小さいことが好ましい。従って、光触媒微粒子の平均粒子径(D50)は10μm以下、1μm以下、特に100nmであることが好ましい。なお、光触媒微粒子の平均粒子径の下限は特に限定されないが、現実的には1nm以上、特に2nmである。   The particle size of the photocatalyst fine particles is not particularly limited, and those having a particle size of micro order to nano order can be used. The particle size is preferably as small as possible from the viewpoint of increasing the contact area between the photocatalyst fine particles and the substance to be decomposed. Accordingly, the average particle diameter (D50) of the photocatalyst fine particles is preferably 10 μm or less, 1 μm or less, particularly 100 nm. The lower limit of the average particle diameter of the photocatalyst fine particles is not particularly limited, but is practically 1 nm or more, particularly 2 nm.

本発明において、平均粒子径(D50)はレーザー回折法により測定した値を指す。   In the present invention, the average particle diameter (D50) refers to a value measured by a laser diffraction method.

シリカ微粒子と光触媒微粒子の混合比は特に限定されるものではなく、質量比で、例えばシリカ微粒子:光触媒微粒子=40:60〜95:5の範囲で適宜設定できる。好ましくは55:45〜90:10、より好ましくは50:50〜80:20である。シリカ微粒子の割合が多すぎる(光触媒微粒子の割合が少なすぎる)と光触媒効果が不十分となり、シリカ微粒子の割合が少なすぎる(光触媒微粒子の割合が多すぎる)とシリカ骨格の形成が不十分になり、バルク状の前駆体が得られにくくなる。   The mixing ratio of the silica fine particles and the photocatalyst fine particles is not particularly limited, and can be appropriately set in a mass ratio, for example, in the range of silica fine particles: photocatalyst fine particles = 40: 60 to 95: 5. Preferably it is 55: 45-90: 10, More preferably, it is 50: 50-80: 20. If the proportion of silica particles is too large (the proportion of photocatalyst particles is too small), the photocatalytic effect will be insufficient, and if the proportion of silica particles is too small (the proportion of photocatalyst particles is too large), the formation of the silica skeleton will be insufficient. It becomes difficult to obtain a bulk precursor.

有機高分子としては、ビニル系樹脂、アクリル系樹脂、アミド系樹脂、ポリエチレンオキサイドなどの合成高分子;デンプン系、セルロース系などの半合成高分子;キチン、キトサン、カゼイン、ゼラチン、卵白、デンプン、海藻類、カラギーナン、アルギン酸ナトリウム、寒天、植物性粘性質物、キサンタンガム、ブルランなどの天然高分子等が挙げられる。これらは単独または2種以上を混合して使用することができる。なかでも、ビニル系樹脂、アクリル系樹脂及びアミド系樹脂から選択される少なくとも1種を用いることが好ましく、ポリビニルアルコールが特に好ましい。これらを用いることにより、シリカ微粒子と混合した際に三次元構造のマトリクスを形成しやすくなり、バルク状の前駆体が得られやすくなる。また、前駆体焼成後に多孔質の光触媒−シリカ複合成形体が得られやすくなる。   As organic polymers, synthetic polymers such as vinyl resins, acrylic resins, amide resins, and polyethylene oxides; semi-synthetic polymers such as starches and celluloses; chitin, chitosan, casein, gelatin, egg white, starch, And natural polymers such as seaweed, carrageenan, sodium alginate, agar, vegetable viscous material, xanthan gum and bull run. These can be used individually or in mixture of 2 or more types. Among these, it is preferable to use at least one selected from vinyl resins, acrylic resins, and amide resins, and polyvinyl alcohol is particularly preferable. By using these, a matrix having a three-dimensional structure is easily formed when mixed with silica fine particles, and a bulk precursor is easily obtained. Moreover, it becomes easy to obtain a porous photocatalyst-silica composite molded body after firing the precursor.

シリカ微粒子、光触媒微粒子及び有機高分子を準備した後、これらを混合する。混合比としては、シリカ微粒子と光触媒微粒子の合量100質量部に対して、有機高分子を1〜100質量部、2〜50質量部、5〜40質量部、特に10〜30質量部であることが好ましい。当該混合比の範囲から外れると、バルク状の前駆体が得られにくくなる。なお、各成分を均質に混合する観点から、固形成分であるシリカ微粒子及び光触媒微粒子を分散媒に分散させて固形成分分散液を作製し、それとは別に有機高分子を溶媒に溶解して有機高分子溶液を作製した後、固形成分分散液と有機高分子溶液を混合することが好ましい。   After preparing silica fine particles, photocatalyst fine particles and organic polymer, these are mixed. The mixing ratio is 1 to 100 parts by weight, 2 to 50 parts by weight, 5 to 40 parts by weight, particularly 10 to 30 parts by weight of the organic polymer with respect to 100 parts by weight of the total amount of silica fine particles and photocatalyst fine particles. It is preferable. When it is out of the range of the mixing ratio, it becomes difficult to obtain a bulk precursor. From the viewpoint of mixing each component homogeneously, the silica fine particles and the photocatalyst fine particles, which are solid components, are dispersed in a dispersion medium to produce a solid component dispersion, and separately, an organic polymer is dissolved in a solvent to obtain a high organic content. After preparing the molecular solution, it is preferable to mix the solid component dispersion and the organic polymer solution.

固形成分分散液に使用する分散媒としては、アルコール等の有機系分散媒や水が挙げられる。固形成分分散液における固形成分の含有量は例えば1〜20質量%、さらには5〜10質量%の範囲で適宜調整することが好ましい。固形成分分散液は例えば遊星ボールミル等のボールミルを用いて、例えば0.5時間〜1日程度混合することにより得ることができる。   Examples of the dispersion medium used for the solid component dispersion include organic dispersion media such as alcohol and water. It is preferable that the content of the solid component in the solid component dispersion is appropriately adjusted within a range of, for example, 1 to 20% by mass, and further 5 to 10% by mass. The solid component dispersion can be obtained, for example, by mixing for about 0.5 hour to 1 day using a ball mill such as a planetary ball mill.

有機高分子溶液に使用する溶媒としては、アルコール等の有機系分散媒や水が挙げられる。なお、有機高分子としてポリビニルアルコールを用いる場合は、ポリビニルアルコールが水溶性であるため、溶媒として水を用いることが好ましい。またこの場合、後に固形成分分散液と有機高分子溶液を混合することから、固形成分分散液に使用する分散媒としても水を用いることが好ましい。有機高分子溶液における有機高分子の含有量は例えば1〜20質量%、さらには5〜10質量%の範囲で適宜調整することが好ましい。有機高分子溶液は例えば遊星ボールミル等のボールミルを用いて、例えば6時間以上撹拌することにより得ることができる。   Examples of the solvent used for the organic polymer solution include organic dispersion media such as alcohol and water. In addition, when using polyvinyl alcohol as an organic polymer, since polyvinyl alcohol is water-soluble, it is preferable to use water as a solvent. In this case, since the solid component dispersion and the organic polymer solution are mixed later, it is preferable to use water as a dispersion medium used for the solid component dispersion. The content of the organic polymer in the organic polymer solution is preferably adjusted as appropriate in the range of, for example, 1 to 20% by mass, and more preferably 5 to 10% by mass. The organic polymer solution can be obtained, for example, by stirring for 6 hours or more using a ball mill such as a planetary ball mill.

上記のようにして得られた固形成分分散液と有機高分子溶液を所定の割合で混合し、例えば0.5時間以上撹拌することによって、固形成分−有機高分子混合液を得る。なお、撹拌時に超音波を当てると、固形成分の分散状態を向上させることができる。また、混合液を酸性(例えばpH1〜5、特にpH2〜4程度)に制御することによって、前駆体の成形性が向上したり、前駆体焼成後に多孔質の光触媒−シリカ複合成形体が得られやすくなる。   The solid component dispersion obtained as described above and the organic polymer solution are mixed at a predetermined ratio, and stirred for, for example, 0.5 hours or more to obtain a solid component-organic polymer mixed solution. In addition, when an ultrasonic wave is applied during stirring, the dispersion state of the solid component can be improved. Moreover, by controlling the mixed solution to be acidic (for example, pH 1 to 5, particularly about pH 2 to 4), the moldability of the precursor is improved, or a porous photocatalyst-silica composite molded body is obtained after the precursor is fired. It becomes easy.

上記で得られた固形成分−有機高分子混合液を成形用容器中に流し出し、乾燥することにより前駆体が得られる(キャスト成形)。成形用容器としては、例えばフッ素系樹脂やポリプロピレン等からなる樹脂製容器を使用することができるが、フッ素系樹脂製容器が離型性に優れるため好ましい。なお形状維持のため、乾燥中に混合液の液面に荷重をかけても良い。乾燥温度は特に限定されないが、通常は室温である。乾燥時間は前駆体のサイズに依存するが、3日以上、特に5日以上とすることが好ましい。   The solid component-organic polymer mixed solution obtained above is poured into a molding container and dried to obtain a precursor (cast molding). As the molding container, for example, a resin container made of fluorine-based resin, polypropylene, or the like can be used, but a fluorine-based resin container is preferable because of its excellent releasability. In order to maintain the shape, a load may be applied to the liquid surface of the mixed solution during drying. The drying temperature is not particularly limited, but is usually room temperature. The drying time depends on the size of the precursor, but is preferably 3 days or more, particularly preferably 5 days or more.

なお、キャスト成形以外にも、射出成形、押出成形、シート成形、スクリーン印刷等の成形方法を用いても良い。   In addition to cast molding, molding methods such as injection molding, extrusion molding, sheet molding, and screen printing may be used.

前駆体を焼成することにより光触媒−シリカ複合成形体が得られる。前駆体の焼成は、まず脱脂工程により有機高分子を除去した後、さらに本焼成を行うことが好ましい。   By calcining the precursor, a photocatalyst-silica composite molded body is obtained. The precursor is preferably baked after first removing the organic polymer by a degreasing step.

脱脂工程は、有機高分子が十分分解する温度で行うことが好ましく、例えば600〜700℃程度とすることが好ましい。前駆体内部に有機高分子成分が残存しにくくするため、脱脂温度から本焼成温度まで昇温する速度はなるべく低く(例えば1〜5℃/分)することが好ましい。   The degreasing step is preferably performed at a temperature at which the organic polymer is sufficiently decomposed, and is preferably about 600 to 700 ° C, for example. In order to make it difficult for the organic polymer component to remain inside the precursor, it is preferable that the rate of temperature increase from the degreasing temperature to the main firing temperature is as low as possible (for example, 1 to 5 ° C./min).

本焼成工程の温度は、シリカ微粒子同士が十分に結合するように700〜1200℃程度とすることが好ましい。なお、光触媒微粒子としてチタニアを用いる場合、焼成温度を900℃程度以下とすることが好ましい。焼成温度が高すぎるとチタニアがアナターゼ構造からルチル構造へ転移するため、光触媒の活性効果が低下しやすくなる。   The temperature of the main baking step is preferably about 700 to 1200 ° C. so that the silica fine particles are sufficiently bonded. When titania is used as the photocatalyst fine particles, the firing temperature is preferably about 900 ° C. or lower. If the calcination temperature is too high, titania transitions from the anatase structure to the rutile structure, so that the activity effect of the photocatalyst tends to decrease.

本発明の方法により得られた光触媒−シリカ複合成形体は多孔質構造を有し、各気孔中に光触媒微粒子が担持された構造を有する。これにより成形体内において触媒として機能するサイトが多くなり、触媒効果を高めることが可能となる。成形体の比表面積を大きくし、光触媒微粒子の担持量を多くする観点からは、気孔の大きさは小さいことが好ましい。例えば、光触媒−シリカ複合成形体における気孔の大きさは100nm以下、特に50nm以下であることが好ましい。なお、気孔の大きさが小さすぎると、浄化すべき有害化学物質が侵入しにくくなるため、1nm以上、特に5nm以上であることが好ましい。   The photocatalyst-silica composite molded body obtained by the method of the present invention has a porous structure, and has a structure in which photocatalyst fine particles are supported in each pore. As a result, the number of sites functioning as a catalyst in the molded body increases, and the catalytic effect can be enhanced. From the viewpoint of increasing the specific surface area of the molded body and increasing the amount of photocatalyst fine particles supported, it is preferable that the pore size is small. For example, the pore size in the photocatalyst-silica composite molded article is preferably 100 nm or less, particularly preferably 50 nm or less. Note that if the pore size is too small, harmful chemical substances to be purified are less likely to enter, and therefore it is preferably 1 nm or more, particularly 5 nm or more.

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

表1は本発明の実施例(試料No.1〜9)及び比較例(試料No.10)を示している。   Table 1 shows Examples (Sample Nos. 1 to 9) and Comparative Examples (Sample No. 10) of the present invention.

(1)光触媒−シリカ複合成形体の製造
表1に記載の質量比で、シリカ微粒子(ALDRICH社製Silica,fumed、平均粒径7nm)と、光触媒微粒子であるチタニア微粒子(日本アエロジル社製P25、平均粒径21nm)をイオン交換水中に投入し、超音波下で1時間以上撹拌することにより、シリカ微粒子と光触媒微粒子(固形成分)が均一に分散した分散液を得た。なお、固形成分分散液中における固形成分の割合が8質量%になるように、イオン交換水の量を調整した。
(1) Manufacture of photocatalyst-silica composite molded body In the mass ratio shown in Table 1, silica fine particles (Silica, fumed, average particle diameter 7 nm, manufactured by ALDRICH) and titania fine particles (P25, manufactured by Nippon Aerosil Co., Ltd.) which are photocatalyst fine particles. An average particle diameter of 21 nm) was introduced into ion-exchanged water and stirred for 1 hour or longer under ultrasonic waves to obtain a dispersion in which silica fine particles and photocatalyst fine particles (solid component) were uniformly dispersed. In addition, the quantity of ion-exchange water was adjusted so that the ratio of the solid component in a solid component dispersion liquid might be 8 mass%.

ポリビニルアルコール(PVA)(和光純薬工業社製、けん化度78〜82モル%)をイオン交換水中に投入し、50℃で12時間以上撹拌することによって、均一なPVA水溶液を得た。なお、PVA水溶液中におけるPVAの割合が8質量%になるように、イオン交換水の量を調整した。   Polyvinyl alcohol (PVA) (manufactured by Wako Pure Chemical Industries, Ltd., saponification degree: 78 to 82 mol%) was put into ion-exchanged water and stirred at 50 ° C. for 12 hours or more to obtain a uniform aqueous PVA solution. In addition, the quantity of ion-exchange water was adjusted so that the ratio of PVA in PVA aqueous solution might be 8 mass%.

次に、固形成分分散液とPVA水溶液を8:2の質量比(即ち、固形成分100質量部に対してPVA25質量部)になるように混合した後、超音波下で1時間撹拌して固形成分−PVA混合液を得た。得られた固形成分−PVA混合液をフッ素系樹脂(ポリテトラフルオロエチレン)製容器にキャストして、室温下で7日間以上十分に乾燥することによって前駆体を得た。前駆体を600℃で脱脂した後、表1に記載の温度で焼成することによって、バルク状の光触媒−シリカ複合成形体を得た。なお、比較例No.10は上記のチタニア微粒子をそのまま用いた。   Next, the solid component dispersion and the PVA aqueous solution were mixed so as to have a mass ratio of 8: 2 (that is, 25 parts by mass of PVA with respect to 100 parts by mass of the solid component), and then stirred for 1 hour under ultrasonic waves to be solid. A component-PVA mixture was obtained. The obtained solid component-PVA mixture was cast into a fluororesin (polytetrafluoroethylene) container and sufficiently dried at room temperature for 7 days or more to obtain a precursor. The precursor was degreased at 600 ° C., and then fired at the temperature shown in Table 1, to obtain a bulk photocatalyst-silica composite molded body. Comparative Example No. No. 10 used the above titania fine particles as they were.

(2)水質浄化試験
石英製セルに入れた濃度5mg/Lのメチレンブルー溶液中に各試料を0.5g添加し、紫外線(波長365nm)を照射した。1時間後、2時間後、5時間後にメチレンブルー溶液の色合いの濃さを観察し、5段階評価した。なお、「5」を紫外線照射前の色合いとし、「1」を無色透明とした。結果を表1に示す。
(2) Water quality purification test 0.5 g of each sample was added to a methylene blue solution having a concentration of 5 mg / L in a quartz cell and irradiated with ultraviolet rays (wavelength 365 nm). After 1 hour, 2 hours, and 5 hours, the shade of the methylene blue solution was observed and evaluated in five stages. Note that “5” was a hue before ultraviolet irradiation, and “1” was colorless and transparent. The results are shown in Table 1.

表1から明らかなように、実施例の光触媒−シリカ複合成形体は、比較例であるチタニア微粒子と比較して、短時間でメチレンブルーを分解し、水質を浄化できることがわかる。   As is apparent from Table 1, it can be seen that the photocatalyst-silica composite molded body of the example can decompose methylene blue and purify water quality in a short time as compared with the titania fine particles as a comparative example.

本発明の方法により製造された光触媒−シリカ複合成形体は、有害化学物質で汚染された水、土壌、大気等の浄化剤として好適である。   The photocatalyst-silica composite molded article produced by the method of the present invention is suitable as a purification agent for water, soil, air, etc. contaminated with harmful chemical substances.

Claims (7)

シリカ微粒子、光触媒微粒子及び有機高分子を混合することにより前駆体を得た後、前記前駆体を焼成することを特徴とする光触媒−シリカ複合成形体の製造方法。   A method for producing a photocatalyst-silica composite molded article, comprising: obtaining a precursor by mixing silica fine particles, photocatalyst fine particles and an organic polymer; and calcining the precursor. 前記シリカ微粒子と前記光触媒微粒子の合量100質量部に対して、前記有機高分子を1〜100質量部混合することを特徴とする請求項1に記載の光触媒−シリカ複合成形体の製造方法。   The method for producing a photocatalyst-silica composite molded article according to claim 1, wherein 1 to 100 parts by mass of the organic polymer is mixed with 100 parts by mass of the total amount of the silica fine particles and the photocatalyst fine particles. 前記有機高分子がビニル系樹脂、アクリル系樹脂及びアミド系樹脂から選択される少なくとも1種であることを特徴とする請求項1または2に記載の光触媒−シリカ複合成形体の製造方法。   The method for producing a photocatalyst-silica composite molded article according to claim 1 or 2, wherein the organic polymer is at least one selected from vinyl resins, acrylic resins, and amide resins. 前記有機高分子がポリビニルアルコールであることを特徴とする請求項3に記載の光触媒−シリカ複合成形体の製造方法。   The method for producing a photocatalyst-silica composite molded article according to claim 3, wherein the organic polymer is polyvinyl alcohol. 前記光触媒微粒子が、酸化チタン、酸化スズ、酸化亜鉛、酸化バナジウム、酸化ビスマス、酸化タングステン、酸化鉄及びチタン酸ストロンチウムから選択される少なくとも1種であることを特徴とする請求項の1〜4のいずれか一項に記載の光触媒−シリカ複合成形体の製造方法。   The photocatalyst fine particles are at least one selected from titanium oxide, tin oxide, zinc oxide, vanadium oxide, bismuth oxide, tungsten oxide, iron oxide, and strontium titanate. The manufacturing method of the photocatalyst-silica composite molded object as described in any one. 前記光触媒微粒子が酸化チタンであることを特徴とする請求項5に記載の光触媒−シリカ複合成形体の製造方法。   The method for producing a photocatalyst-silica composite molded article according to claim 5, wherein the photocatalyst fine particles are titanium oxide. シリカ微粒子、光触媒微粒子及び有機高分子を含有する光触媒複合成形体用前駆体であって、
前記シリカ微粒子と前記有機高分子が互いに結合することにより構成されたマトリクス内に前記光触媒微粒子が分散されてなることを特徴とする光触媒−シリカ複合成形体用前駆体。
A precursor for a photocatalyst composite molded article containing silica fine particles, photocatalyst fine particles and an organic polymer,
A precursor for a photocatalyst-silica composite molded article, wherein the photocatalyst fine particles are dispersed in a matrix composed of the silica fine particles and the organic polymer bonded to each other.
JP2015240794A 2015-12-10 2015-12-10 Method for producing photocatalyst-silica composite molding Pending JP2017104809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015240794A JP2017104809A (en) 2015-12-10 2015-12-10 Method for producing photocatalyst-silica composite molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240794A JP2017104809A (en) 2015-12-10 2015-12-10 Method for producing photocatalyst-silica composite molding

Publications (1)

Publication Number Publication Date
JP2017104809A true JP2017104809A (en) 2017-06-15

Family

ID=59060381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240794A Pending JP2017104809A (en) 2015-12-10 2015-12-10 Method for producing photocatalyst-silica composite molding

Country Status (1)

Country Link
JP (1) JP2017104809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186193A1 (en) * 2021-03-03 2022-09-09 スタンレー電気株式会社 Photocatalyst member and photocatalyst device
JP7193686B1 (en) 2022-07-07 2022-12-21 南京大学 In-situ photocatalyst system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186193A1 (en) * 2021-03-03 2022-09-09 スタンレー電気株式会社 Photocatalyst member and photocatalyst device
JP7193686B1 (en) 2022-07-07 2022-12-21 南京大学 In-situ photocatalyst system
JP2024008756A (en) * 2022-07-07 2024-01-19 南京大学 In-situ photocatalyst system

Similar Documents

Publication Publication Date Title
Srikanth et al. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment
Wang et al. Bioinspired synthesis of photocatalytic nanocomposite membranes based on synergy of Au-TiO2 and polydopamine for degradation of tetracycline under visible light
Amano et al. Visible light-responsive bismuth tungstate photocatalysts: effects of hierarchical architecture on photocatalytic activity
Ardizzone et al. Tailored anatase/brookite nanocrystalline TiO2. The optimal particle features for liquid-and gas-phase photocatalytic reactions
Vargová et al. TiO2 thick films supported on reticulated macroporous Al2O3 foams and their photoactivity in phenol mineralization
KR101265781B1 (en) Titanium dioxide photocatalyst having crystalline titanium dioxide core-amorphous titanium dioxide shell structure, preparation method thereof and hydrophilic coating material comprising said titanium dioxide photocatalyst
JP4686536B2 (en) Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
CN106714964B (en) Visible light active photocatalysis ceramic tile
Plesch et al. Zr doped anatase supported reticulated ceramic foams for photocatalytic water purification
CN103949235A (en) Graphene/carbon nanotube/titanium dioxide composite photocatalyst and preparation method and applications thereof
JP2017523913A (en) Photocatalytic functional film and method for producing the same
JP2015116526A (en) Photocatalytic complex, production method thereof, and photocatalytic deodorization system including photocatalytic complex
JP2005231935A (en) Tungsten oxide-containing titanium oxide sol, method of manufacturing the same, coating material and optical functional body
JP2017104809A (en) Method for producing photocatalyst-silica composite molding
JP2011136879A (en) Visible light-responsive titanium oxide-based fine particle dispersion and method for producing the same
JP2017170441A (en) Photocatalytic filter for degrading mixed gas efficiently and manufacturing method thereof
KR20200062049A (en) Hollow fiber type photocatalyst and manufacturing method thereof
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
JP2002085967A (en) Photocatalyst membrane and method of producing the same
CN114786805A (en) Polymer support nano-functionalized with photocatalytic nanoparticles based on titanium dioxide and use thereof as a photocatalyst
JP2011136297A (en) Visible light responsive type titanium oxide-based particulate dispersion and method for manufacturing the same
JPH10180118A (en) Fixed photocatalyst, preparation thereof, and method for decomposition-removing harmful substance
JP4848500B2 (en) Porous photocatalyst
JP6144311B2 (en) Photocatalytic filter excellent in removal performance for mixed gas and method for producing the same
JP3992129B2 (en) Method for producing porous photocatalyst