JP2004224641A - Environmental purification tile and its manufacturing method - Google Patents

Environmental purification tile and its manufacturing method Download PDF

Info

Publication number
JP2004224641A
JP2004224641A JP2003014688A JP2003014688A JP2004224641A JP 2004224641 A JP2004224641 A JP 2004224641A JP 2003014688 A JP2003014688 A JP 2003014688A JP 2003014688 A JP2003014688 A JP 2003014688A JP 2004224641 A JP2004224641 A JP 2004224641A
Authority
JP
Japan
Prior art keywords
titanium dioxide
apatite
fine powder
porous
environmental purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003014688A
Other languages
Japanese (ja)
Inventor
Norio Nokita
楷夫 野北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Kohan Kogyo Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Kohan Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd, Kohan Kogyo Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2003014688A priority Critical patent/JP2004224641A/en
Publication of JP2004224641A publication Critical patent/JP2004224641A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an environmental purification tile having an excellent environmental purification effect and durability where the environmental purification effect is not deteriorated when washing is repeated and its manufacturing method. <P>SOLUTION: Alumina powder with a purity of ≥98.5 wt.% and a particle diameter of ≤1 μm is press-molded to form a flat plate and then sintered at 1,373-1,623°K to give the environmental purification tile, or the space of the porous alumina sintered compact thus obtained is filled with titanium dioxide or both components of titanium dioxide and apatite and heated at 573-1,173°K where the titanium dioxide or both components of the titanium dioxide and the apatite are converted to an anatase-type titanium dioxide. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、大気中や水中に浮遊分散している環境に有害な雑菌類、ガス、微粉末などの物質を吸着し、さらに分解することが可能であり、建物の外壁、貯水タンクやプールの内壁、浴室、厨房をはじめとする住宅の壁等に好適な環境浄化タイルおよびその製造方法に関する。
【0002】
【従来の技術】
近年、有機物を吸着する効果を有するアパタイトと、有機物を分解する光触媒効果を有する二酸化チタンとを組み合わせることにより、大気中や水中の有害物質を効率よく吸着して分解する方法が試みられている。これらのアパタイトや二酸化チタンは粉末であるので、他の素材でこれらの粉末を担持した担体として用いられている。これらの担体しては、次に示すようなものが提案されている。
【0003】
従来技術として、銀、銅、亜鉛などの抗菌性を有する金属または金属イオンを担持したアパタイトなどのリン酸カルシウム系セラミックスに、ジルコニア、アルミナ、シリカなどの無機酸化物を添加してなる抗菌性リン酸カルシウム系セラミックスが提案されている(例えば、特許文献1参照)。この特許文献1はこれらの抗菌性リン酸カルシウム系セラミックスを粉末の状態で用いる場合を例示しているが、板材等に成形加工して適用する可否については触れていない。
【0004】
また、ガラス、プラスチック、金属、セラミックスなどからなる基板に、酸化チタン球状体またはハイドロキシアパタイトなどのセラミックス、金属、プラスチックなどからなる直径1μm〜1mmの球の表面に酸化チタン薄膜を被覆した球状体を圧入してなる雑菌繁殖防止体が提案されている(例えば、特許文献2参照)。この雑菌繁殖防止体においては、球状体を基板の表面に機械的に圧入しているだけであるので、プール壁や飲料容器に適用した場合、洗浄するために表面をブラシやスポンジ等で擦ると球状体が脱落してしまうことが多く、洗浄を繰り返して使用しているうちに雑菌繁殖防止効果が失われてしまうという欠点を有している。
【0005】
さらに、アルミニウムまたはアルミニウム合金板からなる基板を陽極酸化して陽極酸化皮膜を形成させ、陽極酸化皮膜表面および陽極酸化皮膜の細孔中に多孔質アパタイトで被覆した二酸化チタン微粉末からなる光触媒を固着し、細孔を封口処理してなる環境浄化材が提案されている(例えば、特許文献3参照)。この特許文献3による環境浄化材においては、陽極酸化皮膜に形成される細孔は0.01μmオーダーの極めて微細なものであり、この微細な細孔に侵入可能な径を有する光触媒粉末の量は限定され、また空隙率も10μmオーダーの薄膜表面において10〜20%であり、陽極酸化皮膜の細孔中に侵入する光触媒粉末の量は極めて少ない。したがって、光触媒粉末の大半は陽極酸化皮膜の表面に電解処理で吸着したものであり、そのため、特許文献2の場合と同様に特許文献3の環境浄化材をプール壁や飲料容器に適用した場合、洗浄するために表面をブラシやスポンジ等で擦ると光触媒粉末の大半が脱落してしまうことが多く、洗浄を繰り返して使用しているうちに光触媒効果の大半が失われてしまうという欠点を有している。
【0006】
本出願に関する先行技術文献情報として次のものがある。
【0007】
【特許文献1】
特開平06−001708号公報
【特許文献2】
特開平10−130112号公報
【特許文献3】
特開2002−172332号公報
【0008】
【発明が解決しようとする課題】
本発明は、これらの点に鑑みてなされたものであり、優れた環境浄化効果を有し、洗浄を繰り返しながら使用しても環境浄化効果が減退することのない環境浄化タイルおよびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記目的を達成するために本発明者は鋭意研究し、98.5重量%以上の純度のアルミナ粉末を焼結してなる20〜50%の空隙率を有するアルミナ多孔質体が、有機物や雑菌等に対して優れた吸着効果を有していることを見出し、また、この多孔質体の空隙部に光触媒効果を有する二酸化チタン微粉末を充填することにより、吸着した有機物や雑菌等を分解除去することが可能であることを見出し、さらに、この多孔質体の空隙部に二酸化チタン微粉末に加えて有機物の吸着効果に優れたアパタイト微粉末を充填することにより、有機物や雑菌等の吸着効果と分解除去効果をさらに向上させることが可能であることを見出しすとともに、このようなアルミナ多孔質体を平板状に成形加工することにより、建物の外壁、貯水タンクやプールの内壁、浴室、厨房をはじめとする住宅の壁等に環境浄化タイルとして極めて好適に適用することができることも見出して、次に示す本発明を完成させた。
【0010】
即ち、本発明の環境浄化タイルは、20〜50%の空隙率を有する98.5重量%以上の純度のアルミナ多孔質体によって形成されていることを特徴とする環境浄化タイル(請求項1)、または
前記アルミナ多孔質体の空隙部に二酸化チタンを充填してなる環境浄化タイル(請求項2)、あるいは
前記アルミナ多孔質体の空隙部に二酸化チタンとアパタイトを充填してなる環境浄化タイル(請求項4)であり、
前記アルミナ多孔質体の空隙部に充填する二酸化チタンとアパタイトの比率が、重量比で二酸化チタン:アパタイト=7:93〜70:30であること(請求項5)を特徴とし、また
上記のいずれかの環境浄化タイルにおいて、二酸化チタン単独、または二酸化チタンとアパタイトの両成分を、アルミナ多孔質体の表面から0.2mm以上の深さまでの空隙部に充填してなること(請求項2、請求項6)を特徴とする。
【0011】
また、本発明の環境浄化タイルの製造方法は、98.5重量%以上の純度の1μm以下の粒径アルミナ粉末を平板状に加圧成形し、次いで1373〜1623Kの温度で焼結することを特徴とする環境浄化タイルの製造方法(請求項7)、または
98.5重量%以上の純度の1μm以下の粒径アルミナ粉末を平板状に加圧成形し、次いで1373〜1623Kの温度で焼結した後、得られた多孔質焼結体を二酸化チタン微粉を縣濁した液中に浸漬して焼結体の空隙部に二酸化チタン微粉を充填させた後乾燥し、その後573〜1173Kに加熱し二酸化チタンをアナターゼ型二酸化チタンとすることを特徴とする環境浄化タイルの製造方法(請求項8)、あるいは
98.5重量%以上の純度の1μm以下の粒径アルミナ粉末を平板状に加圧成形し、次いで1373〜1623Kの温度で焼結した後、得られた多孔質焼結体を二酸化チタン微粉とアパタイト微粉を縣濁した液中に浸漬して焼結体の空隙部に二酸化チタン微粉とアパタイト微粉を充填させた後乾燥し、その後573〜1173Kに加熱し二酸化チタンとアパタイトをそれぞれアナターゼ型二酸化チタンとアナターゼ型アパタイトとすることを特徴とする環境浄化タイルの製造方法(請求項9)であり、
環境浄化タイルの製造方法において、容器に満たした二酸化チタン微粉を縣濁した液、または二酸化チタン微粉とアパタイト微粉を縣濁した液に多孔質焼結体を浸漬し、次いで容器を真空チャンバー内に入れ、真空チャンバー内を真空ポンプで吸引することにより、多孔質焼結体の空隙部に二酸化チタン微粉単独または二酸化チタン微粉とアパタイト微粉の両成分を充填することを特徴とする環境浄化タイルの製造方法である(請求項10)。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0013】
前記のように本発明の環境浄化タイルは、20〜50%の空隙率を有する98.5重量%以上の純度のアルミナ多孔質体によって形成されている。更に説明すると、98.5重量%以上の純度のアルミナ粉末を焼結して作成された、0.03重量%以下の二酸化ケイ素、0.04重量%以下の酸化ナトリウム、0.06重量%以下の酸化カリウム、およびこれら以外の極く微量の不純物を含有してなる98.5重量%以上の純度の多孔質アルミナ焼結体によって形成されている本発明の環境浄化タイルは、有機物に対して優れた吸着効果を有している。この優れた吸着効果は98.5重量%未満の純度のアルミナ粉末を用いた多孔質アルミナ焼結体によっては得られない。多孔質アルミナ焼結体を構成するアルミナ粒子において、二酸化ケイ素が溶融スラグを形成しやすい酸化物と共存しているとアルミナ粒子の活性を低下させるので、不純物としての含有量は可能な限り少なく抑制し、0.03重量%以下とする必要がある。酸化ナトリウムは二酸化ケイ素と共存していると溶融スラグを形成してアルミナ粒子の活性を低下させるので、含有量を0.04重量%以下に抑制する。酸化カリウムも酸化ナトリウムと同様の理由により、含有量を0.06重量%以下に抑制する。これら以外の不純物についても含有量を可能な限り微量に抑制することにより、高活性のアルミナ粒子から成る98.5重量%以上の純度の多孔質アルミナ焼結体を得ることが可能となる。これらの溶融スラグを形成しやすい不純物を多く含有する純度が98.5重量%未満のアルミナ粉末を用いた場合は、焼結体を構成するアルミナ粒子の純度が98.5重量%未満となり、結晶粒界に不純物元素が析出して、アルミナ粒子の活性を低下させてしまうものと考えられる。
【0014】
上記の0.03重量%以下の二酸化ケイ素、0.04重量%以下の酸化ナトリウム、0.06重量%以下の酸化カリウム、およびこれら以外の極く微量の不純物を含有してなる98.5重量%以上の純度の多孔質アルミナ焼結体は、20〜50%の空隙率を有していることが好ましい。空隙率が20%未満であると、空隙部の表面積が小さいために吸着効果に乏しく、また、空隙部に二酸化チタン単独や二酸化チタンとアパタイトの両成分をこれらの物質の分解効果および吸着効果の向上の効果を発揮させるに十分な量を充填させることができない。一方、空隙率が50%を超えると多孔質アルミナ焼結体の強度が乏しくなり、強い衝撃が加わった場合に割れやすくなる。
【0015】
本発明の20〜50%の空隙率を有する98.5重量%以上の純度のアルミナ多孔質体からなる環境浄化タイルは以下のようにして作成することができる。すなわち、10重量ppm〜0.03重量%の二酸化ケイ素、20重量ppm〜0.04重量%の酸化ナトリウム、10重量ppm〜0.06重量%以下の酸化カリウム、およびこれら以外の極く微量の不純物を含有してなる98.5重量%以上の純度の1μm以下の粒径のアルミナ粉末を平板状に圧粉成形し、1373〜1623Kの温度範囲に加熱して焼結する。焼結温度が1373K未満であると強度に乏しく、1623Kを超えるとアルミナ粒子の活性度が低下するようになる。
【0016】
以上のようにして得られる0.03重量%以下の二酸化ケイ素、0.04重量%以下の酸化ナトリウム、0.06重量%以下の酸化カリウム、およびこれら以外の極く微量の不純物を含有してなる98.5重量%以上の純度の多孔質アルミナ焼結体からなる環境浄化タイルは、このままの状態でも有機物や雑菌等の吸着効果を有しているが、空隙部に光触媒作用を有する二酸化チタンの微粉末を充填することにより、吸着した有機物や雑菌等を分解して除去する機能を付与することができる。
【0017】
二酸化チタンの微粉末は以下に示すようにして多孔質アルミナ焼結体の空隙部に充填することができる。すなわち、塩化チタンと水酸化ナトリウムを反応させるか、または塩化チタンにメチルアルコールとアンモニア水を反応させるなどして、ナノメートルオーダーの極めて微細なアモルファス状の二酸化チタンの微粉末が得られる。この微粉末を水に縣濁した縣濁液中に多孔質アルミナ焼結体を浸漬して焼結体の空隙部に縣濁液を吸収させる。このとき、容器に縣濁液を満たし、この縣濁液中に多孔質アルミナ焼結体を浸漬した後、容器を真空チャンバーに入れ、真空ポンプで吸引することにより、焼結体内奥の空隙部まで縣濁液を吸収させることができる。このとき、焼結体の表面から0.2mm以上の深さの内奥の空隙部まで縣濁液を吸収させ、次いで脱水乾燥した後、後記するように573〜1173Kに加熱してアモルファス状の二酸化チタンをアナターゼ型結晶形とすることにより、環境浄化タイルとしてプール壁や飲料容器に適用した場合、洗浄するために表面をブラシやスポンジ等で擦ったり、圧力を負荷した水で洗浄しても焼結体内奥の空隙部の二酸化チタン粉末が脱落したり溶出することがないので、洗浄を繰り返しても吸着効果および分解除去効果を劣化させることなく、長期にわたって使用することができる。
【0018】
なお、上記のようにして得られるアモルファス状の二酸化チタン微粉末そのものを乾燥した後、573〜1173Kに加熱してアナターゼ型の二酸化チタン微粉末とし、このアナターゼ型の二酸化チタン微粉末を水に縣濁し、多孔質アルミナ焼結体を縣濁液中に浸漬して充填してもよい。また、加熱により、二酸化チタン粉末の多孔質アルミナ焼結体に対する接着力も向上する。
【0019】
本発明の環境浄化タイルは、多孔質アルミナ焼結体の空隙部に二酸化チタンの微粉末とアパタイトの微粉末を充填することにより、吸着効果および分解除去効果をさらに向上させることができる。二酸化チタン微粉末およびアパタイト微粉末は以下に示すようにして多孔質アルミナ焼結体の空隙部に充填することができる。すなわち、まず上記のようにしてアモルファス状の二酸化チタンもしくは二酸化チタンの微粉末を縣濁した縣濁液を作成する。一方、水酸化カルシウムの微粉末を縣濁した液にpHが9になるまでリン酸を添加し、4〜5時間撹拌して熟成することによりアモルファス状のアパタイト微粉末が得られる。この微粉末を水に縣濁し、縣濁液を作成する。次いで固形分として二酸化チタンとアパタイトが重量比で二酸化チタン:アパタイト=7:93〜70:30となるように、上記のようにして作成した二酸化チタン微粉を縣濁した縣濁液とアモルファス状のアパタイトの縣濁した縣濁液を混合する。アパタイトに対する二酸化チタンの重量比が7未満であると十分な分解除去効果が得られず、二酸化チタンに対するアパタイトの重量比が30未満であると、吸着効果の向上が認められない。
【0020】
このアモルファス状の二酸化チタンもしくは二酸化チタンの微粉末を縣濁した水溶液とアモルファス状のアパタイトの縣濁した液を混合してなる混合液に多孔質アルミナ焼結体を浸漬し、上記と同様にして焼結体の空隙部に縣濁液を吸収させ、焼結体内奥の空隙部まで縣濁液を吸収させる。このとき、上記と同様の理由から、焼結体の表面から0.2mm以上の深さの内奥の空隙部まで縣濁液を吸収させておくことが好ましい。このようにして、焼結体の空隙部に縣濁液を吸収させた後、100℃前後の温度に加熱して水分を乾燥除去し、次いで573〜1173Kに加熱して二酸化チタンおよびアパタイトをそれぞれアナターゼ型の結晶形とする。アナターゼ型結晶形とすることにより、二酸化チタンの触媒活性が高まり、アパタイトはハイドロキシアパタイトとなり有機物の吸着効果が増大する。なお、上記と同様に、二酸化チタン微粉末およびアパタイト微粉末を乾燥した後、573〜1173Kに加熱してアナターゼ型の微粉末とし、このアナターゼ型微粉末を水に縣濁し、多孔質アルミナ焼結体を縣濁液中に浸漬して充填してもよい。この加熱により、二酸化チタン粉末およびアパタイト粉末の多孔質アルミナ焼結体に対する接着力も向上する。
【0021】
【実施例】
以下、本発明を実施例により詳細に説明する。
【0022】
[多孔質アルミナ焼結体の作成]
表1に示す純度および粒径を有するアルミナ粉末を40mm×40mm×6mmの平板状にプレス成形した後、表1に示す条件で大気中で加熱し、試料番号1〜9で示す空隙率および強度を有する多孔質アルミナ焼結体を作成した。得られた多孔質アルミナ焼結体の空隙率は密度法を用いて測定した。また多孔質アルミナ焼結体の強度は、試料番号1〜9の多孔質アルミナ焼結体を作成する際に、同一条件で強度測定用のテストピースを作成して抗折力を測定し、その値を試料番号1〜9の多孔質アルミナ焼結体の強度とした。
【0023】
【表1】

Figure 2004224641
【0024】
[二酸化チタンを充填した多孔質アルミナ焼結体の作成]
乾燥窒素を充填したグローブボックス中でメチルアルコールに塩化チタンを添加し、これにアンモニア水を液のpHが7〜8となるまで添加して反応させ、アモルファス状の二酸化チタン微粉末を生成させた。このアモルファス状の二酸化チタン微粉末を含有する液を吸引濾過し水で洗浄した後、水に縣濁した。この縣濁液を容器に満たし、縣濁液中に表1の試料番号6で示した多孔質アルミナ焼結体を浸漬した後、真空チャンバー内に入れて真空ポンプを用いて脱気し、多孔質アルミナ焼結体の空隙部に縣濁液を充填させた。充填深さは脱気時の真空度、およびその真空度で保持する時間で調整した。次いで100℃に加熱して水分を乾燥除去した後、表2に示す条件で大気中で加熱し、二酸化チタンをアナターゼ型の結晶形とした。このようにして試料番号10〜18で示す、二酸化チタンを充填した多孔質アルミナ焼結体を作成した。多孔質アルミナ焼結体の空隙部に充填された二酸化チタンの充填深さは試料番号10〜18の試料の一部を割り、破断面を走査型電子顕微鏡で観察し、二酸化チタンが表面から内奥へ向かって充填された部分の最小の深さを充填深さとした。
【0025】
【表2】
Figure 2004224641
【0026】
[二酸化チタンとアパタイトを充填した多孔質アルミナ焼結体の作成]
上記と同様にして二酸化チタン微粉末の縣濁液を得た。また、水酸化カルシウム粉末を水に溶解分散させ、0.6モル/Lの濃度の液を作成した。この液にリン酸水溶液を液のpHが9となるまで徐々に添加し、その後緩やかに撹拌しながら4〜5時間熟成し、アモルファスのアパタイト微粉末が縣濁した液を得た。この液を吸引濾過し水で洗浄した後、水に縣濁してアパタイト微粉末の縣濁液を得た。次いで二酸化チタン微粉末の縣濁液とアパタイト微粉末の縣濁液を、固形分として二酸化チタンとアパタイトが表3に示す重量比となるように混合した。次いでこの混合液に、上記と同様にして表1の試料番号6で示した多孔質アルミナ焼結体を浸漬して空隙部に縣濁液を充填させた。次いで100℃に加熱して水分を乾燥除去した後、表3に示す条件で大気中で加熱し、二酸化チタンおよびアパタイトをそれぞれアナターゼ型の結晶形とした。このようにして試料番号19〜25で示す、二酸化チタンとアパタイトを充填した多孔質アルミナ焼結体を作成した。多孔質アルミナ焼結体の空隙部に充填された二酸化チタンおよびアパタイトの充填深さは上記と同様に試料の一部を割り、破断面を走査型電子顕微鏡で観察し、二酸化チタンおよびアパタイトが表面から内奥へ向かって充填された部分の最小の深さを充填深さとした。
【0027】
【表3】
Figure 2004224641
【0028】
[特性評価]
このようにして得られた試料番号1〜25で示す多孔質アルミナ焼結体の特性を下記のようにして評価した。
【0029】
<吸着特性および分解除去特性>
試料番号1〜25の試料を有機染料と水からなる水性インク(パイロット株式会社製:30−ブルーL400)を水で0.5重量%に希釈した液(200mL)に浸漬して暗室で24時間静置した後、太陽光に2時間暴露した。暗室で24時間静置した後の液、およびさらに太陽光に2時間暴露した後の液をそれぞれ分取し、液の光透過率を比色計(島津製作所株式会社製:UV−160A)を用い、波長:630nm、セル10mm×10mmにて吸光度を測定した。また、0.5重量%に希釈したインク液のみの吸光度を測定し、この値を吸光度を100%として、試料を浸漬して試験に供した液の相対的な光透過率として示した。
【0030】
<耐洗浄性>
試料番号1〜25の試料に水を5分間、10分間、60分間シャワーした後、上記と同様にして光透過率を測定した。これらの特性評価結果を表4に示す。
【0031】
【表4】
Figure 2004224641
【0032】
表4に示すように、本発明に関わる試料はいずれも暗室中で24時間静置した後の光透過率が大きく、有機染料の吸着性に優れていることを示す。また二酸化チタンを充填してなる試料は、太陽光に暴露することによりさらに光透過率が増大し、吸着した有機染料を分解除去する効果を有していることを示す。二酸化チタン単独または二酸化チタンとアパタイトの両成分が多孔質アルミナ焼結体の空隙部の内奥深く充填した試料は長時間洗浄しても吸着効果や分解除去効果が劣化することがない。したがって、これらの多孔質アルミナ焼結体および多孔質アルミナ焼結体の空隙部に二酸化チタン単独または二酸化チタンとアパタイトの両成分を充填してなるタイルは、有機物や雑菌等の吸着し分解除去できるので、建物の外壁、貯水タンクやプールの内壁、浴室、厨房をはじめとする住宅の壁等に環境浄化タイルとして極めて好適に適用することができる。
【0033】
【発明の効果】
本発明の環境浄化タイルは、98.5重量%以上の純度のアルミナ粉末を焼結してなる20〜50%の空隙率を有する多孔質アルミナ焼結体、またはこの多孔質アルミナ焼結体の空隙部に二酸化チタン単独または二酸化チタンとアパタイトの両成分を充填してなる。高純度の多孔質アルミナ焼結体は、それ自体で有機物や雑菌等に対する優れた吸着効果を有しているが、空隙部に二酸化チタン微粉末を充填することにより、吸着した有機物や雑菌等を光触媒効果により、分解除去することができる。また、空隙部に二酸化チタン微粉末に加えてアパタイト微粉末を充填することにより、有機物や雑菌等の吸着効果と分解除去効果をさらに向上させることが可能である。また、本発明の環境浄化タイルは多孔質アルミナ焼結体空隙部の内奥まで二酸化チタン単独または二酸化チタンとアパタイトの両成分を充填できるので、タイル表面を洗浄しても充填した二酸化チタン微粉末やアパタイト微粉末が除去されることがないので、長期間にわたって洗浄を繰り返しながら使用しても、吸着効果や分解除去効果が劣化することがなく、環境浄化効果が減退することがない。そのため、本発明の環境浄化タイルは、建物の外壁、貯水タンクやプールの内壁、浴室、厨房をはじめとする住宅の壁等に環境浄化タイルとして極めて好適に適用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is capable of adsorbing and decomposing substances such as germs, gases, and fine powder that are harmful to the environment suspended and dispersed in the air and water, and is capable of further decomposing the substance. The present invention relates to an environmental purification tile suitable for an inner wall, a bathroom, a wall of a house including a kitchen, and the like, and a method of manufacturing the same.
[0002]
[Prior art]
In recent years, a method of efficiently adsorbing and decomposing harmful substances in the air or water by combining apatite having an effect of adsorbing organic substances and titanium dioxide having a photocatalytic effect of decomposing organic substances has been attempted. Since these apatites and titanium dioxide are powders, they are used as carriers for supporting these powders with other materials. As these carriers, the following have been proposed.
[0003]
As a conventional technology, antibacterial calcium phosphate-based ceramics obtained by adding an inorganic oxide such as zirconia, alumina and silica to calcium phosphate-based ceramics such as apatite carrying a metal or metal ion having antibacterial properties such as silver, copper, and zinc. Has been proposed (for example, see Patent Document 1). Patent Document 1 exemplifies a case where these antibacterial calcium phosphate-based ceramics are used in a powder state, but does not mention whether or not the material can be formed into a plate or the like and applied.
[0004]
In addition, on a substrate made of glass, plastic, metal, ceramics, etc., a spherical body made of ceramics, metal, plastics, etc. made of titanium oxide spheres or hydroxyapatite and having a diameter of 1 μm to 1 mm coated with a titanium oxide thin film is used. There has been proposed a pressurized germ propagation inhibitor (see, for example, Patent Document 2). In this antibacterial growth inhibitor, since the spherical body is merely mechanically pressed into the surface of the substrate, when applied to a pool wall or a beverage container, the surface is rubbed with a brush or sponge for cleaning. There is a drawback that spheres often fall off, and the effect of preventing the growth of various bacteria is lost during repeated use.
[0005]
Furthermore, a substrate made of aluminum or an aluminum alloy plate is anodized to form an anodized film, and a photocatalyst made of titanium dioxide fine powder coated with porous apatite is fixed to the surface of the anodized film and the pores of the anodized film. In addition, an environmental purification material obtained by sealing pores has been proposed (for example, see Patent Document 3). In the environmental purification material according to Patent Document 3, the pores formed in the anodic oxide film are extremely fine on the order of 0.01 μm, and the amount of the photocatalyst powder having a diameter that can enter these fine pores is as follows. It is limited, and the porosity is 10 to 20% on the surface of the thin film of the order of 10 μm, and the amount of the photocatalyst powder penetrating into the pores of the anodic oxide film is extremely small. Therefore, most of the photocatalyst powder is adsorbed on the surface of the anodic oxide film by electrolytic treatment. Therefore, when the environmental purification material of Patent Document 3 is applied to a pool wall or a beverage container as in Patent Document 2, When the surface is rubbed with a brush or sponge for cleaning, most of the photocatalyst powder often falls off, and has the disadvantage that most of the photocatalytic effect is lost during repeated use. ing.
[0006]
Prior art document information on the present application includes the following.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 06-001708 [Patent Document 2]
JP-A-10-130112 [Patent Document 3]
JP-A-2002-172332
[Problems to be solved by the invention]
The present invention has been made in view of these points, and has an excellent environmental purification effect, an environmental purification tile in which the environmental purification effect is not reduced even when used while repeating washing, and a method of manufacturing the same. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has conducted intensive studies and found that an alumina porous body having a porosity of 20 to 50%, which is obtained by sintering alumina powder having a purity of 98.5% by weight or more, can be used for organic substances and various bacteria. It has been found that it has an excellent adsorption effect on the organic substances, etc., and by filling the pores of this porous body with titanium dioxide fine powder having a photocatalytic effect, it can decompose and remove the adsorbed organic substances and various germs. Is found to be possible, and by filling the voids of this porous body with apatite fine powder which is excellent in adsorbing organic substances in addition to titanium dioxide fine powder, the adsorbing effect of organic substances and various germs etc. And the fact that it is possible to further improve the decomposition and removal effect, and by forming such an alumina porous body into a flat plate, the outer wall of the building, water storage tank and pool Walls, bathroom, and also found that it is possible to very suitably applied as an environmental clean tile walls in housing, including kitchen, and completed the present invention shown below.
[0010]
That is, the environmental purification tile of the present invention is formed of an alumina porous body having a porosity of 20 to 50% and a purity of 98.5% by weight or more (claim 1). Or an environmental purification tile in which the voids of the alumina porous body are filled with titanium dioxide (Claim 2), or an environmental purification tile in which the voids of the alumina porous body are filled with titanium dioxide and apatite ( Claim 4),
The ratio of titanium dioxide and apatite to be filled in the voids of the porous alumina body is titanium dioxide: apatite = 7: 93 to 70:30 by weight ratio (Claim 5). In such an environmental purification tile, titanium dioxide alone or both components of titanium dioxide and apatite are filled in a void portion having a depth of 0.2 mm or more from the surface of the porous alumina body. Item 6) is characterized.
[0011]
Further, the method for producing an environmental purification tile of the present invention comprises pressing a 18.5 μm or less alumina powder having a purity of 98.5% by weight or more into a flat plate and then sintering at a temperature of 1373 to 1623K. A method for producing an environment-purifying tile (claim 7), or a method in which alumina powder having a purity of 98.5% by weight or more and a particle size of 1 μm or less is pressed into a flat plate and then sintered at a temperature of 1373 to 1623K. After that, the obtained porous sintered body is immersed in a liquid in which titanium dioxide fine powder is suspended to fill the gaps of the sintered body with titanium dioxide fine powder, and then dried, and then heated to 573 to 1173K. A method for producing an environmental purification tile, wherein titanium dioxide is anatase type titanium dioxide (Claim 8), or press-molding plate-shaped alumina powder having a purity of 98.5% by weight or more and a particle size of 1 μm or less. Then, after sintering at a temperature of 1373 to 1623 K, the obtained porous sintered body is immersed in a liquid in which titanium dioxide fine powder and apatite fine powder are suspended, and titanium dioxide fine powder and apatite are filled in the voids of the sintered body. A method for producing an environmental purification tile (claim 9), characterized in that a fine powder is filled, dried, and then heated to 573 to 1173K to convert titanium dioxide and apatite into anatase-type titanium dioxide and anatase-type apatite, respectively. ,
In the method of manufacturing an environmental purification tile, a porous sintered body is immersed in a liquid in which titanium dioxide fine powder filled in a container is suspended, or a liquid in which titanium dioxide fine powder and apatite fine powder are suspended, and then the container is placed in a vacuum chamber. And manufacturing the environment-purifying tile by suctioning the interior of the vacuum chamber with a vacuum pump to fill the voids of the porous sintered body with titanium dioxide fine powder alone or both components of titanium dioxide fine powder and apatite fine powder. A method (claim 10).
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0013]
As described above, the environmental purification tile of the present invention is formed of an alumina porous body having a porosity of 20 to 50% and a purity of 98.5% by weight or more. More specifically, 0.03% by weight or less of silicon dioxide, 0.04% by weight or less of sodium oxide, and 0.06% by weight or less made by sintering alumina powder having a purity of 98.5% by weight or more. The environmental purification tile of the present invention, which is formed of a porous alumina sintered body having a purity of 98.5% by weight or more and containing a very small amount of impurities other than potassium oxide of Has an excellent adsorption effect. This excellent adsorption effect cannot be obtained by a porous alumina sintered body using alumina powder having a purity of less than 98.5% by weight. In the alumina particles constituting the porous alumina sintered body, if silicon dioxide coexists with an oxide that easily forms a molten slag, the activity of the alumina particles is reduced, so that the content as impurities is suppressed as small as possible. However, the content needs to be 0.03% by weight or less. When sodium oxide coexists with silicon dioxide, it forms a molten slag and lowers the activity of alumina particles, so that the content is suppressed to 0.04% by weight or less. For the same reason as for sodium oxide, the content of potassium oxide is suppressed to 0.06% by weight or less. By minimizing the content of other impurities as much as possible, it becomes possible to obtain a porous alumina sintered body composed of highly active alumina particles and having a purity of 98.5% by weight or more. When alumina powder containing a large amount of impurities that easily form these molten slags and having a purity of less than 98.5% by weight is used, the purity of the alumina particles constituting the sintered body becomes less than 98.5% by weight, and It is considered that the impurity element precipitates at the grain boundaries and lowers the activity of the alumina particles.
[0014]
98.5% by weight containing the above-mentioned 0.03% by weight or less of silicon dioxide, 0.04% by weight or less of sodium oxide, 0.06% by weight or less of potassium oxide, and other trace amounts of impurities. % Or more of the porous alumina sintered body preferably has a porosity of 20 to 50%. When the porosity is less than 20%, the adsorption effect is poor because the surface area of the void portion is small, and titanium dioxide alone or both components of titanium dioxide and apatite are used in the void portion to decompose and decompose these substances. A sufficient amount cannot be filled to exhibit the effect of improvement. On the other hand, when the porosity exceeds 50%, the strength of the porous alumina sintered body becomes poor, and the porous alumina sintered body is easily broken when subjected to a strong impact.
[0015]
The environmental purification tile of the present invention comprising a porous alumina having a porosity of 20 to 50% and a purity of 98.5% by weight or more can be prepared as follows. That is, 10 ppm by weight to 0.03% by weight of silicon dioxide, 20% by weight to 0.04% by weight of sodium oxide, 10% by weight to 0.06% by weight or less of potassium oxide, and a trace amount other than these. Alumina powder containing impurities and having a particle size of 1 μm or less having a purity of 98.5% by weight or more is compacted into a flat plate, and is sintered by heating to a temperature range of 1373 to 1623K. If the sintering temperature is lower than 1373K, the strength is poor, and if it exceeds 1623K, the activity of the alumina particles decreases.
[0016]
It contains 0.03% by weight or less of silicon dioxide, 0.04% by weight or less of sodium oxide, 0.06% by weight or less of potassium oxide, and other trace amounts of impurities. An environmental purification tile made of a porous alumina sintered body having a purity of 98.5% by weight or more has an effect of adsorbing organic substances and various germs even in this state, but titanium dioxide having a photocatalytic action in a void portion. By filling fine powder of the above, a function of decomposing and removing the adsorbed organic matter and various germs can be provided.
[0017]
The fine powder of titanium dioxide can be filled in the voids of the porous alumina sintered body as described below. That is, by reacting titanium chloride with sodium hydroxide or reacting titanium chloride with methyl alcohol and aqueous ammonia, an extremely fine amorphous titanium dioxide fine powder on the order of nanometers can be obtained. The porous alumina sintered body is immersed in a suspension in which this fine powder is suspended in water, and the suspension is absorbed in the voids of the sintered body. At this time, the container is filled with the suspension, and the porous alumina sintered body is immersed in the suspension. Then, the container is put into a vacuum chamber, and the space inside the sintered body is sucked by a vacuum pump. Suspension can be absorbed up to. At this time, the suspension was absorbed from the surface of the sintered body to the inner space having a depth of 0.2 mm or more, then dehydrated and dried, and then heated to 573 to 1173K to form an amorphous state as described later. By applying titanium dioxide to an anatase type crystal form, when applied to pool walls or beverage containers as an environmental purification tile, even if the surface is rubbed with a brush or sponge for cleaning, even if it is washed with water under pressure Since the titanium dioxide powder in the void inside the sintered body does not fall off or elute, it can be used for a long time without deteriorating the adsorption effect and the decomposition removal effect even after repeated washing.
[0018]
After drying the amorphous titanium dioxide fine powder itself obtained as described above, it is heated to 573 to 1173K to form an anatase type titanium dioxide fine powder, and the anatase type titanium dioxide fine powder is suspended in water. The turbid, porous alumina sintered body may be filled by being immersed in the suspension. The heating also improves the adhesion of the titanium dioxide powder to the porous alumina sintered body.
[0019]
In the environmental purification tile of the present invention, the adsorption effect and the decomposition removal effect can be further improved by filling the voids of the porous alumina sintered body with the fine powder of titanium dioxide and the fine powder of apatite. The titanium dioxide fine powder and the apatite fine powder can be filled in the voids of the porous alumina sintered body as described below. That is, first, a suspension in which amorphous titanium dioxide or fine powder of titanium dioxide is suspended is prepared as described above. On the other hand, phosphoric acid is added to the suspension of the calcium hydroxide fine powder until the pH becomes 9, and the mixture is agitated for 4 to 5 hours to ripen, whereby amorphous apatite fine powder is obtained. This fine powder is suspended in water to prepare a suspension. Next, a suspension containing titanium dioxide fine powder prepared as described above and an amorphous liquid were prepared such that titanium dioxide and apatite were in a weight ratio of titanium dioxide: apatite = 7: 93 to 70:30 as a solid content. Mix the suspended apatite suspension. If the weight ratio of titanium dioxide to apatite is less than 7, a sufficient decomposition removal effect cannot be obtained, and if the weight ratio of apatite to titanium dioxide is less than 30, no improvement in the adsorption effect is observed.
[0020]
A porous alumina sintered body is immersed in a mixed solution obtained by mixing an aqueous solution in which amorphous titanium dioxide or a fine powder of titanium dioxide is suspended and a liquid in which amorphous apatite is suspended, in the same manner as described above. The suspension is absorbed into the voids of the sintered body, and the suspension is absorbed up to the void inside the sintered body. At this time, for the same reason as described above, it is preferable to absorb the suspension from the surface of the sintered body to the inner gap having a depth of 0.2 mm or more. After the suspension is absorbed in the voids of the sintered body in this manner, the water is dried and removed by heating to a temperature of about 100 ° C., and then heated to 573 to 1173K to remove titanium dioxide and apatite, respectively. Anatase type crystal form. By using an anatase type crystal form, the catalytic activity of titanium dioxide is increased, and apatite becomes hydroxyapatite, thereby increasing the effect of adsorbing organic substances. In the same manner as described above, the titanium dioxide fine powder and the apatite fine powder were dried and then heated to 573 to 1173K to obtain an anatase type fine powder. The body may be filled by immersing it in the suspension. By this heating, the adhesive strength of the titanium dioxide powder and the apatite powder to the porous alumina sintered body is also improved.
[0021]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
[0022]
[Preparation of porous alumina sintered body]
Alumina powder having the purity and particle size shown in Table 1 was press-molded into a 40 mm × 40 mm × 6 mm flat plate, and then heated in air under the conditions shown in Table 1, and the porosity and strength shown in Sample Nos. 1 to 9 Was produced. The porosity of the obtained porous alumina sintered body was measured using a density method. The strength of the porous alumina sintered body was determined by preparing a test piece for strength measurement under the same conditions and measuring the transverse rupture force when preparing the porous alumina sintered bodies of sample numbers 1 to 9. The values were taken as the strengths of the porous alumina sintered bodies of sample numbers 1 to 9.
[0023]
[Table 1]
Figure 2004224641
[0024]
[Preparation of porous alumina sintered body filled with titanium dioxide]
Titanium chloride was added to methyl alcohol in a glove box filled with dry nitrogen, and ammonia water was added and reacted until the pH of the solution became 7 to 8 to produce amorphous titanium dioxide fine powder. . The liquid containing the amorphous titanium dioxide fine powder was suction-filtered, washed with water, and then suspended in water. This suspension was filled in a container, and the porous alumina sintered body indicated by sample No. 6 in Table 1 was immersed in the suspension, then placed in a vacuum chamber and deaerated using a vacuum pump. The suspension was filled in the voids of the porous alumina sintered body. The filling depth was adjusted by the degree of vacuum at the time of degassing and the time for maintaining the degree of vacuum. Next, after heating to 100 ° C. to dry and remove moisture, the mixture was heated in the air under the conditions shown in Table 2 to convert titanium dioxide into an anatase-type crystal form. In this way, porous alumina sintered bodies filled with titanium dioxide and represented by sample numbers 10 to 18 were prepared. The filling depth of the titanium dioxide filled in the voids of the porous alumina sintered body was obtained by dividing a part of the samples of Sample Nos. 10 to 18 and observing the fracture surface with a scanning electron microscope. The minimum depth of the portion filled inward was defined as the filling depth.
[0025]
[Table 2]
Figure 2004224641
[0026]
[Preparation of porous alumina sintered body filled with titanium dioxide and apatite]
A suspension of fine titanium dioxide powder was obtained in the same manner as above. In addition, calcium hydroxide powder was dissolved and dispersed in water to prepare a liquid having a concentration of 0.6 mol / L. An aqueous solution of phosphoric acid was gradually added to this solution until the pH of the solution became 9, and then aged for 4 to 5 hours with gentle stirring to obtain a solution in which amorphous apatite fine powder was suspended. This solution was subjected to suction filtration, washed with water, and then suspended in water to obtain a suspension of fine apatite powder. Next, the suspension of the titanium dioxide fine powder and the suspension of the apatite fine powder were mixed so that titanium dioxide and apatite had a weight ratio shown in Table 3 as solids. Next, the porous alumina sintered body shown in Sample No. 6 in Table 1 was immersed in this mixed solution in the same manner as described above to fill the gap with the suspension. Then, the mixture was heated to 100 ° C. to dry and remove water, and then heated in the air under the conditions shown in Table 3 to convert titanium dioxide and apatite into anatase-type crystal forms. In this way, porous alumina sintered bodies filled with titanium dioxide and apatite, which are represented by sample numbers 19 to 25, were prepared. The filling depth of the titanium dioxide and apatite filled in the voids of the porous alumina sintered body was similar to that described above, and a part of the sample was split. The minimum depth of the portion filled from the inside toward the inside was defined as the filling depth.
[0027]
[Table 3]
Figure 2004224641
[0028]
[Characteristic evaluation]
The properties of the porous alumina sintered bodies represented by Sample Nos. 1 to 25 thus obtained were evaluated as follows.
[0029]
<Adsorption characteristics and decomposition removal characteristics>
Sample Nos. 1 to 25 were immersed in a liquid (200 mL) prepared by diluting an aqueous ink (30-Blue L400, manufactured by Pilot Corporation) to 0.5% by weight with water, and then in a dark room for 24 hours. After standing, it was exposed to sunlight for 2 hours. The liquid after standing for 24 hours in a dark room and the liquid after further exposing to sunlight for 2 hours were separated, and the light transmittance of the liquid was measured using a colorimeter (Shimadzu Corporation: UV-160A). The absorbance was measured using a wavelength of 630 nm and a cell of 10 mm × 10 mm. Further, the absorbance of only the ink liquid diluted to 0.5% by weight was measured, and this value was defined as the relative light transmittance of the liquid immersed in the sample and subjected to the test, with the absorbance as 100%.
[0030]
<Wash resistance>
After water was showered on the samples of sample numbers 1 to 25 for 5 minutes, 10 minutes, and 60 minutes, the light transmittance was measured in the same manner as described above. Table 4 shows the results of these characteristic evaluations.
[0031]
[Table 4]
Figure 2004224641
[0032]
As shown in Table 4, all of the samples according to the present invention have a large light transmittance after being allowed to stand in a dark room for 24 hours, indicating that they have excellent adsorptivity for organic dyes. In addition, the sample filled with titanium dioxide has an effect of further increasing the light transmittance when exposed to sunlight and having an effect of decomposing and removing the adsorbed organic dye. A sample in which titanium dioxide alone or both components of titanium dioxide and apatite are filled deep inside the void portion of the porous alumina sintered body does not deteriorate the adsorption effect and the decomposition removal effect even if washed for a long time. Therefore, tiles in which the porous alumina sintered body and the porous alumina sintered body are filled with the titanium dioxide alone or both the components of titanium dioxide and apatite can be adsorbed with organic substances and various germs and decomposed and removed. Therefore, it can be very suitably applied as an environmental purification tile to an outer wall of a building, an inner wall of a water storage tank or a pool, a wall of a house including a bathroom, a kitchen and the like.
[0033]
【The invention's effect】
The environmental purification tile of the present invention is a porous alumina sintered body obtained by sintering alumina powder having a purity of 98.5% by weight or more and having a porosity of 20 to 50%, or a porous alumina sintered body having a porosity of 20 to 50%. The voids are filled with titanium dioxide alone or both components of titanium dioxide and apatite. The high-purity porous alumina sintered body itself has an excellent adsorption effect on organic substances and various germs, but by filling titanium dioxide fine powder in the voids, the adsorbed organic substances and various germs can be removed. It can be decomposed and removed by the photocatalytic effect. Further, by filling the voids with fine apatite powder in addition to fine titanium dioxide powder, it is possible to further improve the effect of adsorbing and decomposing and removing organic substances and various germs. Further, the environmental purification tile of the present invention can be filled with titanium dioxide alone or both components of titanium dioxide and apatite up to the inner part of the void portion of the porous alumina sintered body. Since the apatite and the fine apatite powder are not removed, even if the washing and cleaning are repeated for a long period of time, the adsorption effect and the decomposition and removal effect do not deteriorate, and the environmental purification effect does not decline. Therefore, the environmental purification tile of the present invention can be very suitably applied as an environmental purification tile to an outer wall of a building, an inner wall of a water storage tank or a pool, a wall of a house including a bathroom, a kitchen and the like.

Claims (10)

20〜50%の空隙率を有する98.5重量%以上の純度のアルミナ多孔質体によって形成されていることを特徴とする環境浄化タイル。An environmental purification tile comprising an alumina porous body having a porosity of 20 to 50% and a purity of 98.5% by weight or more. アルミナ多孔質体の空隙部に二酸化チタンを充填してなることを特徴とする請求項1に記載の環境浄化タイル。The environmental purification tile according to claim 1, wherein the porous portion of the alumina porous body is filled with titanium dioxide. 二酸化チタンをアルミナ多孔質体の表面から0.2mm以上の深さまでの空隙部に充填してなることを特徴とする請求項2に記載の環境浄化タイル。3. The environmental purification tile according to claim 2, wherein a void portion extending from the surface of the porous alumina body to a depth of 0.2 mm or more is filled with titanium dioxide. アルミナ多孔質体の空隙部に二酸化チタンとアパタイトを充填してなることを特徴とする請求項1に記載の環境浄化タイル。The environmental purification tile according to claim 1, wherein the porous portion of the alumina porous body is filled with titanium dioxide and apatite. アルミナ多孔質体の空隙部に充填する二酸化チタンとアパタイトの比率が、重量比で二酸化チタン:アパタイト=7:93〜70:30であることを特徴とする請求項4に記載の環境浄化タイル。5. The environmental purification tile according to claim 4, wherein a ratio of titanium dioxide and apatite to be filled in the voids of the porous alumina body is titanium dioxide: apatite = 7: 93 to 70:30 by weight ratio. 二酸化チタンとアパタイトを、アルミナ多孔質体の表面から0.2mm以上の深さまでの空隙部に充填してなることを特徴とする請求項4または請求項5に記載の環境浄化タイル。6. The environmental purification tile according to claim 4, wherein titanium dioxide and apatite are filled in a void portion having a depth of 0.2 mm or more from the surface of the porous alumina body. 98.5重量%以上の純度の1μm以下の粒径アルミナ粉末を平板状に加圧成形し、次いで1373〜1623Kの温度で焼結することを特徴とする環境浄化タイルの製造方法。A method for producing an environmental purification tile, characterized in that alumina powder having a purity of 98.5% by weight or more and a particle size of 1 μm or less is pressure-formed into a flat plate and then sintered at a temperature of 1373 to 1623K. 98.5重量%以上の純度の1μm以下の粒径アルミナ粉末を平板状に加圧成形し、次いで1373〜1623Kの温度で焼結した後、得られた多孔質焼結体を二酸化チタン微粉を縣濁した液中に浸漬して焼結体の空隙部に二酸化チタン微粉を充填させた後乾燥し、その後573〜1173Kに加熱し二酸化チタンをアナターゼ型二酸化チタンとすることを特徴とする環境浄化タイルの製造方法。Alumina powder having a purity of 98.5% by weight or more and a particle size of 1 μm or less is pressure-formed into a flat plate and then sintered at a temperature of 1373 to 1623K. Environmental purification characterized by immersing in a suspended liquid, filling the voids of the sintered body with titanium dioxide fine powder, drying, and then heating to 573 to 1173K to convert titanium dioxide to anatase type titanium dioxide. Tile manufacturing method. 98.5重量%以上の純度の1μm以下の粒径アルミナ粉末を平板状に加圧成形し、次いで1373〜1623Kの温度で焼結した後、得られた多孔質焼結体を二酸化チタン微粉とアパタイト微粉を縣濁した液中に浸漬して焼結体の空隙部に二酸化チタン微粉とアパタイト微粉を充填させた後乾燥し、その後573〜1173Kに加熱し二酸化チタンとアパタイトをそれぞれアナターゼ型二酸化チタンとアナターゼ型アパタイトとすることを特徴とする環境浄化タイルの製造方法。Alumina powder having a purity of 98.5% by weight or more and a particle size of 1 μm or less is pressed into a flat plate, and then sintered at a temperature of 1373 to 1623 K. Then, the obtained porous sintered body is mixed with titanium dioxide fine powder. Titanium dioxide fine powder and apatite fine powder are filled into the voids of the sintered body by dipping in a liquid in which apatite fine powder is suspended, and then dried, and then heated to 573 to 1173K to convert titanium dioxide and apatite to anatase type titanium dioxide. And producing an anatase type apatite. 容器に満たした二酸化チタン微粉を縣濁した液、または二酸化チタン微粉とアパタイト微粉を縣濁した液に多孔質焼結体を浸漬し、次いで容器を真空チャンバー内に入れ、真空チャンバー内を真空ポンプで吸引することにより、多孔質焼結体の空隙部に二酸化チタン微粉単独または二酸化チタン微粉とアパタイト微粉の両成分を充填することを特徴とする環境浄化タイルの製造方法。The porous sintered body is immersed in a liquid in which the titanium dioxide fine powder is suspended or a liquid in which the titanium dioxide fine powder and the apatite fine powder are suspended, then the container is placed in a vacuum chamber, and the vacuum pump is pumped through the vacuum chamber. A method for producing an environment-purifying tile, characterized in that the pores of a porous sintered body are filled with titanium dioxide fine powder alone or with both components of titanium dioxide fine powder and apatite fine powder by suction.
JP2003014688A 2003-01-23 2003-01-23 Environmental purification tile and its manufacturing method Withdrawn JP2004224641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014688A JP2004224641A (en) 2003-01-23 2003-01-23 Environmental purification tile and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014688A JP2004224641A (en) 2003-01-23 2003-01-23 Environmental purification tile and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004224641A true JP2004224641A (en) 2004-08-12

Family

ID=32902657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014688A Withdrawn JP2004224641A (en) 2003-01-23 2003-01-23 Environmental purification tile and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004224641A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058361A1 (en) * 2005-11-21 2007-05-24 Nippon Carbide Industries Co., Inc. Light reflecting material, package for light emitting element accommodation, light emitting device and process for producing package for light emitting element accommodation
WO2016048009A1 (en) * 2014-09-24 2016-03-31 (주)엘지하우시스 Visible light active photocatalyst tile
JP2018020310A (en) * 2016-07-20 2018-02-08 学校法人梅村学園 Photocatalystic composite and manufacturing method therefor
KR20180022059A (en) * 2016-08-23 2018-03-06 최정환 Ceramic-metal tile

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058361A1 (en) * 2005-11-21 2007-05-24 Nippon Carbide Industries Co., Inc. Light reflecting material, package for light emitting element accommodation, light emitting device and process for producing package for light emitting element accommodation
JPWO2007058361A1 (en) * 2005-11-21 2009-05-07 日本カーバイド工業株式会社 Light reflecting material, light emitting element storage package, light emitting device, and method of manufacturing light emitting element storage package
JP4729583B2 (en) * 2005-11-21 2011-07-20 日本カーバイド工業株式会社 Light reflecting material, light emitting element storage package, light emitting device, and method of manufacturing light emitting element storage package
US8450761B2 (en) 2005-11-21 2013-05-28 Nippon Carbide Industries Co., Inc. Package for light emitting element accommodation containing a substrate and a frame body, the frame body containing alumina and barium
WO2016048009A1 (en) * 2014-09-24 2016-03-31 (주)엘지하우시스 Visible light active photocatalyst tile
JP2018020310A (en) * 2016-07-20 2018-02-08 学校法人梅村学園 Photocatalystic composite and manufacturing method therefor
KR20180022059A (en) * 2016-08-23 2018-03-06 최정환 Ceramic-metal tile
KR101961856B1 (en) 2016-08-23 2019-03-25 최정환 Manufacturing method of ceramic-metal tile

Similar Documents

Publication Publication Date Title
JP3356437B2 (en) Photocatalyst, method for producing the same, and multifunctional member
JP4686536B2 (en) Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
TWI355968B (en) Nanosilver porous material and fabricating method
JP5150883B2 (en) Carbon nanosheet / titanate nanotube composite, carbon nanosheet / titania nanorod composite, production method thereof and use thereof
JP2008284373A (en) Osteophilic implants
Liu et al. A Pd/SBA-15 composite: synthesis, characterization and protein biosensing
CN104923150A (en) Lanthanum-loaded activated aluminium oxide defluorinating adsorbent and preparation method thereof
CN105727904B (en) A kind of preparation method of pernicious gas adsorbent
JP2004224641A (en) Environmental purification tile and its manufacturing method
CN104607142B (en) Micro-nano hierarchy MgO/MgCO3Compound and its application as defluorinating agent
WO2007039985A1 (en) Inorganic sintered material containing photocatalyst covered with silicon oxide film
JP2008043829A (en) Humidity-adjusting ceramic material containing photocatalyst coated with silicon oxide film
CN1384152A (en) Titania nano-paint for photocatalytic decomposition of organic matter and its prepn
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
CN100589877C (en) Photocatalyst product and preparing method
CN104768642A (en) Photocatalyst, and method for producing photocatalyst
US6803023B1 (en) Composite structure for deodorization or wastewater treatment
JP3431301B2 (en) Tile with photocatalytic function
US11772983B2 (en) Titania porous body and method for producing same
CN109701490A (en) Magnetic cobalt carbon attapulgite composite material and preparation method and application
US20030137068A1 (en) Method for manufacturing ceramic balls for water treatment
JP4724789B2 (en) Method for producing photocatalyst using foam ceramics and photocatalyst
JP7215667B2 (en) Particles, purification method
WO2005019134A1 (en) Method for preparing a monolith made of inorganic material
TW546168B (en) Composite member having photocatalyst function for deodorization or waste water treatment

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404