JP2716644B2 - Production method of bioactivity inhibitor - Google Patents

Production method of bioactivity inhibitor

Info

Publication number
JP2716644B2
JP2716644B2 JP5046866A JP4686693A JP2716644B2 JP 2716644 B2 JP2716644 B2 JP 2716644B2 JP 5046866 A JP5046866 A JP 5046866A JP 4686693 A JP4686693 A JP 4686693A JP 2716644 B2 JP2716644 B2 JP 2716644B2
Authority
JP
Japan
Prior art keywords
water
titania
optical semiconductor
mixture
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5046866A
Other languages
Japanese (ja)
Other versions
JPH06256540A (en
Inventor
逞詮 村田
等 三枝
司 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSYU CERAMICS CO., LTD.
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
SHINSYU CERAMICS CO., LTD.
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSYU CERAMICS CO., LTD., Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical SHINSYU CERAMICS CO., LTD.
Priority to JP5046866A priority Critical patent/JP2716644B2/en
Publication of JPH06256540A publication Critical patent/JPH06256540A/en
Application granted granted Critical
Publication of JP2716644B2 publication Critical patent/JP2716644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paper (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生物活性抑制材の製法
に係り、特に、大腸菌をはじめとする各種菌類、水槽の
水苔等の殺菌またはその活性を抑制することができる生
物活性抑制材の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bioactivity inhibitor, and more particularly to a bioactivity inhibitor capable of sterilizing or inhibiting the activity of various fungi such as Escherichia coli and water moss in a water tank. Related to the production method.

【0002】[0002]

【従来の技術】従来から、微生物の殺菌またはその活性
を抑制する方法として、例えば加熱殺菌法、紫外線殺菌
法、超音波による細胞膜破壊法、電気またはガスを用い
た殺菌法、毒物による殺菌法、高磁場殺菌法、ハロゲン
系または界面活性剤系の薬剤を用いた薬剤殺菌法等、種
々の方法が広範囲な分野で利用されている。
2. Description of the Related Art Conventionally, methods for sterilizing microorganisms or suppressing their activity include, for example, heat sterilization, ultraviolet sterilization, cell membrane destruction by ultrasonic waves, sterilization using electricity or gas, sterilization using toxic substances, Various methods are used in a wide range of fields, such as a high magnetic field sterilization method and a drug sterilization method using a halogen-based or surfactant-based drug.

【0003】しかしながら、このような微生物の殺菌ま
たはその活性を抑制する方法は、何れも比較的大掛かり
な装置を必要とし、また、即効性を重視するあまり、殺
菌と同時に菌が付着した製品そのものを破壊または損傷
するおそれが伴うことが多かった。
[0003] However, such methods of sterilizing microorganisms or suppressing their activity all require relatively large-scale equipment, and the emphasis is placed on immediate effect, so that the products themselves to which bacteria have adhered at the same time as sterilization are used. Often accompanied by the risk of destruction or damage.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の問題点を解決し、複雑な装置を必要とするこ
となく、生物活性を抑制しようとする水系に浸漬するだ
けで、手軽に、しかも効果的に殺菌またはその生物活性
を抑制することができる生物活性抑制材の製法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and simply by immersing in an aqueous system whose biological activity is to be suppressed without requiring a complicated apparatus. Another object of the present invention is to provide a method for producing a bioactivity inhibitor which can sterilize or effectively suppress the biological activity thereof.

【0005】[0005]

【課題を解決するための手段】本発明者は、光半導体、
例えばチタニア(TiO2 )粉末に、酸素の存在下に紫
外光を照射すると安定な炭化水素を分解する特性を発揮
すること、および前記チタニア粉末に金属を担持した光
電気化学セルに、水の存在下に紫外光を照射すると強い
酸化力を発揮し、水を酸化して酸素を発生する特性があ
ることに着目し、このような光電気化学セルの特性を微
生物の殺菌またはその活性を抑制する分野で利用するた
めに鋭意研究の結果、チタニア粒子に金属を担持した光
電気化学セルにフッ素樹脂粉末を混合した混合物から形
成した被膜は水系に浸漬されると各種菌類、水苔等の微
生物を殺菌またはその活性を抑制する特性を発揮するこ
と、および油等の汚染物質が付着しにくく、また疏水性
および耐久性に優れたものになることを見出し、本発明
に到達した。
Means for Solving the Problems The present inventor has proposed an optical semiconductor,
For example, when a titania (TiO 2 ) powder is irradiated with ultraviolet light in the presence of oxygen, it exhibits a property of decomposing a stable hydrocarbon, and the presence of water in a photoelectrochemical cell in which a metal is supported on the titania powder. Focusing on the fact that when exposed to ultraviolet light underneath, it has a strong oxidizing power and has the property of oxidizing water to generate oxygen, and the characteristics of such a photoelectrochemical cell are killed by microorganisms or their activity is suppressed. As a result of intensive research for use in the field, the coating formed from the mixture of fluorochemical resin powder in the photoelectrochemical cell in which the metal is supported on titania particles, when immersed in an aqueous system, can remove various fungi, moss and other microorganisms. The present inventors have found that they exhibit properties of sterilizing or inhibiting the activity thereof, that they are hard to adhere to contaminants such as oil, and that they have excellent hydrophobicity and durability.

【0006】すなわち、本発明は、光半導体微粒子に金
属を担持した光電気化学セルとフッ素樹脂粉末との混合
を基材表面に溶射して被膜を形成することを特徴とす
る生物活性抑制材の製法に関する。
Namely, the present invention provides bioactive suppressor, characterized in that in a mixture of photoelectrochemical cell and the fluororesin powder carrying a metal on the optical semiconductor particles sprayed on the substrate surface to form a film Regarding the manufacturing method.

【0007】[0007]

【作用】光半導体微粒子、例えばチタニアに金属を担持
した光電気化学セルとフッ素樹脂粉末との混合物からな
る被膜(または該被膜を有する基材)に紫外光(波長4
00nm以下)が照射されると、前記チタニアの価電子
帯の電子が伝導帯に励起され、価電子帯には正孔が生じ
る。この正孔はチタニア表面付近に生じた電位勾配に沿
って表面に移動する。この正孔は、ほぼバンドギャップ
のエネルギ分だけ強い酸化力を有しているので、この酸
化力によって前記チタニア表面に水が存在すると、その
水が酸化され、酸素が発生する。従ってこの被膜または
基材を水系に浸漬すると、この活性酸素によって微生物
活性が抑制されるかまたは微生物そのものを死滅させる
ことができる。なお伝導帯に励起された電子は対極であ
る前記チタニアに担持された金属に移動し、水を還元し
て水素を発生する。
An ultraviolet light (wavelength 4) is applied to a film (or a substrate having the film) made of a mixture of an optical semiconductor fine particle, for example, a photoelectrochemical cell having a metal supported on titania and a fluororesin powder.
(Not more than 00 nm), electrons in the valence band of the titania are excited to the conduction band, and holes are generated in the valence band. These holes move to the surface along the potential gradient generated near the titania surface. Since these holes have a strong oxidizing power substantially by the energy of the band gap, if water is present on the titania surface due to the oxidizing power, the water is oxidized to generate oxygen. Therefore, when this coating or substrate is immersed in an aqueous system, the active oxygen can suppress the microbial activity or kill the microbe itself. Note that the electrons excited in the conduction band move to the metal supported on the titania, which is a counter electrode, and reduce water to generate hydrogen.

【0008】本発明において光半導体としては、例えば
チタニア、チタン酸ストロンチウム、ニオブ酸カリ等が
あげられ、中でもチタニアが好ましく用いられる。チタ
ニア(4価)としては、結晶構造がルチル型のものも使
用可能であるが、アナターゼ型のものが表面積が大きく
より活性であるところから、好ましく用いられる。生物
活性抑制の機能は光半導体セラミックおよび担持金属い
ずれにおいても、表面積との関わりが極めて大きいた
め、原理的には、細いほうがよい。チタニア粒子の粒子
径は、0.1〜60μmが好ましく、特に1.0〜10
μmであることが好ましい。チタニア粒子に担持する金
属としては、例えば銀(Ag)、ニッケル(Ni)、白
金(Pt)等の毒性の少ない導電性金属があげられる。
例えばAgは医療用生物活性抑制材に、Niは水苔の発
生抑制等を目的とする一般産業用生物活性抑制材に好適
に使用される。
In the present invention, the optical semiconductor includes, for example, titania, strontium titanate, potassium niobate, etc., of which titania is preferably used. As the titania (tetravalent), those having a rutile type crystal structure can be used, but the anatase type is preferably used because it has a large surface area and is more active. In both the photosemiconductor ceramic and the supported metal, the function of suppressing the biological activity is extremely related to the surface area. Therefore, in principle, the thinner the better, the better. The particle size of the titania particles is preferably from 0.1 to 60 μm, particularly preferably from 1.0 to 10 μm.
μm is preferred. Examples of the metal supported on the titania particles include conductive metals having low toxicity such as silver (Ag), nickel (Ni), and platinum (Pt).
For example, Ag is suitably used as a bioactivity inhibitor for medical use, and Ni is suitably used as a bioactivity inhibitor for general industry for the purpose of suppressing the generation of moss.

【0009】本発明において、チタニア粒子への金属の
担持方法としては、例えば遠心力を利用した物理的な方
法、電解メッキ法、超微粒子の金属パウダーを用いた複
合被膜形成法、溶射法、金属塩溶液への浸漬法、有機系
金属、例えばアルコキシドに浸漬した後、熱処理する方
法等の公知の方法が適用でき、特に限定されない。ま
た、金属の担持量は、0.5〜30重量%が好ましく、
特に5〜15%が好ましい。
In the present invention, as a method of supporting a metal on titania particles, for example, a physical method using centrifugal force, an electrolytic plating method, a composite coating forming method using ultrafine metal powder, a thermal spraying method, a metal spraying method, Known methods such as a method of dipping in a salt solution, a method of dipping in an organic metal such as an alkoxide, and a heat treatment can be applied, and are not particularly limited. Further, the amount of metal carried is preferably 0.5 to 30% by weight,
Particularly, 5 to 15% is preferable.

【0010】チタニア粒子に金属を担持した光電気化学
セルと混合するフッ素樹脂粉末の粒子径は、均一な混合
物を形成することができれば特に限定されない。チタニ
ア光電気化学セルへのフッ素樹脂粉末の混合割合は重量
比で、例えば5〜90%であり、好ましくは、10〜2
0%である。本発明において、チタニア微粒子に金属を
担持した光電気化学セルとフッ素樹脂粉末との混合物
(以下、原料混合物ということがある)を該フッ素樹脂
の融点以上に加熱し、被膜状に成形する方法としては、
公知の被膜形成方法、例えばインフレージョン法、カレ
ンダーロール法、流延法等をあげることができる。被膜
の厚さは用途により適宜選択することができる。
[0010] The particle diameter of the fluororesin powder mixed with the photoelectrochemical cell in which titania particles carry a metal is not particularly limited as long as a uniform mixture can be formed. The mixing ratio of the fluororesin powder to the titania photoelectrochemical cell is, for example, 5 to 90 % by weight, preferably 10 to 2%.
0%. In the present invention, as a method of heating a mixture of a photoelectrochemical cell in which titania fine particles carry a metal and a fluororesin powder (hereinafter, sometimes referred to as a raw material mixture) to a temperature equal to or higher than the melting point of the fluororesin, and forming a film. Is
Known film forming methods, for example, an inflation method, a calender roll method, a casting method and the like can be used. The thickness of the coating can be appropriately selected depending on the application.

【0011】本発明において、基材上に前記原料混合物
の被膜を形成するには、基材上に原料混合物を溶射する
方法が好適である。溶射はスプレーガンを用いて行なう
ことができるが、原料中のフッ素樹脂の劣化を最小限に
するために、低温溶射装置を用いることが望ましい。こ
の種の装置としては、例えばガスノズルの先端部に形成
されるガスフレームの外周にエアジェット流によるエア
カーテンを形成し、該エアカーテンの外側から溶射材を
供給し、前記ガスフレームの熱を間接的に溶射材に与え
ることにより、該溶射材を軟化し、この軟化した溶射材
を被覆基材表面に噴射すると同時に、あらかじめ基材に
与えられた予熱によって溶射粒子を互いに溶融融合して
無気孔の、強い結合被膜を形成するものである。このよ
うな低温溶射ガンとしては、例えばフランスSocie
te Nouvelle deMetallisati
on Industries社製のJET−PMR型ガ
ンがあげられる。
In the present invention, in order to form a film of the raw material mixture on the substrate, a method of spraying the raw material mixture on the substrate is preferable. Thermal spraying can be performed using a spray gun, but it is desirable to use a low-temperature thermal spraying apparatus in order to minimize deterioration of the fluororesin in the raw material. As an apparatus of this kind, for example, an air curtain is formed by an air jet flow on an outer periphery of a gas frame formed at a tip portion of a gas nozzle, a spray material is supplied from outside the air curtain, and heat of the gas frame is indirectly transmitted. The sprayed material is softened by being applied to the sprayed material, and the softened sprayed material is sprayed onto the surface of the coated base material. To form a strong bonding film. As such a low-temperature spray gun, for example, French Society
te Nouvelle deMetallisati
A JET-PMR type gun manufactured by on Industries.

【0012】基材としては、前記原料混合物の被膜を表
面に形成できるものであれば、特に限定されないが、例
えば各種高分子材料からなるシート、フィルム、円筒、
リングハニカム等の成形品、板、紙、布、不織布、繊維
積層体(ウエッブ)等をあげることができる。本発明に
おけるフッ素樹脂は、原料混合物に被膜形成性を与える
とともに、被膜または基材の發水性、疏水性を向上さ
せ、また耐汚染性、例えば油等の汚染物質の付着を抑制
し、耐久性を向上させるはたらきをする。
The substrate is not particularly limited as long as it can form a film of the raw material mixture on its surface. Examples of the substrate include sheets, films, cylinders, and cylinders made of various polymer materials.
Examples include molded articles such as ring honeycombs, boards, papers, cloths, nonwoven fabrics, and fiber laminates (webs). The fluororesin in the present invention imparts film forming properties to the raw material mixture, improves water repellency and hydrophobicity of the film or the base material, and also has stain resistance, for example, suppresses adhesion of contaminants such as oil, and has durability. Work to improve.

【0013】本発明によって製造された生物活性抑制材
は、単独で、または他の素材と組み合わせて用いられ、
殺菌または生物活性を抑制しようとする水系に浸漬また
は接触させることにより、その系に存在する微生物等の
活性を抑制することができる。本発明の生物活性抑制材
の適用分野としては、例えば以下の分野があげられる。
すなわち、医療分野で、例えば高温滅菌することが不可
能な器具の消毒、消毒液の殺菌、黄色ブドウ球菌の殺菌
等への適用、食品工業の分野で、例えば豆腐等の鮮度保
持、各種水槽の浄化、食品貯蔵容器の殺菌、食用油の腐
敗防止等への適用、バイオケミカルの分野で、例えば無
菌状態での植物の育苗、水耕栽培等への適用、一般工業
の分野で、例えば切削油の腐食防止、取水および排水口
の藻の発生防止、水関連公害防止等への適用、および海
洋開発、一般家庭等のあらゆる分野における植物活性の
抑制被膜として使用することができる。本発明によって
製造した生物活性抑制材を船底に適用することにより、
船底への貝類および藻類の付着を防止することができ
る。
The bioactivity inhibitor produced according to the present invention can be used alone or in combination with other materials,
By immersing or contacting in an aqueous system in which sterilization or biological activity is to be suppressed, the activity of microorganisms and the like existing in the system can be suppressed. The field of application of the bioactivity inhibitor of the present invention includes, for example, the following fields.
That is, in the medical field, for example, disinfection of instruments that cannot be sterilized at high temperature, disinfection of disinfectants, application to disinfection of Staphylococcus aureus, etc., in the field of food industry, for example, maintaining freshness of tofu and the like, various water tanks Purification, sterilization of food storage containers, application to rot prevention of edible oil, etc., in the field of biochemicals, for example, application to aseptic plant raising, hydroponic cultivation, etc., in the general industrial field, for example, cutting oil It can be used as a coating for preventing corrosion of water, preventing the occurrence of algae in water intake and drainage, preventing water-related pollution, and suppressing plant activity in all fields such as marine development and general households. By applying the bioactivity inhibitor produced according to the present invention to the ship bottom,
It is possible to prevent shellfish and algae from adhering to the ship bottom.

【0014】[0014]

【実施例】次に本発明を実施例によってさらに詳細に説
明する。 実施例1 5〜15μmのチタニア粒子に複合被膜形成法により、
Niを10重量%担持して光電気化学セルとし、この光
電気化学セルに、粒径1.0μm以下のテトラフルオロ
エチレン粉末(商品名テフロン:デュポン社の商標)を
90重量%混合し、この混合物を、SNMI社製のJE
T−PMR型ガンを用いて、約3000℃で、パインダ
ーを用いることなく、直接ポリエステル不織布に、その
膜圧が50μmになるように溶射して被膜を形成し、本
発明の光半導体クロスを形成した。これを切断して1
3.8cm×17.8cmの光半導体クロス2枚を得
た。
Next, the present invention will be described in more detail with reference to examples. Example 1 A composite film forming method was applied to 5 to 15 μm titania particles.
Ni is supported at 10% by weight to form a photoelectrochemical cell, and 90% by weight of tetrafluoroethylene powder (trade name: Teflon: a trademark of DuPont) having a particle size of 1.0 μm or less is mixed into the photoelectrochemical cell. The mixture was prepared using a SNMI JE
Using a T-PMR type gun, a coating is formed directly on a polyester non-woven fabric at about 3000 ° C. without using a binder so that the film pressure becomes 50 μm, thereby forming an optical semiconductor cloth of the present invention. did. Cut this one
Two 3.8 cm × 17.8 cm optical semiconductor cloths were obtained.

【0015】次いで、容量7リットルの水槽(日本水槽
工業社製)に、栄養塩類としてアンモニア性窒素1mg
/リットル、リン0.1mg/リットル、藻類殖種5m
lを添加した水道水を満たし、前記光半導体クロス2枚
を浸漬し、水苔の発生状況を観察した。なお、水温は1
9℃±1℃に保持され、減量した水に相当する量の水を
追加して観察を継続した。また水槽は、散気管によって
散気を続けた。その結果、観察開始後22日経過しても
水苔の発生は認められなかった。観察開始後22日目に
光半導体クロスの一枚を取り除き、藻類殖種をさらに5
ml添加してさらに観察を続けたところ、その後18日
経過しても水苔の発生は認められなかった。観察開始後
40日目に残りの光半導体クロスを取り出してさらに観
察を続けたところ、観察開始後44日経過しても水苔の
発生は認められなかった。
Next, 1 mg of ammoniacal nitrogen as nutrients was placed in a 7-liter water tank (manufactured by Nippon Water Tank Co., Ltd.).
/ Liter, phosphorus 0.1mg / liter, algal breeding species 5m
1 was added to tap water, and the two optical semiconductor cloths were immersed, and the occurrence of water moss was observed. The water temperature is 1
The temperature was kept at 9 ° C. ± 1 ° C., and observation was continued by adding an amount of water corresponding to the reduced water. The aquarium continued to be inflated with an air diffuser. As a result, no moss was generated even after 22 days from the start of observation. On the 22nd day after the start of the observation, one of the optical semiconductor cloth was removed, and 5 more algal breeding species were obtained.
Further observation was continued after adding ml, and no generation of water moss was observed even after 18 days had elapsed. On the 40th day after the start of the observation, the remaining optical semiconductor cloth was taken out, and the observation was further continued. No generation of moss was observed even after 44 days from the start of the observation.

【0016】本実施例において、光半導体クロスを全部
抜き出した後も発藻抑制効果が持続することが分かっ
た。 比較例1 光半導体クロスを浸漬しない以外は前記実施例1と同様
にして水苔の発生を観察したところ、観察開始後6日目
に散気管、壁面等に薄く緑色の藻類が発生した。また観
察開始後8日目には緑色がさらに濃くなった。観察開始
後22日目には、藻類の死滅によって水の色が茶色に変
化した。
In this example, it was found that the algae-suppressing effect was maintained even after all of the optical semiconductor cloth was extracted. Comparative Example 1 The occurrence of water moss was observed in the same manner as in Example 1 except that the optical semiconductor cloth was not immersed. On the 6th day after the start of the observation, thin green algae were generated on the diffuser tube, wall surface, and the like. On the 8th day after the start of observation, the green color became deeper. On the 22nd day after the start of the observation, the water color changed to brown due to the death of the algae.

【0017】実施例1および比較例1における水中の栄
養塩類濃度の変化を表1に示す。
Table 1 shows the changes in nutrient concentrations in water in Example 1 and Comparative Example 1.

【0018】[0018]

【表1】 註1)添加したNH3 −Nは試験開始後6日目には全て
硝酸性窒素に変化した。
[Table 1] Note 1) All of the added NH 3 -N changed to nitrate nitrogen on the sixth day after the start of the test.

【0019】註2)試験開始後12日目には比較例1の
窒素は全て藻類に取り込まれた。表1から、光半導体ク
ロスを浸漬した実施例1は藻類の発生が効果的に抑制さ
れたことが分かる。 実施例2 実施例1で作成した光半導体クロスを5mm×5mmに
切断し、これに1ml当り約106個になるように調整
した大腸菌培養液を一様に接種し、20〜25℃(室
温)で、750〜800lux(市販40w螢光灯)の
光を照射しながら保存し、一定時間後にSCDLP(日
本製薬製)10mlで供試品片上の生残菌を洗い出し、
この洗い出し液について菌数測定用培地による混釈平板
培養法(35℃2日間)により生菌数を測定し、供試品
片1枚当りの生菌数に換算したところ、当初9.0×1
5 個あった菌数は0.5時間経過後以降は10以下と
なった。
Note 2) On the 12th day after the start of the test, all the nitrogen of Comparative Example 1 was taken into the algae. Table 1 shows that Example 1 in which the optical semiconductor cloth was immersed effectively suppressed the generation of algae. Example 2 The photosemiconductor cloth prepared in Example 1 was cut into a piece of 5 mm × 5 mm, and an Escherichia coli culture solution adjusted to be about 10 6 pieces / ml was uniformly inoculated into the cut piece, and then inoculated at 20 to 25 ° C. (room temperature). ), And preserved while irradiating with light of 750 to 800 lux (commercially available 40 w fluorescent lamp). After a certain period of time, surviving bacteria on the test piece were washed out with 10 ml of SCDLP (manufactured by Nippon Pharmaceutical Co.).
The number of viable bacteria was measured for this washed-out liquid by a pour plate method (35 ° C. for 2 days) using a culture medium for measuring the number of bacteria, and converted to the number of viable bacteria per test piece. 1
0 5 was the number of bacteria after after 0.5 hours was 10 or less.

【0020】比較例2 実施例2で供試品片に接種したものと同様の菌液を同量
シャーレに分注し、同様に保存して同様の試験を行った
ところ、当初9.0×105 個あった菌数は、1時間後
に8.7×105 個、6時間後には1.1×106 個、
24時間後には1.1×106 個となった。
Comparative Example 2 The same bacterial solution as that inoculated to the test piece in Example 2 was dispensed into the same amount of petri dish, stored in the same manner, and subjected to the same test. The number of 10 5 bacteria was 8.7 × 10 5 after 1 hour, 1.1 × 10 6 after 6 hours,
After 24 hours, the number was 1.1 × 10 6 .

【0021】実施例2および比較例2の結果を表2に示
The results of Example 2 and Comparative Example 2 are shown in Table 2.

【0022】[0022]

【表2】 なお、実施例2において、光半導体クロスの製作過程で
チタニア粒子に担持したAgによる殺菌機能を補正する
ためにAgを無電解メッキした基材の殺菌機能を実施例
2と同様にして調べたことろ、30分程度の経時におい
ては決定的な効果はみられなかった。
[Table 2] In Example 2, in order to correct the sterilizing function of Ag carried on the titania particles in the process of manufacturing the optical semiconductor cloth, the sterilizing function of the substrate electrolessly plated with Ag was examined in the same manner as in Example 2. After a lapse of about 30 minutes, no definitive effect was observed.

【0023】以上から、本実施例2の光半導体クロスは
顕著な大腸菌殺菌作用があることが分かる。 実施例3 実施例1で用いた原料混合物をスリットノズルを有する
溶融押出機に供給し、約300℃でシート状に押出し、
厚さ約1mmのシート状物を得た。このシート状物を実
施例1と同じ寸法の試験片に切断し、実施例1と同様に
テストしたところ、同様なテスト結果が得られた。
From the above, it can be seen that the photosemiconductor cloth of Example 2 has a remarkable bactericidal action against Escherichia coli. Example 3 The raw material mixture used in Example 1 was supplied to a melt extruder having a slit nozzle and extruded into a sheet at about 300 ° C.
A sheet having a thickness of about 1 mm was obtained. This sheet was cut into test pieces having the same dimensions as in Example 1 and tested in the same manner as in Example 1. As a result, similar test results were obtained.

【0024】[0024]

【発明の効果】本願の請求項1記載の発明によれば、光
半導体微粒子であるチタニアに金属を担持した光電気化
学セルとフッ素樹脂粉末との混合物によって成形した
膜を有する基材を被処理水中に浸漬またはこれと接触さ
せることにより、優れた殺菌作用および生物活性抑制作
用が得られるので、各種産業において生物活性抑制材と
して有用に使用することができる。本願の請求項2記載
の発明によれば、溶射装置として、ガスフレームの外周
にエアカーテンを形成し、該エアカーテンを介して間接
的に溶射材を加熱する溶射装置を用いることにより、原
料中のフッ素樹脂の劣化を最小限に抑えることができ
る。
According to the invention of claim 1, wherein, according to the present invention, the molded with a mixture of photoelectrochemical cell and the fluororesin powder metal to titania is an optical semiconductor microparticles carrying
By immersing or contacting the substrate having the membrane in the water to be treated, an excellent bactericidal action and a biological activity suppressing action can be obtained, so that it can be usefully used as a biological activity suppressing material in various industries. Claim 2 of the present application
According to the invention, as the thermal spraying device, the outer periphery of the gas frame
Forming an air curtain, and indirectly through the air curtain
By using a thermal spraying device that heats the thermal spray material
Degradation of fluororesin in the material can be minimized
You.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/30 B32B 27/30 D D06M 15/256 D06M 15/256 D21H 19/10 D21H 1/34 Z (72)発明者 桜田 司 長野県木曽郡上松町荻原1391−3 株式 会社信州セラミックス内 (56)参考文献 特開 昭63−278954(JP,A) 特開 昭61−76160(JP,A) 特開 昭62−66861(JP,A) 特開 平3−8448(JP,A) 特開 平6−254139(JP,A) 特開 昭58−125602(JP,A)──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B32B 27/30 B32B 27/30 D D06M 15/256 D06M 15/256 D21H 19/10 D21H 1/34 Z (72) Inventor Tsukasa Sakurada 1391-3 Ogiwara, Agematsu-cho, Kiso-gun, Nagano Pref. Shinshu Ceramics Co., Ltd. (56) References JP-A-63-278954 (JP, A) JP-A-61-76160 (JP, A) JP-A-62-66861 (JP, A) JP-A-3-8448 (JP, A) JP-A-6-254139 (JP, A) JP-A-58-125602 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光半導体微粒子に金属を担持した光電気
化学セルとフッ素樹脂粉末との混合物を基材表面に溶射
して被膜を形成することを特徴とする生物活性抑制材の
製法。
1. A method for producing a bioactivity inhibitor, comprising spraying a mixture of a photoelectrochemical cell in which a metal is supported on fine particles of an optical semiconductor and a fluororesin powder onto the surface of a substrate to form a coating.
【請求項2】 前記光電気化学セルとフッ素樹脂粉末と2. The photoelectrochemical cell and a fluororesin powder.
の混合物を基材表面に溶射する装置として、ガスフレーGas spray as a device for spraying a mixture of
ムの外周にエアカーテンを形成し、該エアカーテンを介An air curtain is formed on the outer periphery of the
して間接的に溶射材を加熱する溶射装置を用いることをTo use a thermal spraying device to indirectly heat the thermal spray material
特徴とする請求項1記載の生物活性抑制材の製法。The method for producing a biological activity inhibitor according to claim 1.
JP5046866A 1993-03-08 1993-03-08 Production method of bioactivity inhibitor Expired - Lifetime JP2716644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5046866A JP2716644B2 (en) 1993-03-08 1993-03-08 Production method of bioactivity inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5046866A JP2716644B2 (en) 1993-03-08 1993-03-08 Production method of bioactivity inhibitor

Publications (2)

Publication Number Publication Date
JPH06256540A JPH06256540A (en) 1994-09-13
JP2716644B2 true JP2716644B2 (en) 1998-02-18

Family

ID=12759268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5046866A Expired - Lifetime JP2716644B2 (en) 1993-03-08 1993-03-08 Production method of bioactivity inhibitor

Country Status (1)

Country Link
JP (1) JP2716644B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094897B2 (en) * 1995-03-20 2000-10-03 東陶機器株式会社 Method for hydrophilizing fluororesin member surface
JP4624698B2 (en) * 2004-03-12 2011-02-02 有限会社ヤマカツラボ Photocatalyst carrying board
KR102484742B1 (en) * 2017-04-04 2023-01-05 바스프 코포레이션 On-vehicle hydrogen generation and use in exhaust streams

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176160A (en) * 1984-09-21 1986-04-18 松永 是 Cell killing method
JPS63278954A (en) * 1987-05-09 1988-11-16 Nitto Electric Ind Co Ltd Photoconductive polytetrafluoroethylene sheet and its production

Also Published As

Publication number Publication date
JPH06256540A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
JP5069637B2 (en) Visible light responsive photocatalytic coating
AU2007215443C1 (en) Methods and compositions for metal nanoparticle treated surfaces
US20120107592A1 (en) Active polymeric films
Gaw et al. Electrochemical approach for effective antifouling and antimicrobial surfaces
JP2012139690A5 (en)
JPH10251350A (en) Antimicrobial polymer, its production and its use
CN107018991B (en) Antibacterial film modified by silver-lysozyme nanoclusters
US7264739B2 (en) Dendrimer fluid purification method
Cushnie et al. Photobactericidal effects of TiO2 thin films at low temperatures—A preliminary study
Mitra et al. Scalable aqueous-based process for coating polymer and metal substrates with stable quaternized chitosan antibacterial coatings
Cao et al. H2O2 generation enhancement by ultrasonic nebulisation with a zinc layer for spray disinfection
Anjum et al. Preparation and biological characterization of plasma functionalized poly (ethylene terephthalate) antimicrobial sutures
Kışla et al. Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns
JPH038448A (en) Photocatalytic functional body and multifunctional material using the same
JP2716644B2 (en) Production method of bioactivity inhibitor
Sukhareva et al. A review of antimicrobial polymer coatings on steel for the food processing industry
CN114059047A (en) Method for constructing antibacterial micro-nano structure on surface of metal substrate
JP2017000969A (en) Production raw material of electrolyzed water, electrolytic solution using the same, electrolyzed water produced from electrolytic solution, and method for producing electrolytic solution and electrolyzed water
Mora-Boza et al. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition
JP5523777B2 (en) Aquatic organism adhesion prevention member and method for producing the same
Tabbasum et al. Sol–gel nanocomposite coatings for preventing biofilm formation on contact lens cases
CN114774930A (en) Preparation method and application of titanium dioxide antibacterial anti-adhesion composite surface
Kolzunova Antibacterial effect and biodegradation of electrosynthesized polymethylolacrylamide films
AU2012202745B2 (en) Methods and compositions for metal nanoparticle treated surfaces
CN110804179A (en) High-molecular ionic liquid with good film forming property and long-term antibacterial activity and application thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971007