JPH06254334A - Gaseous nitrogen separation method - Google Patents

Gaseous nitrogen separation method

Info

Publication number
JPH06254334A
JPH06254334A JP5156139A JP15613993A JPH06254334A JP H06254334 A JPH06254334 A JP H06254334A JP 5156139 A JP5156139 A JP 5156139A JP 15613993 A JP15613993 A JP 15613993A JP H06254334 A JPH06254334 A JP H06254334A
Authority
JP
Japan
Prior art keywords
nitrogen gas
adsorbent
adsorption
temperature
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5156139A
Other languages
Japanese (ja)
Inventor
Shusaku Yokosuka
秀作 横須賀
Akira Uragami
旦 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP5156139A priority Critical patent/JPH06254334A/en
Publication of JPH06254334A publication Critical patent/JPH06254334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To provide a gaseous nitrogen separation method where even if the temperature around an adsorbent is changed, gaseous nitrogen of a specified concentration is obtained. CONSTITUTION:In a method for separating gaseous nitrogen from a gaseous starting material, at least two processes, such as an adsorption process where the gaseous starting material mainly consisting of gaseous nitrogen is fed to absorbers 3, 4 packed with an adsorbent in a state of pressurization to preferentially adsorb gas other than the gaseous nitrogen by the adsorbent and the gaseous nitrogen of high concentration is extracted to outside the absorbers and a regeneration process where the absorbers 3, 4 are evacuated to desorb the gas adsorbed by the adsorbent are repeated successively and alternatively. The temperature around the adsorbent is detected and the pressure in the adsorption process is changed according to the detected temperature based on the correlation between temperature-gaseous nitrogen concentration-pressure in the adsorption process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸着剤の選択的吸着特性
を利用して、窒素ガスを含む混合ガスから所定濃度の窒
素ガスを分離回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and recovering a predetermined concentration of nitrogen gas from a mixed gas containing nitrogen gas by utilizing the selective adsorption property of an adsorbent.

【0002】[0002]

【従来の技術】近年、圧力変動方式による窒素ガス分離
方法が注目されている。この方法によれば圧縮装置で加
圧した空気を供給するだけで簡単に窒素ガスを分離回収
できるため、従来の窒素ガスボンベの交換やタンクロー
リーによる窒素ガスの輸送等の工程が省略できる。ま
た、窒素ガス単価も従来の窒素ガスに比較して安価なも
のとなっている。
2. Description of the Related Art In recent years, attention has been paid to a nitrogen gas separation method using a pressure fluctuation method. According to this method, the nitrogen gas can be easily separated and recovered by simply supplying the air pressurized by the compressor, so that the conventional steps such as the replacement of the nitrogen gas cylinder and the transportation of the nitrogen gas by the tank truck can be omitted. Also, the unit cost of nitrogen gas is cheaper than that of conventional nitrogen gas.

【0003】前記方法を実施するための装置は一般に、
原料となる空気を加圧して供給するための圧縮機、吸着
剤を充填した2塔以上の吸着塔、製品を貯留するための
製品槽、これらを接続する配管、弁等から構成される。
An apparatus for carrying out the method is generally
It is composed of a compressor for pressurizing and supplying the raw material air, two or more adsorption towers filled with an adsorbent, a product tank for storing the product, a pipe connecting these, a valve and the like.

【0004】次にこの装置を用いた前記窒素ガス分離方
法について詳述する。まず、吸着塔の一方側から加圧し
た空気を送入し、吸着塔を昇圧させる。これにより吸着
塔内の吸着剤が加圧されて窒素ガス以外のガスを吸着
し、残った窒素ガスが吸着塔の他方側から分離回収され
る。この工程を一般に吸着工程という。吸着工程の実施
時間は吸着剤の特性によって異なるが、通常1分から4
分の間の任意の時間に設定される。
Next, the nitrogen gas separation method using this apparatus will be described in detail. First, pressurized air is fed from one side of the adsorption tower to pressurize the adsorption tower. As a result, the adsorbent in the adsorption tower is pressurized to adsorb gas other than nitrogen gas, and the remaining nitrogen gas is separated and recovered from the other side of the adsorption tower. This process is generally called an adsorption process. The duration of the adsorption process depends on the characteristics of the adsorbent, but it is usually 1 minute to 4 minutes.
Set to any time between minutes.

【0005】ついで吸着工程を終了した吸着塔と次に吸
着工程を実施する吸着塔とを連通せしめる。吸着工程が
完了した吸着塔には、その窒素ガス分離回収側に比較的
高濃度の窒素ガスが加圧された状態で存在しており、こ
のガスを次に吸着工程の行われる吸着塔に移送すること
により、窒素ガスの収率を向上することができる。この
工程を一般に均圧工程という。
Next, the adsorption tower that has completed the adsorption step and the adsorption tower that performs the next adsorption step are connected. In the adsorption tower where the adsorption process is completed, a relatively high concentration of nitrogen gas is present in a pressurized state on the nitrogen gas separation and recovery side, and this gas is transferred to the adsorption tower where the adsorption process is performed next. By doing so, the yield of nitrogen gas can be improved. This process is generally called a pressure equalization process.

【0006】次に均圧工程を終了した吸着塔を速やかに
減圧し、吸着剤の再生を行う。この行程を一般に再生工
程という。この再生工程を実施する方法は2種類あり、
その一つは真空装置などにより吸着塔内を強制的に減圧
せしめる方法であり、これを減圧再生といい、また、他
の一つは吸着塔内を大気と連通することにより吸着塔内
を減圧せしめる方法であり、これを常圧再生という。
Next, the pressure of the adsorption tower after the pressure equalization step is quickly reduced to regenerate the adsorbent. This process is generally called a regeneration process. There are two ways to carry out this regeneration process,
One is a method of forcibly depressurizing the inside of the adsorption tower using a vacuum device, which is called decompression regeneration, and the other is decompressing the inside of the adsorption tower by communicating the atmosphere inside the adsorption tower. This is a method of straining, and this is called normal pressure regeneration.

【0007】2塔以上の吸着塔を有する場合には、各吸
着塔における上記作動の位相を調整し、各吸着塔に対し
吸着工程−均圧工程−再生工程を順次交番的に実施する
こにより、窒素ガスを連続して分離回収することができ
る。
When there are two or more adsorption towers, the phase of the above operation in each adsorption tower is adjusted, and the adsorption step-equalizing step-regeneration step is carried out alternately for each adsorption tower. , Nitrogen gas can be continuously separated and recovered.

【0008】[0008]

【発明が解決しようとする課題】ところが、この窒素ガ
ス分離方法によって回収される窒素ガス濃度は、窒素ガ
スを分離回収する量及び吸着剤近傍の温度と密接な関係
があり、分離回収する量又は温度が変化することによっ
て窒素ガス濃度が変化する。図4は吸着剤の周囲の温度
変化に対する窒素ガス濃度(窒素ガスに対する余成分ガ
スである酸素ガスの濃度を測定し、換算したもの)の変
化を表したグラフであるが、同図に示すように、吸着剤
の周囲の温度変化に伴い、窒素ガス濃度が変化する。
However, the concentration of nitrogen gas recovered by this method for separating nitrogen gas is closely related to the amount of nitrogen gas to be separated and recovered and the temperature in the vicinity of the adsorbent. The nitrogen gas concentration changes as the temperature changes. FIG. 4 is a graph showing changes in nitrogen gas concentration (measured and converted from the concentration of oxygen gas, which is the residual component gas relative to nitrogen gas,) with respect to changes in the ambient temperature of the adsorbent. As shown in FIG. In addition, the nitrogen gas concentration changes as the ambient temperature of the adsorbent changes.

【0009】しかるに、窒素ガスの使用分野によっては
一定濃度の窒素ガスを要求される場合があるが、上述し
た通り、窒素ガス濃度は吸着剤の周囲の温度変化により
変動するため、従来はこれに対応できなかったのであ
る。
However, depending on the field of use of nitrogen gas, a certain concentration of nitrogen gas may be required, but as described above, the nitrogen gas concentration fluctuates due to changes in the ambient temperature of the adsorbent. I couldn't handle it.

【0010】本発明は以上の実情に鑑みなされたもので
あって、吸着剤の周囲の温度が変化しても、所定濃度の
窒素ガスを得ることができる窒素ガス分離方法の提供を
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nitrogen gas separation method capable of obtaining a nitrogen gas of a predetermined concentration even when the temperature around the adsorbent changes. .

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1に記載した発明は、吸着剤を充填
した吸着塔に、窒素ガスを主成分とする原料ガスを加圧
状態で供給して窒素ガス以外のガスを優先的に前記吸着
剤に吸着せしめ、高濃度の窒素ガスを吸着塔外に抽出せ
しめる吸着工程と、前記吸着塔内を減圧し、吸着剤に吸
着せしめたガスを放出せしめる再生工程の少なくとも二
工程を順次交番的に繰り返して前記原料ガスから窒素ガ
スを分離する方法において、前記吸着剤近傍の温度を検
出し、温度−窒素ガス濃度−吸着工程における圧力の相
関関係を基礎に、検出した温度に応じて前記吸着工程に
おける圧力を変化させることを要旨とする。
In order to achieve the above object, the invention described in claim 1 of the present invention is to pressurize a raw material gas containing nitrogen gas as a main component in an adsorption tower filled with an adsorbent. Supply in the state to preferentially adsorb gases other than nitrogen gas to the adsorbent, and to extract high-concentration nitrogen gas outside the adsorption tower, and to reduce the pressure in the adsorption tower and adsorb it to the adsorbent. In the method of separating nitrogen gas from the raw material gas by alternately repeating at least two steps of a regeneration step of releasing the gas, the temperature in the vicinity of the adsorbent is detected, and the temperature-nitrogen gas concentration-pressure in the adsorption step is detected. The gist is to change the pressure in the adsorption step according to the detected temperature based on the correlation of the above.

【0012】また、請求項2に記載した発明は、吸着剤
を充填した吸着塔に、窒素ガスを主成分とする原料ガス
を加圧状態で供給して窒素ガス以外のガスを優先的に前
記吸着剤に吸着せしめ、高濃度の窒素ガスを吸着塔外に
抽出せしめる吸着工程と、前記吸着塔内を減圧し、吸着
剤に吸着せしめたガスを放出せしめる再生工程の少なく
とも二工程を順次交番的に繰り返して前記原料ガスから
窒素ガスを分離する方法において、前記吸着剤近傍の温
度を検出し、温度−窒素ガス濃度−再生工程における圧
力の相関関係を基礎に、検出した温度に応じて前記吸着
塔の再生工程における圧力を変化させることを要旨とす
る。
Further, in the invention described in claim 2, a raw material gas containing nitrogen gas as a main component is supplied in a pressurized state to an adsorption tower filled with an adsorbent, and gases other than nitrogen gas are preferentially added to the adsorption gas. At least two steps, an adsorption step of adsorbing the adsorbent and extracting high-concentration nitrogen gas to the outside of the adsorption tower, and a regeneration step of depressurizing the inside of the adsorption tower and releasing the gas adsorbed by the adsorbent, are alternately performed. In the method of separating nitrogen gas from the raw material gas repeatedly, the temperature in the vicinity of the adsorbent is detected, and based on the correlation between temperature-nitrogen gas concentration-pressure in the regeneration step, the adsorption is performed according to the detected temperature. The gist is to change the pressure in the tower regeneration process.

【0013】また、請求項3に記載した発明は、吸着剤
を充填した吸着塔に、窒素ガスを主成分とする原料ガス
を加圧状態で供給して窒素ガス以外のガスを優先的に前
記吸着剤に吸着せしめ、高濃度の窒素ガスを吸着塔外に
抽出せしめる吸着工程と、前記吸着塔内を減圧し、吸着
剤に吸着せしめたガスを放出せしめる再生工程の少なく
とも二工程を順次交番的に繰り返して前記原料ガスから
窒素ガスを分離する方法において、前記吸着剤近傍の温
度を検出し、温度−窒素ガス濃度−吸着工程の実施時間
の相関関係を基礎に、検出した温度に応じて吸着工程の
実施時間を変化させることを要旨とする。
Further, in the invention described in claim 3, a raw material gas containing nitrogen gas as a main component is supplied in a pressurized state to an adsorption column filled with an adsorbent, and gases other than nitrogen gas are preferentially added to the adsorption gas. At least two steps, an adsorption step of adsorbing the adsorbent and extracting high-concentration nitrogen gas to the outside of the adsorption tower, and a regeneration step of depressurizing the inside of the adsorption tower and releasing the gas adsorbed by the adsorbent, are alternately performed. In the method for separating nitrogen gas from the raw material gas repeatedly, the temperature in the vicinity of the adsorbent is detected, and based on the correlation of temperature-nitrogen gas concentration-implementation time of the adsorption step, adsorption is performed according to the detected temperature. The point is to change the execution time of the process.

【0014】また、請求項4に記載した発明は、吸着剤
を充填した吸着塔に、窒素ガスを主成分とする原料ガス
を加圧状態で供給して窒素ガス以外のガスを優先的に前
記吸着剤に吸着せしめ、高濃度の窒素ガスを吸着塔外に
抽出せしめる吸着工程と、前記吸着塔内を減圧し、吸着
剤に吸着せしめたガスを放出せしめる再生工程の少なく
とも二工程を順次交番的に繰り返して前記原料ガスから
窒素ガスを分離する方法において、前記吸着剤近傍の温
度を検出し、温度−窒素ガス濃度−窒素ガス取出し流量
の相関関係を基礎に、検出した温度に応じて窒素ガス取
出し流量を変化させることを要旨とする。
Further, in the invention described in claim 4, a raw material gas containing nitrogen gas as a main component is supplied in a pressurized state to an adsorption tower filled with an adsorbent, and gases other than nitrogen gas are preferentially added to the adsorption gas. At least two steps, an adsorption step of adsorbing the adsorbent and extracting high-concentration nitrogen gas to the outside of the adsorption tower, and a regeneration step of depressurizing the inside of the adsorption tower and releasing the gas adsorbed by the adsorbent, are alternately performed. In the method of separating nitrogen gas from the raw material gas repeatedly, the temperature in the vicinity of the adsorbent is detected, and based on the correlation of temperature-nitrogen gas concentration-nitrogen gas extraction flow rate, nitrogen gas is detected according to the detected temperature. The point is to change the take-out flow rate.

【0015】[0015]

【作用】次に、本発明の作用について説明する。まず、
請求項1に記載した発明によれば、吸着剤近傍の温度を
検出し、温度−窒素ガス濃度−吸着工程における圧力の
相関関係を基礎に、検出した温度に応じて吸着工程にお
ける圧力を変化させる。窒素ガス濃度と吸着工程におけ
る圧力との関係は例えば図5に示すように吸着剤近傍の
温度変化に伴って変化する。従って、検出した温度に応
じて吸着工程における圧力を変化させることにより、窒
素ガス濃度を所定濃度に維持することができる。
Next, the operation of the present invention will be described. First,
According to the invention described in claim 1, the temperature in the vicinity of the adsorbent is detected, and the pressure in the adsorption step is changed according to the detected temperature based on the correlation of temperature-nitrogen gas concentration-pressure in the adsorption step. . The relationship between the nitrogen gas concentration and the pressure in the adsorption step changes as the temperature near the adsorbent changes, as shown in FIG. 5, for example. Therefore, the nitrogen gas concentration can be maintained at a predetermined concentration by changing the pressure in the adsorption process according to the detected temperature.

【0016】また、請求項2に記載した発明によれば、
同様に、温度−窒素ガス濃度−再生工程における圧力の
相関関係を基礎に、検出した温度に応じて再生工程にお
ける圧力を変化させ、請求項3に記載した発明によれ
ば、温度−窒素ガス濃度−吸着工程の実施時間の相関関
係を基礎に、検出した温度に応じて吸着工程の実施時間
を変化させ、請求項4に記載した発明によれば、温度−
窒素ガス濃度−窒素ガス取出し流量の相関関係を基礎
に、検出した温度に応じて窒素ガス取出し流量を変化さ
せる。これにより、吸着剤近傍の温度が変化しても、窒
素ガス濃度を所定濃度に維持することができる。
According to the invention described in claim 2,
Similarly, the pressure in the regeneration process is changed according to the detected temperature based on the correlation of temperature-nitrogen gas concentration-pressure in the regeneration process, and according to the invention described in claim 3, the temperature-nitrogen gas concentration is obtained. -The adsorption process execution time is changed according to the detected temperature based on the correlation of the adsorption process execution time, and according to the invention described in claim 4, the temperature-
Based on the correlation between the nitrogen gas concentration and the nitrogen gas extraction flow rate, the nitrogen gas extraction flow rate is changed according to the detected temperature. Thereby, even if the temperature near the adsorbent changes, the nitrogen gas concentration can be maintained at a predetermined concentration.

【0017】[0017]

【実施例】以下、本発明の実施例について添付図面に基
づき説明する。 実施例1 まず、請求項1に記載した発明の実施例(以下、実施例
1という)について図1に基づいて説明する。図1に示
す装置は実施例1の方法を実施するための装置であり、
図中(1)は圧縮機、(2)は圧縮機(1)により圧縮
された空気を除湿清浄するための除湿清浄化装置、
(3),(4)は吸着剤を充填した吸着塔、(5)は分
離した窒素ガスを貯留するための製品槽、(6)は各種
入力機器や弁などを制御するための制御装置である。そ
して、これら圧縮機(1)等を配管,弁により接続して
いる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First Embodiment First, an embodiment of the invention described in claim 1 (hereinafter referred to as a first embodiment) will be described with reference to FIG. The apparatus shown in FIG. 1 is an apparatus for carrying out the method of Example 1,
In the figure, (1) is a compressor, (2) is a dehumidification cleaning device for dehumidifying and cleaning the air compressed by the compressor (1),
(3) and (4) are adsorption towers filled with an adsorbent, (5) is a product tank for storing the separated nitrogen gas, and (6) is a control device for controlling various input devices and valves. is there. And these compressors (1) etc. are connected by piping and a valve.

【0018】配管(101)は弁(11)を有し且つ一
端が前記吸着塔(3)の下端に接続するものであり、配
管(102)は弁(12)を有し且つ一端が前記吸着塔
(4)の下端に接続するものであって、これら配管(1
01),(102)の他端同士が接続されるとともに、
配管(109)の一端がこの接続部に接続している。ま
た、配管(100a)は弁(13),(14)を有し且
つ、一端が弁(11)と吸着塔(3)との間の前記配管
(101)に接続され、他端が弁(12)と吸着塔
(4)との間の前記配管(102)に接続されるもので
ある。また、配管(105)は弁(15)を有し且つ、
一端が配管(100a)と配管(101)との接続部よ
り上方の配管(101)に接続され、他端が配管(10
0a)と配管(102)との接続部より上方の配管(1
02)に接続されるものである。また、配管(100)
は一端が前記弁(13),(14)間の配管(100
a)に接続し、他端が前記除湿清浄化装置(2)に接続
されるものであり、配管(110)は圧力計(20
2),弁(20)を順次備え、一端が前記配管(10
0)に接続されるものである。
The pipe (101) has a valve (11) and one end thereof is connected to the lower end of the adsorption tower (3), and the pipe (102) has a valve (12) and one end thereof is the adsorption. It connects to the lower end of the tower (4) and these pipes (1
The other ends of 01) and (102) are connected to each other,
One end of the pipe (109) is connected to this connection. The pipe (100a) has valves (13) and (14), one end of which is connected to the pipe (101) between the valve (11) and the adsorption tower (3), and the other end of which is a valve ( It is connected to the pipe (102) between the adsorption tower (4) and the adsorption tower (4). The pipe (105) has a valve (15), and
One end is connected to the pipe (101) above the connecting portion between the pipe (100a) and the pipe (101), and the other end is connected to the pipe (10).
0a) and the pipe (102) above the connection (1)
02). Also, piping (100)
One end of the pipe (100) between the valves (13) and (14).
a) and the other end is connected to the dehumidification / purification device (2), and the pipe (110) is connected to the pressure gauge (20).
2) and a valve (20) are sequentially provided, and one end of the pipe (10)
0).

【0019】配管(103)は弁(17)を有し且つ、
一端が前記吸着塔(3)の上端に接続されるものであ
り、配管(104)は弁(18)を有し且つ、一端が前
記吸着塔(4)の上端に接続されるものであって、これ
ら配管(103),(104)の他端同士が接続してい
る。また配管(106)は弁(16)を有し且つ、一端
が弁(17)と前記吸着塔(3)との間の前記配管(1
03)に接続され、他端が弁(18)と前記吸着塔
(4)との間の前記配管(104)に接続されるもので
ある。また、配管(107)は一端が配管(103),
(104)の接続部に接続され、他端が製品槽(5)の
上端に接続されるものである。
The pipe (103) has a valve (17) and
One end is connected to the upper end of the adsorption tower (3), the pipe (104) has a valve (18), and one end is connected to the upper end of the adsorption tower (4). The other ends of these pipes (103) and (104) are connected to each other. Further, the pipe (106) has a valve (16), and one end of the pipe (1) between the valve (17) and the adsorption tower (3).
03) and the other end is connected to the pipe (104) between the valve (18) and the adsorption tower (4). In addition, the pipe (107) has a pipe (103) at one end,
The other end is connected to the upper end of the product tank (5).

【0020】また、製品槽(5)には測温計(20
0),酸素濃度計(201)が設けられており、製品槽
(5)の下端には弁(19)を有する配管(108)が
設けられている。
The product tank (5) has a thermometer (20
0) and an oxygen concentration meter (201) are provided, and a pipe (108) having a valve (19) is provided at the lower end of the product tank (5).

【0021】そして、これら測温計(200),酸素濃
度計(201)及び前記圧力計(202)並びに弁(1
1)…(20)が前記制御装置(6)に接続されてお
り、これら測温計(200),酸素濃度計(201)及
び圧力計(202)の測定データが制御装置(6)に入
力される。また、制御装置(6)には窒素ガス濃度と吸
着工程の最高圧力と吸着剤の周囲温度との関係における
データ並びに弁(11)…(20)を駆動するためのプ
ログラムが格納されている。
The thermometer (200), the oxygen concentration meter (201), the pressure gauge (202) and the valve (1)
1) ... (20) are connected to the control device (6), and the measurement data of the thermometer (200), the oximeter (201) and the pressure gauge (202) are input to the control device (6). To be done. Further, the control device (6) stores data on the relationship between the nitrogen gas concentration, the maximum pressure of the adsorption process and the ambient temperature of the adsorbent, and a program for driving the valves (11) ... (20).

【0022】窒素ガス濃度と吸着工程における最高圧力
との関係は図5に示すように、吸着剤の周囲温度の変化
に伴って変化する。従って、例えば窒素ガス濃度を9
9.99%に維持するには吸着工程における最高圧力を
温度が5℃のとき約8.3kg/cm2 に、20℃のと
き約20℃のとき約7.1kg/cm2 に、35℃のと
き約7.6kg/cm2 に夫々設定する必要がある。こ
のように、上述したデータは、窒素ガス濃度を一定に維
持するに際しての吸着周囲温度と吸着工程における最高
圧力との関係におけるデータである。
The relationship between the nitrogen gas concentration and the maximum pressure in the adsorption step changes as the ambient temperature of the adsorbent changes, as shown in FIG. Therefore, for example, if the nitrogen gas concentration is 9
In order to maintain it at 9.99%, the maximum pressure in the adsorption step is about 8.3 kg / cm 2 at a temperature of 5 ° C., about 7.1 kg / cm 2 at about 20 ° C., 35 ° C. At that time, it is necessary to set each to about 7.6 kg / cm 2 . As described above, the above-mentioned data are data on the relationship between the adsorption ambient temperature and the maximum pressure in the adsorption step when the nitrogen gas concentration is maintained constant.

【0023】次に、以上の構成を備える実施例装置を用
いて窒素ガスを分離する一般的な態様について説明す
る。
Next, a general mode for separating nitrogen gas using the apparatus of the embodiment having the above construction will be described.

【0024】まず、前記吸着塔(3)が再生工程を終了
し、吸着塔(4)が吸着工程を終了したところから、常
態の態様について説明する。従って今、制御装置(6)
により弁(11),(19)が開かれ、弁(12),
(13),(14),(15),(16),(17),
(18),(20)が閉じられている。
First, the normal state will be described from the point where the adsorption tower (3) has completed the regeneration step and the adsorption tower (4) has completed the adsorption step. Therefore, now, the control device (6)
Valve (11), (19) is opened by the valve (12),
(13), (14), (15), (16), (17),
(18) and (20) are closed.

【0025】ついで、制御装置(6)は弁(11),
(17)を閉じるとともに弁(15),(16)を開い
て、吸着塔(3),(4)を均圧工程に移行せしめる。
これにより、吸着塔(4)の上部にある比較的高濃度の
窒素ガスは配管(106),弁(16)を開して吸着塔
(3)の上部より、吸着塔(4)の下部にある比較的低
濃度の窒素ガスは配管(105),弁(15)を介して
吸着塔(4)の下部よりそれぞれ吸着塔(3)に移動す
る。
The control unit (6) then controls the valves (11),
(17) is closed and valves (15) and (16) are opened to shift the adsorption towers (3) and (4) to a pressure equalizing step.
As a result, the nitrogen gas having a relatively high concentration in the upper part of the adsorption tower (4) is opened from the upper part of the adsorption tower (3) to the lower part of the adsorption tower (4) by opening the pipe (106) and the valve (16). A certain relatively low concentration of nitrogen gas moves from the lower part of the adsorption tower (4) to the adsorption tower (3) via the pipe (105) and the valve (15).

【0026】ついで、制御装置(6)は弁(15),
(16)を閉じるとともに弁(12),(13),(1
7)を開いて、吸着塔(3)を吸着工程に、吸着塔
(4)を再生工程にそれぞれ移行せしめる。
The control unit (6) then controls the valves (15),
(16) is closed and valves (12), (13), (1
7) is opened to transfer the adsorption tower (3) to the adsorption step and the adsorption tower (4) to the regeneration step.

【0027】これにより、吸着塔(3)には製品槽
(5)から配管(107),弁(17)を介して高濃度
窒素ガスが送入される一方、配管(100),弁(1
3),配管(101)を開して圧縮された空気が装入さ
れる結果、吸着塔(3)が昇圧される。而して、空気に
含有される酸素ガス等が吸着剤に吸着され、高濃度の窒
素ガスが吸着塔(3)から送される。尚、前記均圧工程
における窒素ガスの移動と相俟って吸着塔(3)の上部
は高濃度の窒素ガスで充満され、下部は比較的低濃度の
窒素ガスで充満されるため、吸着塔(3)が昇圧されて
送出される窒素ガス濃度は当初から高濃度となる。
As a result, high concentration nitrogen gas is fed into the adsorption tower (3) from the product tank (5) through the pipe (107) and the valve (17), while the pipe (100) and the valve (1) are supplied.
3), the pipe (101) is opened and compressed air is charged, so that the pressure in the adsorption tower (3) is increased. Thus, the oxygen gas contained in the air is adsorbed by the adsorbent, and the high-concentration nitrogen gas is sent from the adsorption tower (3). The upper part of the adsorption tower (3) is filled with high-concentration nitrogen gas and the lower part is filled with relatively low-concentration nitrogen gas in combination with the movement of nitrogen gas in the pressure equalization step. The nitrogen gas concentration of (3) that is boosted and delivered becomes high from the beginning.

【0028】一方、吸着塔(4)内の窒素ガスは配管
(102),弁(12),配管(109)を介して大気
に放出され、内部の圧力は低下する。そして、圧力の低
下に伴い吸着剤に吸着された酸素ガス等が放出され、吸
着剤が再生される。
On the other hand, the nitrogen gas in the adsorption tower (4) is released to the atmosphere through the pipe (102), the valve (12) and the pipe (109), and the internal pressure is lowered. Then, the oxygen gas or the like adsorbed by the adsorbent is released as the pressure decreases, and the adsorbent is regenerated.

【0029】以後、制御装置(6)は、吸着塔(3),
(4)に対して吸着工程−均圧工程−再生工程の一連の
工程を交番的に繰り返すように各弁を作動せしめる。
Thereafter, the control device (6) controls the adsorption tower (3),
With respect to (4), each valve is operated so as to alternately repeat the series of steps of the adsorption step-pressure equalizing step-regeneration step.

【0030】次に、吸着剤近傍の温度が変化した場合の
態様について説明する。まず、制御装置(6)は前記測
温計(200)からの入力を受け、系内の温度を監視す
る。そして制御装置(6)は自体内に格納した前記吸着
剤周囲温度と吸着工程の最高圧力との関係におけるデー
タに基づき、圧力計(202)の測定データを監視しつ
つ弁(20)を開閉し、吸着工程における吸着塔(3)
又は(4)内の最高圧力を調整する。
Next, a mode in which the temperature near the adsorbent changes will be described. First, the controller (6) receives an input from the thermometer (200) and monitors the temperature in the system. Then, the control device (6) opens and closes the valve (20) while monitoring the measurement data of the pressure gauge (202) based on the data on the relationship between the adsorbent ambient temperature and the maximum pressure of the adsorption process stored in itself. , Adsorption tower in adsorption process (3)
Or adjust the maximum pressure in (4).

【0031】例えば、前述したように、測温計(20
0)の測定温度が5℃のとき圧力計(202)の測定圧
力が8.3kg/cm2 となるように、20℃のとき
7.1kg/cm2 となるように、35℃のとき7.6
kg/cm2 となるように夫々弁(20)を制御するこ
とにより、製品槽(5)内の窒素ガス濃度は99.99
%に維持される。
For example, as described above, the thermometer (20
0) so that the pressure measured by the pressure gauge (202) is 8.3 kg / cm 2 when the measured temperature is 5 ° C., 7.1 kg / cm 2 when the measured temperature is 20 ° C., 7 at 35 ° C. .6
The nitrogen gas concentration in the product tank (5) is 99.99 by controlling the valves (20) so that each of them becomes kg / cm 2.
Maintained at%.

【0032】実施例2 次に、請求項2に記載した発明の実施例(以下、実施例
2という)について図2に基づいて説明する。図2に示
す装置は実施例2の方法を実施するための装置であり、
構成において実施例1における装置と相当の部分が重複
するので重複部分には同一の符号を付してその詳しい説
明は省略する。
Embodiment 2 Next, an embodiment of the invention described in claim 2 (hereinafter referred to as Embodiment 2) will be described with reference to FIG. The apparatus shown in FIG. 2 is an apparatus for carrying out the method of Example 2,
In the structure, a part corresponding to that of the device in the first embodiment overlaps, and therefore, the same parts are denoted by the same reference numerals and detailed description thereof will be omitted.

【0033】同図に示すように、この装置は前述の実施
例1における装置の配管(110)を削除するととも
に、配管(109)に圧力計(203),弁(21)を
順次設け且つ、配管(109)の他端に減圧装置(7)
を接続したものである。
As shown in the figure, in this device, the pipe (110) of the device in the first embodiment described above is deleted, and a pressure gauge (203) and a valve (21) are sequentially provided in the pipe (109), and A pressure reducing device (7) at the other end of the pipe (109)
Is connected.

【0034】そして、制御装置(6)には窒素ガス濃度
と再生工程における圧力と吸着剤の周囲温度との関係に
おけるデータが格納されている。窒素ガス濃度と再生工
程における圧力との関係は図6に示すように、吸着剤の
周囲温度の変化に伴って変化する。従って、例えば窒素
ガス濃度を99.99%に維持するには再生工程におけ
る圧力を、温度が5℃のとき約123Torrに、20
℃のとき約200Torrに、35℃のとき約105T
orrに夫々設定する必要がある。このように、上述し
たデータは、窒素ガス濃度を一定に維持するに際しての
吸着剤周囲温度と再生工程における圧力との関係におけ
るデータである。
The control device (6) stores data on the relationship between the nitrogen gas concentration, the pressure in the regeneration process, and the ambient temperature of the adsorbent. The relationship between the nitrogen gas concentration and the pressure in the regeneration process changes as the ambient temperature of the adsorbent changes, as shown in FIG. Therefore, for example, in order to maintain the nitrogen gas concentration at 99.99%, the pressure in the regeneration step is set to about 123 Torr when the temperature is 5 ° C.
Approximately 200 Torr at ℃, 105T at 35 ℃
It is necessary to set each to orr. As described above, the above-mentioned data is data regarding the relationship between the ambient temperature of the adsorbent and the pressure in the regeneration process when the nitrogen gas concentration is maintained constant.

【0035】而して、まず、制御装置(6)は前記測温
計(200)からの入力を受け、系内の温度を監視す
る。そして制御装置(6)は自体内に格納した前記吸着
剤周囲温度と再生工程における圧力におけるデータに基
づき、測温計(200)により測定した温度に応じて圧
力計(203)の測定データを監視しつつ弁(21)を
開閉し、再生工程における吸着塔(3)又(4)内の圧
力を調整する。これにより製品槽(5)内の窒素ガス濃
度は吸着剤周囲温度の変化にも拘らず所定濃度に維持さ
れる。
Then, first, the control device (6) receives an input from the thermometer (200) and monitors the temperature in the system. Then, the control device (6) monitors the measurement data of the pressure gauge (203) according to the temperature measured by the thermometer (200) based on the data of the ambient temperature of the adsorbent stored in itself and the pressure in the regeneration step. While opening the valve (21), the pressure in the adsorption tower (3) or (4) in the regeneration step is adjusted. Thereby, the nitrogen gas concentration in the product tank (5) is maintained at a predetermined concentration despite the change in the ambient temperature of the adsorbent.

【0036】実施例3 次に、請求項3に記載した発明の実施例(以下、実施例
3という)について図3に基づいて説明する。図3に示
す装置は実施例3の方法を実施するための装置であり、
実施例1における装置の配管(110),圧力計(20
2),弁(20)を削除したものである。
Embodiment 3 Next, an embodiment of the invention described in claim 3 (hereinafter referred to as Embodiment 3) will be described with reference to FIG. The apparatus shown in FIG. 3 is an apparatus for carrying out the method of Example 3,
The piping (110) of the apparatus and the pressure gauge (20
2), the valve (20) is deleted.

【0037】そして、制御装置(6)には窒素ガス濃度
と吸着工程時間と吸着剤の周囲温度との関係におけるデ
ータが格納されている。窒素ガス濃度と吸着工程時間と
の関係は図7に示すように、吸着剤の周囲温度の変化に
伴って変化する。従って、例えば窒素ガス濃度を99.
99%に維持するには吸着工程時間を、5℃のとき約2
07秒に、20℃のとき約136秒に、35℃のとき約
120秒に夫々設定する必要がある。このように上述し
たデータは、窒素ガス濃度を一定に維持するに際しての
吸着剤周囲温度と吸着工程時間との関係におけるデータ
である。
The control device (6) stores data on the relationship between the nitrogen gas concentration, the adsorption process time, and the ambient temperature of the adsorbent. The relationship between the nitrogen gas concentration and the adsorption process time changes as the ambient temperature of the adsorbent changes, as shown in FIG. Therefore, for example, the nitrogen gas concentration is 99.
To maintain 99%, the adsorption process time is about 2 at 5 ℃.
It is necessary to set the time to 07 seconds, to about 136 seconds at 20 ° C, and to about 120 seconds at 35 ° C. As described above, the above-mentioned data is data on the relationship between the adsorbent ambient temperature and the adsorption step time when the nitrogen gas concentration is maintained constant.

【0038】而して、先ず制御装置(6)は前記測温計
(200)からの入力を受け、系内の温度を監視する。
そして制御装置(6)は自体に格納した前記吸着剤周囲
温度と吸着工程時間との関係におけるデータに基づき、
測温計(200)により測定した温度に応じて弁(1
3),(14),(15),(16),(17),(1
8)等を制御し、吸着塔(3),(4)の吸着工程時間
を吸着剤周囲温度に応じた時間とする。これにより、製
品槽(5)内の窒素ガス濃度は吸着剤周囲温度の変化に
も拘らず所定濃度に維持される。
Then, first, the control device (6) receives an input from the thermometer (200) and monitors the temperature in the system.
Then, the control device (6), based on the data in the relationship between the adsorbent ambient temperature and the adsorption process time stored in itself,
Depending on the temperature measured by the thermometer (200), the valve (1
3), (14), (15), (16), (17), (1
8) etc. are controlled and the adsorption process time of the adsorption towers (3) and (4) is set to a time corresponding to the ambient temperature of the adsorbent. Thereby, the nitrogen gas concentration in the product tank (5) is maintained at a predetermined concentration despite the change in the ambient temperature of the adsorbent.

【0039】実施例4 次に、請求項4に記載した発明の実施例(以下、実施例
4という)について図4に基づいて説明する。図4に示
す装置は実施例4の方法を実施するための装置であり、
実施例3における装置の配管(108)に流量計(20
4)を設け、さらに、製品槽(5)の下端に流量調整弁
(203)を有する配管(111)を設けたものであ
る。尚、配管(111)の他端は開放されている。
Embodiment 4 Next, an embodiment of the invention described in claim 4 (hereinafter referred to as Embodiment 4) will be described with reference to FIG. The apparatus shown in FIG. 4 is an apparatus for carrying out the method of Example 4,
A flow meter (20) is connected to the pipe (108) of the apparatus in the third embodiment.
4), and a pipe (111) having a flow rate adjusting valve (203) at the lower end of the product tank (5). The other end of the pipe (111) is open.

【0040】そして、制御装置(6)には窒素ガス濃度
と窒素ガス取出し流量と吸着剤の周囲温度との相関関係
におけるデータが格納されている。かかる窒素ガス濃度
と窒素ガス取出し流量との関係は図9に示す例のよう
に、吸着剤の周囲温度の変化に伴って変化する。従っ
て、例えば同図に示す例において、35℃の温度下で取
出す窒素ガス濃度が99.990%となる窒素ガス取出
し流量を100(%)とした場合に、窒素ガス濃度を9
9.990%に維持するには5℃の温度下では窒素ガス
取出し量を101(%)とする必要があり、20℃温度
下では窒素ガス取出し量を105(%)とする必要があ
る。このように、窒素ガス濃度を一定に維持するには、
周囲温度に対応させて取り出す窒素ガス量を変化させる
必要があるのであるが上述したデータは窒素ガス濃度を
一定に維持するに際しての吸着剤周囲温度と窒素ガス取
出し流量との関係におけるデータである。
The controller (6) stores data on the correlation between the nitrogen gas concentration, the nitrogen gas extraction flow rate, and the ambient temperature of the adsorbent. The relationship between the nitrogen gas concentration and the nitrogen gas extraction flow rate changes as the ambient temperature of the adsorbent changes, as in the example shown in FIG. Therefore, for example, in the example shown in the figure, when the nitrogen gas extraction flow rate at which the nitrogen gas concentration taken out at a temperature of 35 ° C. is 99.990% is 100 (%), the nitrogen gas concentration is 9%.
In order to maintain 9.990%, it is necessary to set the nitrogen gas extraction amount to 101 (%) at a temperature of 5 ° C, and to set the nitrogen gas extraction amount to 105 (%) at a temperature of 20 ° C. In this way, to keep the nitrogen gas concentration constant,
Although it is necessary to change the amount of nitrogen gas to be taken out in accordance with the ambient temperature, the above-mentioned data are data on the relationship between the adsorbent ambient temperature and the nitrogen gas take-out flow rate when the nitrogen gas concentration is kept constant.

【0041】而して、先ず制御装置(6)は前記測温計
(200)からの入力を受け、系内の温度を監視する。
そして制御装置(6)は自体に格納した前記吸着剤周囲
温度と窒素ガス取出し流量の関係におけるデータに基づ
き、測温計(200)により測定した温度に応じて、流
量計(204)で計測される流量を監視しつつ流量調整
弁(203)を制御し、製品槽(5)から流出される窒
素ガスの量を調整する。即ち、まず、上述の窒素ガス
濃,窒素ガス取出し流量,温度の相関関係から所定濃度
の窒素ガス濃度とするために必要な窒素ガス取出し流量
のうち、最低量となる流量に対応させて弁(19)の開
度を調整し、ついで、制御装置(6)により流量計(2
04)を介して窒素ガスの取出し量を監視し、これが窒
素ガスの濃度維持のために必要な取出し量を下回ってい
る場合には流量調整弁(203)を制御して不足分の窒
素ガスを製品槽(5)から大気に放出して必要な窒素ガ
ス取出し量とするのである。これにより、製品槽(5)
内の窒素ガス濃度は吸着剤周囲温度の変化にも拘らず所
定濃度に維持される。
First, the control device (6) receives an input from the thermometer (200) and monitors the temperature in the system.
Then, the control device (6) is measured by the flow meter (204) according to the temperature measured by the thermometer (200) based on the data on the relationship between the adsorbent ambient temperature and the nitrogen gas extraction flow rate stored in itself. The flow rate adjusting valve (203) is controlled while monitoring the flow rate to adjust the amount of nitrogen gas flowing out from the product tank (5). That is, first, the valve (corresponding to the minimum flow rate out of the nitrogen gas extraction flow rates required to achieve the nitrogen gas concentration of a predetermined concentration based on the correlation among the above-mentioned nitrogen gas concentration, nitrogen gas extraction flow rate, and temperature ( 19) adjust the opening of the flowmeter (2) by the control device (6).
The amount of nitrogen gas taken out is monitored via 04). If the amount taken out is lower than the amount taken out to maintain the concentration of nitrogen gas, the flow control valve (203) is controlled to remove the shortage of nitrogen gas. The required amount of nitrogen gas is released from the product tank (5) to the atmosphere. This makes the product tank (5)
The nitrogen gas concentration in the inside is maintained at a predetermined concentration despite the change in the ambient temperature of the adsorbent.

【0042】[0042]

【発明の効果】以上詳述したように、この発明によれ
ば、吸着剤近傍の温度が変化しても得られる窒素ガス濃
度を一定に維持することができるため、装置本体を高価
な恒温槽に入れることや、吸着剤近傍の温度を一定にす
るために恒温設備を設けることが不要であり、一定の窒
素ガス濃度が要求される場合においても、便利で安価な
窒素ガス発生装置を提供することができる。
As described above in detail, according to the present invention, the obtained nitrogen gas concentration can be maintained constant even if the temperature in the vicinity of the adsorbent changes, so that the apparatus main body is an expensive thermostatic chamber. It is not necessary to provide a constant temperature equipment near the adsorbent and to provide a convenient and inexpensive nitrogen gas generator even when a constant nitrogen gas concentration is required. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の方法を実施するための装置の概略を
示す説明図である。
FIG. 1 is an explanatory view showing an outline of an apparatus for carrying out the method of Example 1.

【図2】実施例2の方法を実施するための装置の概略を
示す説明図である。
FIG. 2 is an explanatory diagram showing an outline of an apparatus for carrying out the method of Example 2.

【図3】実施例3の方法を実施するための装置の概略を
示す説明図である。
FIG. 3 is an explanatory diagram showing an outline of an apparatus for carrying out the method of Example 3.

【図4】実施例4の方法を実施するための装置の概略を
示す説明図である。
FIG. 4 is an explanatory diagram showing an outline of an apparatus for carrying out the method of Example 4.

【図5】吸着剤の周囲温度と分離・回収される窒素ガス
濃度との相関関係を示すグラフである。
FIG. 5 is a graph showing the correlation between the ambient temperature of the adsorbent and the concentration of separated and recovered nitrogen gas.

【図6】吸着剤の周囲温度と分離・回収される窒素ガス
濃度と吸着工程における最高圧力との相関関係を示すグ
ラフである。
FIG. 6 is a graph showing the correlation between the ambient temperature of the adsorbent, the concentration of nitrogen gas separated / recovered, and the maximum pressure in the adsorption step.

【図7】吸着剤の周囲温度と分離・回収される窒素ガス
濃度と吸着工程における圧力との相関関係を示すグラフ
である。
FIG. 7 is a graph showing the correlation between the ambient temperature of the adsorbent, the concentration of the separated and recovered nitrogen gas, and the pressure in the adsorption step.

【図8】吸着剤の周囲温度と分離・回収される窒素ガス
濃度と吸着工程時間との相関関係を示すグラフである。
FIG. 8 is a graph showing the correlation between the ambient temperature of the adsorbent, the concentration of the separated and recovered nitrogen gas, and the adsorption process time.

【図9】吸着剤の周囲温度と分離・回収される窒素ガス
濃度と窒素ガス取出し流量との相関関係を示すグラフで
ある。
FIG. 9 is a graph showing the correlation between the ambient temperature of the adsorbent, the concentration of the separated and recovered nitrogen gas, and the nitrogen gas extraction flow rate.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 除湿清浄化装置 3 吸着塔 4 吸着塔 5 製品槽 6 制御装置 7 減圧装置 1 Compressor 2 Dehumidifying / cleaning device 3 Adsorption tower 4 Adsorption tower 5 Product tank 6 Control device 7 Decompression device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸着剤を充填した吸着塔に、窒素ガスを
主成分とする原料ガスを加圧状態で供給して窒素ガス以
外のガスを優先的に前記吸着剤に吸着せしめ、高濃度の
窒素ガスを吸着塔外に抽出せしめる吸着工程と、前記吸
着塔内を減圧し、吸着剤に吸着せしめたガスを放出せし
める再生工程の少なくとも二工程を順次交番的に繰り返
して前記原料ガスから窒素ガスを分離する方法におい
て、前記吸着剤近傍の温度を検出し、温度−窒素ガス濃
度−吸着工程における圧力の相関関係を基礎に、検出し
た温度に応じて前記吸着工程における圧力を変化させる
ことを特徴とする窒素ガス分離方法。
1. A raw material gas containing nitrogen gas as a main component is supplied under pressure to an adsorption tower filled with an adsorbent so that gases other than nitrogen gas are preferentially adsorbed by the adsorbent to obtain a high concentration. At least two steps, an adsorption step of extracting nitrogen gas outside the adsorption tower and a regeneration step of decompressing the inside of the adsorption tower and releasing the gas adsorbed by the adsorbent, are sequentially and alternately repeated to produce nitrogen gas from the raw material gas. In the method of separating the adsorbent, the temperature in the vicinity of the adsorbent is detected, and the pressure in the adsorption step is changed according to the detected temperature based on the correlation of temperature-nitrogen gas concentration-pressure in the adsorption step. And a method for separating nitrogen gas.
【請求項2】 吸着剤を充填した吸着塔に、窒素ガスを
主成分とする原料ガスを加圧状態で供給して窒素ガス以
外のガスを優先的に前記吸着剤に吸着せしめ、高濃度の
窒素ガスを吸着塔外に抽出せしめる吸着工程と、前記吸
着塔内を減圧し、吸着剤に吸着せしめたガスを放出せし
める再生工程の少なくとも二工程を順次交番的に繰り返
して前記原料ガスから窒素ガスを分離する方法におい
て、前記吸着剤近傍の温度を検出し、温度−窒素ガス濃
度−再生工程における圧力の相関関係を基礎に、検出し
た温度に応じて前記吸着塔の再生工程における圧力を変
化させることを特徴とする窒素ガス分離方法。
2. A raw material gas containing nitrogen gas as a main component is supplied in a pressurized state to an adsorption tower filled with an adsorbent so that gases other than nitrogen gas are preferentially adsorbed by the adsorbent to obtain a high concentration. At least two steps, an adsorption step of extracting nitrogen gas outside the adsorption tower and a regeneration step of decompressing the inside of the adsorption tower and releasing the gas adsorbed by the adsorbent, are sequentially and alternately repeated to produce nitrogen gas from the raw material gas. In the method of separating the adsorbent, the temperature in the vicinity of the adsorbent is detected, and based on the correlation between temperature-nitrogen gas concentration-pressure in the regeneration step, the pressure in the regeneration step of the adsorption tower is changed according to the detected temperature. A method for separating nitrogen gas, which comprises:
【請求項3】 吸着剤を充填した吸着塔に、窒素ガスを
主成分とする原料ガスを加圧状態で供給して窒素ガス以
外のガスを優先的に前記吸着剤に吸着せしめ、高濃度の
窒素ガスを吸着塔外に抽出せしめる吸着工程と、前記吸
着塔内を減圧し、吸着剤に吸着せしめたガスを放出せし
める再生工程の少なくとも二工程を順次交番的に繰り返
して前記原料ガスから窒素ガスを分離する方法におい
て、前記吸着剤近傍の温度を検出し、温度−窒素ガス濃
度−吸着工程の実施時間の相関関係を基礎に、検出した
温度に応じて吸着工程の実施時間をを変化させることを
特徴とする窒素ガス分離方法。
3. A raw material gas containing nitrogen gas as a main component is supplied in a pressurized state to an adsorption tower filled with an adsorbent so that gases other than nitrogen gas are preferentially adsorbed to the adsorbent to obtain a high concentration. At least two steps, an adsorption step of extracting nitrogen gas outside the adsorption tower and a regeneration step of decompressing the inside of the adsorption tower and releasing the gas adsorbed by the adsorbent, are sequentially and alternately repeated to produce nitrogen gas from the raw material gas. In the method of separating, the temperature near the adsorbent is detected, and the execution time of the adsorption step is changed according to the detected temperature based on the correlation of temperature-nitrogen gas concentration-execution time of the adsorption step. A method for separating nitrogen gas, which comprises:
【請求項4】 吸着剤を充填した吸着塔に、窒素ガスを
主成分とする原料ガスを加圧状態で供給して窒素ガス以
外のガスを優先的に前記吸着剤に吸着せしめ、高濃度の
窒素ガスを吸着塔外に抽出せしめる吸着工程と、前記吸
着塔内を減圧し、吸着剤に吸着せしめたガスを放出せし
める再生工程の少なくとも二工程を順次交番的に繰り返
して前記原料ガスから窒素ガスを分離する方法におい
て、前記吸着剤近傍の温度を検出し、温度−窒素ガス濃
度−窒素ガス取出し流量の相関関係を基礎に、検出した
温度に応じて窒素ガス取出し流量を変化させることを特
徴とする窒素ガス分離方法。
4. A raw material gas containing nitrogen gas as a main component is supplied in a pressurized state to an adsorption tower filled with an adsorbent so that gases other than nitrogen gas are preferentially adsorbed by the adsorbent to obtain a high concentration. At least two steps, an adsorption step of extracting nitrogen gas outside the adsorption tower and a regeneration step of decompressing the inside of the adsorption tower and releasing the gas adsorbed by the adsorbent, are sequentially and alternately repeated to produce nitrogen gas from the raw material gas. In the method of separating the above, the temperature near the adsorbent is detected, and based on the correlation of temperature-nitrogen gas concentration-nitrogen gas extraction flow rate, the nitrogen gas extraction flow rate is changed according to the detected temperature. Method for separating nitrogen gas.
JP5156139A 1993-01-06 1993-06-01 Gaseous nitrogen separation method Pending JPH06254334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5156139A JPH06254334A (en) 1993-01-06 1993-06-01 Gaseous nitrogen separation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-16919 1993-01-06
JP1691993 1993-01-06
JP5156139A JPH06254334A (en) 1993-01-06 1993-06-01 Gaseous nitrogen separation method

Publications (1)

Publication Number Publication Date
JPH06254334A true JPH06254334A (en) 1994-09-13

Family

ID=26353367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5156139A Pending JPH06254334A (en) 1993-01-06 1993-06-01 Gaseous nitrogen separation method

Country Status (1)

Country Link
JP (1) JPH06254334A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030435A (en) * 1997-07-25 2000-02-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Regulation of a PSA process
JP2007261909A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Method for operating hydrogen refining apparatus
JP2008307504A (en) * 2007-06-18 2008-12-25 Hitachi Ltd Gas separation apparatus
WO2015049840A1 (en) * 2013-10-03 2015-04-09 ダイキン工業株式会社 Refrigeration unit for container
WO2017163792A1 (en) * 2016-03-25 2017-09-28 住友精化株式会社 Method for manufacturing concentrated target gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380823A (en) * 1986-09-26 1988-04-11 Sumitomo Heavy Ind Ltd Operation for separating gas based on variable pressure adsorption

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380823A (en) * 1986-09-26 1988-04-11 Sumitomo Heavy Ind Ltd Operation for separating gas based on variable pressure adsorption

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030435A (en) * 1997-07-25 2000-02-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Regulation of a PSA process
JP2007261909A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Method for operating hydrogen refining apparatus
JP2008307504A (en) * 2007-06-18 2008-12-25 Hitachi Ltd Gas separation apparatus
WO2015049840A1 (en) * 2013-10-03 2015-04-09 ダイキン工業株式会社 Refrigeration unit for container
JP2015200485A (en) * 2013-10-03 2015-11-12 ダイキン工業株式会社 Refrigeration device for container
CN105579799A (en) * 2013-10-03 2016-05-11 大金工业株式会社 Refrigeration unit for container
US20160245555A1 (en) * 2013-10-03 2016-08-25 Daikin Industries, Ltd. Refrigeration unit for container
US10345014B2 (en) 2013-10-03 2019-07-09 Daikin Industries, Ltd. Refrigeration unit for container
WO2017163792A1 (en) * 2016-03-25 2017-09-28 住友精化株式会社 Method for manufacturing concentrated target gas
JPWO2017163792A1 (en) * 2016-03-25 2019-01-31 住友精化株式会社 Method for producing concentrated target gas

Similar Documents

Publication Publication Date Title
US4129424A (en) Gas separation
JP4898194B2 (en) Pressure fluctuation adsorption gas separation method and separation apparatus
US5620501A (en) Recovery of trace gases from gas streams
JPH04330913A (en) Absorption process for separating gaseous mixture
JP2004000819A (en) Gas isolating process
JP3477280B2 (en) Gas adsorption separation method
GB1572532A (en) Method for separation of a gaseous mixture
JP2006523592A (en) Oxygen generator and control method thereof
JPH06254334A (en) Gaseous nitrogen separation method
JP2569095B2 (en) Pressure swing adsorption method
JPH0683771B2 (en) Pretreatment method for gas separation
JPS636481B2 (en)
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
EP0055962B1 (en) Repressurisation for pressure swing adsorption system
JPH0532087B2 (en)
EP0512780A1 (en) Method and apparatus for continuously separating nitrogen
JP2644211B2 (en) Pretreatment method in gas separation
JP2638037B2 (en) Pressure swing adsorption method
JP3369424B2 (en) Mixed gas separation method
JPH04322713A (en) Method and equipment for separating gaseous nitrogen
JP4171392B2 (en) Gas separation and recovery method and pressure swing adsorption gas separation and recovery system
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JP3073061B2 (en) Gas separation device
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JPS6219882B2 (en)