JP2569095B2 - Pressure swing adsorption method - Google Patents

Pressure swing adsorption method

Info

Publication number
JP2569095B2
JP2569095B2 JP62315589A JP31558987A JP2569095B2 JP 2569095 B2 JP2569095 B2 JP 2569095B2 JP 62315589 A JP62315589 A JP 62315589A JP 31558987 A JP31558987 A JP 31558987A JP 2569095 B2 JP2569095 B2 JP 2569095B2
Authority
JP
Japan
Prior art keywords
adsorption tower
desorption
adsorption
pressure
desorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62315589A
Other languages
Japanese (ja)
Other versions
JPH01155926A (en
Inventor
豊彦 増田
義信 中根
卓 青方
昌弘 山形
甚太郎 横江
利明 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd filed Critical Kobe Steel Ltd
Priority to JP62315589A priority Critical patent/JP2569095B2/en
Publication of JPH01155926A publication Critical patent/JPH01155926A/en
Application granted granted Critical
Publication of JP2569095B2 publication Critical patent/JP2569095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、4つの吸着塔を用いて一酸化炭素(CO)
を含む混合ガスから高純度のCOを分離回収することがで
きる圧力スイング吸着方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention uses four adsorption towers to produce carbon monoxide (CO).
The present invention relates to a pressure swing adsorption method capable of separating and recovering high-purity CO from a mixed gas containing carbon.

(従来技術) 従来、COが含まれた混合ガスからCOを分離回収する圧
力スイング吸着方法としては、昇圧工程、吸着工程、減
圧工程、洗浄工程、休止工程および脱着工程を有するサ
イクルを複数の吸着塔で互いにずらせて繰返すことによ
り、一つの吸着塔の脱着工程が終了すれば他の吸着塔の
脱着工程が開始するようにして連続的にCOの脱着回収が
行われるようにしたものが知られている。
(Prior art) Conventionally, as a pressure swing adsorption method for separating and recovering CO from a mixed gas containing CO, a cycle having a pressure increasing step, an adsorption step, a depressurizing step, a washing step, a pause step, and a desorption step is performed by a plurality of adsorption steps. It is known that CO is continuously desorbed and recovered by repeating the shift of each column in the tower so that once the desorption process of one adsorption tower is completed, the desorption process of another adsorption tower is started. ing.

上記従来の圧力スイング吸着方法を第4図および第5
図に示す工程説明図と、第3図に示す4つの吸着塔A,B,
C,Dを有する装置とに基いて一つの吸着塔Aを中心に、
脱着工程が終了した状態から説明する。なお第5図は吸
着塔Aの各工程と上記装置におけるガスの流れとを示
し、装置については昇圧第1期にのみ主要符号を付し、
他の工程には符号を省略している。
The conventional pressure swing adsorption method is shown in FIGS.
The process explanatory diagram shown in the figure, and the four adsorption towers A, B, and
Based on one adsorption tower A based on the apparatus having C and D,
A description will be given from the state where the desorption process is completed. FIG. 5 shows each step of the adsorption tower A and the flow of gas in the above-mentioned apparatus.
Reference numerals are omitted for other steps.

昇圧工程は3つの段階に分れ、まず昇圧第1期では脱
着工程が終了して減圧状態にある吸着塔Aと、吸着工程
が終了して加圧状態にある吸着塔Bとを弁31bと弁32aと
を開くことにより接続し、吸着塔Bから減圧排ガスを循
環管路3を通して吸着塔Aに導くことにより、この吸着
塔Aはほぼ大気圧(0kg/cm2G)まで昇圧されるととも
に、吸着塔Bはほぼ大気圧まで減圧される。この吸着塔
Bは、減圧工程後、洗浄用ガス供給管路4を通して洗浄
用ガスが供給されて洗浄工程に入る。
The pressurizing step is divided into three stages. First, in the first pressurizing step, the adsorption tower A in which the desorption step is completed and in a depressurized state, and the adsorption tower B in which the adsorption step is completed and in a pressurized state are connected to a valve 31b. By connecting the valve by opening the valve 32a and guiding the decompressed exhaust gas from the adsorption tower B to the adsorption tower A through the circulation line 3, the pressure of the adsorption tower A is increased to almost the atmospheric pressure (0 kg / cm 2 G). The pressure in the adsorption tower B is reduced to almost the atmospheric pressure. After the pressure reducing step, the adsorption tower B is supplied with the cleaning gas through the cleaning gas supply pipe 4 and enters the cleaning step.

昇圧第2期では、上記吸着塔Bの洗浄排ガスが循環管
路3を通して吸着塔Aに供給されて洗浄排ガス中のCOが
回収され、残りの排ガスは弁21aが開かれて排ガス排出
管路2を通して放出される。
In the second pressurization period, the exhaust gas for washing the adsorption tower B is supplied to the adsorption tower A through the circulation line 3 to collect CO in the exhaust gas for washing, and the remaining exhaust gas is opened by the valve 21a to open the exhaust line 2 for the exhaust gas. Released through

昇圧第3期では、上記弁21aと弁31bとが閉じられると
ともに、弁31dが開かれることにより、吸着工程の後半
にある吸着塔Dの吸着排ガスが循環管路3を通して吸着
塔Aに供給され、所定の吸着圧力(第4図では2kg/cm
2G)まで昇圧される。なお、この吸着圧力は1〜5kg/cm
2G程度の範囲で選択すればよい。
In the third stage of the pressure increase, the valve 21a and the valve 31b are closed, and the valve 31d is opened, so that the exhaust gas of the adsorption tower D in the latter half of the adsorption step is supplied to the adsorption tower A through the circulation line 3. , A predetermined adsorption pressure (2 kg / cm in FIG. 4)
Up to 2 G). In addition, this adsorption pressure is 1-5 kg / cm
It may be selected within a range of about 2 G.

つぎに吸着工程では、弁11aと弁21aとが開かれるとと
もに、原料ガス圧縮機10が作動され、これによってCO、
CO2、N2およびH2などからなる混合ガスが原料ガスとし
て吸着塔Aに供給される。吸着塔Aでは、例えばゼオラ
イトなどの担体に銅化合物を添着した吸着剤に原料ガス
中の最も吸着性の高いCO(易吸着成分)が加圧下で吸着
され、吸着性の低いN2、CO2およびH2(難吸着成分)が
吸着排ガスとして弁21aおよび排ガス排出管路2を通し
て大気中に放出される。
Next, in the adsorption step, the valve 11a and the valve 21a are opened, and the raw material gas compressor 10 is operated.
A mixed gas composed of CO 2 , N 2 and H 2 is supplied to the adsorption tower A as a raw material gas. In the adsorption tower A, the most adsorbable CO (easy adsorbable component) in the raw material gas is adsorbed under pressure to an adsorbent obtained by impregnating a carrier such as zeolite with a copper compound, and N 2 , CO 2 And H 2 (a poorly adsorbable component) are released into the atmosphere through the valve 21a and the exhaust gas discharge line 2 as the adsorbed exhaust gas.

そして、この吸着工程の後半において、上記吸着排ガ
スのCO濃度が原料ガス中のCO濃度と等しくなる直前に弁
21aを閉じるとともに、弁31aと弁32cとを開き、これに
より上記吸着排ガスを吸着塔Cの昇圧第3期における昇
圧ガスとして用いる。
Then, in the latter half of this adsorption step, the valve is set immediately before the CO concentration of the above-mentioned exhaust gas becomes equal to the CO concentration of the raw material gas.
The valve 21a is closed and the valve 31a and the valve 32c are opened, whereby the adsorption exhaust gas is used as the pressurized gas in the third stage of the pressure increase of the adsorption tower C.

上記吸着工程が終了すると、吸着塔Aは循環管路3の
弁31aと弁32bとを開くことによって減圧工程に入る。こ
れによって吸着圧力まで昇圧された吸着塔A内の原料ガ
スは減圧状態の吸着塔Bに移動し、吸着塔Aはほぼ大気
圧まで減圧されるとともに、吸着塔Bは昇圧第1期が行
われる。
When the adsorption step is completed, the adsorption tower A starts the pressure reduction step by opening the valves 31a and 32b of the circulation line 3. As a result, the raw material gas in the adsorption tower A, which has been pressurized to the adsorption pressure, moves to the adsorption tower B in a reduced pressure state, and the pressure in the adsorption tower A is reduced to almost the atmospheric pressure, and the adsorption tower B is subjected to the first pressurization. .

この後、吸着塔Aは洗浄工程に入る。この洗浄工程で
は、洗浄用ガス供給管路4の弁41aと、循環管路3の弁3
1a,32bと、排ガス排出管路2の弁21bとが開かれ、製品
ガス貯留槽6のCO成分ガスが吸着塔Aに導入される。こ
のCO成分ガスによって吸着塔A内に残留する難吸着成分
がパージされ、このパージ排ガスは循環管路3を通して
吸着塔Bに導かれて吸着塔Bの昇圧第2期に用いられ
る。
Thereafter, the adsorption tower A enters a washing step. In this cleaning step, the valve 41a of the cleaning gas supply pipe 4 and the valve 3 of the circulation pipe 3 are connected.
1a, 32b and the valve 21b of the exhaust gas discharge line 2 are opened, and the CO component gas in the product gas storage tank 6 is introduced into the adsorption tower A. The poorly adsorbed components remaining in the adsorption tower A are purged by the CO component gas, and the purged exhaust gas is led to the adsorption tower B through the circulation pipe 3 and used in the second stage of the pressure increase of the adsorption tower B.

洗浄工程が終了した吸着塔Aは上記弁41aおよび弁31a
が閉じられて大気圧の状態で吸着塔Dの脱着工程が終了
するまで休止する。そして吸着塔Dの脱着工程が終了す
ると同時に脱着ガス回収管路5の弁51aを開き、真空ポ
ンプ50を引続いて作動させることによって吸着塔Aは脱
着工程に入る。この脱着工程によって吸着塔A内に吸着
されたCO成分が減圧脱着され、このCO成分ガスが製品ガ
ス貯留槽6に回収される。
The adsorption tower A after the completion of the washing step is connected to the valve 41a and the valve 31a.
Is closed and stopped at the atmospheric pressure until the desorption step of the adsorption tower D is completed. At the same time when the desorption step of the adsorption tower D is completed, the valve 51a of the desorption gas recovery pipe 5 is opened, and the vacuum pump 50 is continuously operated, whereby the adsorption tower A enters the desorption step. In this desorption step, the CO component adsorbed in the adsorption tower A is desorbed under reduced pressure, and this CO component gas is collected in the product gas storage tank 6.

上記吸着塔Aでの脱着工程は、吸着塔Bで吸着工程、
吸着塔Cで減圧、洗浄および休止工程、吸着塔Dで昇圧
工程がそれぞれ行なわれている間引続いて行われる。
The desorption step in the adsorption tower A includes an adsorption step in the adsorption tower B,
The pressure-reducing, washing and resting steps are performed in the adsorption tower C, and the pressure-increasing step is performed in the adsorption tower D.

この脱着工程によって吸着塔A内の圧力は最終的にほ
ぼ−1kg/cm2まで減圧される。これによって1サイクル
が終了し、この後、吸着塔Aは昇圧工程に戻り、以下同
様の工程が繰返される。
By this desorption step, the pressure in the adsorption tower A is finally reduced to approximately −1 kg / cm 2 . This completes one cycle, after which the adsorption tower A returns to the pressure increasing step, and the same steps are repeated thereafter.

上記従来の圧力スイング吸着方法においては、回収率
を向上させるために吸着工程、減圧工程、および洗浄工
程の排ガス中のCOを他の吸着塔で回収するとともに、真
空ポンプの動力を有効に利用するために常にいずれかの
吸着塔が脱着工程にあるように設定されている。このた
め洗浄工程が終了した吸着塔は次の脱着工程に入るまで
待機しなければならず、この間に休止工程が必ず生じる
という問題がある。
In the above conventional pressure swing adsorption method, in order to improve the recovery rate, CO in the exhaust gas of the adsorption step, the depressurization step, and the cleaning step is collected by another adsorption tower, and the power of the vacuum pump is effectively used. Therefore, it is set so that one of the adsorption towers is always in the desorption step. For this reason, the adsorption tower after the washing step has to wait until the next desorption step, and there is a problem that a pause step always occurs during this time.

また吸着剤としてゼオライトなどの担体に銅化合物を
添着した化学吸着剤を用いているために、ゼオライトな
どの物理吸着剤を用いる場合に比べ、COは上記化学吸着
剤に強く吸着される。このため脱着工程において上記CO
は脱着されにくいという問題がある。
In addition, since a chemical adsorbent obtained by impregnating a carrier such as zeolite with a copper compound is used as an adsorbent, CO is strongly adsorbed to the chemical adsorbent as compared with a case where a physical adsorbent such as zeolite is used. For this reason, the CO
Has a problem that it is difficult to detach.

この問題を解決するために脱着回収用の真空ポンプの
能力を大きくして脱着時の圧力を低くすることが考えら
れる。ところが、吸着力が強い場合には脱着圧力を低く
しても脱着の反応が律速であるためにすぐには脱着され
ず徐々に脱着されるので、脱着工程全体のCOの脱着量は
余り増加しない。そればかりか脱着圧力を低くすると、
難吸着成分である不純物は容易に吸着平衡に達するため
に、脱着圧力に応じて上記不純物の脱着量も増加してCO
純度は低下するという問題が生じる。
In order to solve this problem, it is conceivable to increase the capacity of the vacuum pump for desorption and recovery to lower the pressure during desorption. However, when the adsorption power is strong, even if the desorption pressure is lowered, the desorption reaction is rate-determining, so it is not desorbed immediately but is gradually desorbed, so the CO desorption amount in the entire desorption process does not increase much . In addition, if you lower the desorption pressure,
Since impurities that are hardly adsorbed components easily reach adsorption equilibrium, the amount of the impurities desorbed increases according to the desorption pressure, and CO
There is a problem that the purity is reduced.

また脱着時の温度を上げて脱着し易くすることも考え
られるが、この場合脱着温度を上げると吸着温度も相対
的に上がり、その結果、吸着容量が減少してしまう。ま
た1サイクルの時間を長くして、その分脱着工程の時間
を長くすることも考えられる。ところが、上記脱着反応
の特性のためにCOの脱着量は脱着時間に応じて増加しな
いために単位時間当たりのCO脱着量は減少することにな
る。
It is also conceivable to increase the temperature at the time of desorption to facilitate desorption. However, in this case, if the desorption temperature is increased, the adsorption temperature is relatively increased, and as a result, the adsorption capacity is reduced. It is also conceivable to lengthen the time of one cycle and thereby lengthen the time of the desorption step. However, the amount of CO desorbed per unit time decreases because the amount of CO desorbed does not increase with the desorption time due to the characteristics of the desorption reaction.

このため吸着力の強い吸着剤を使用した圧力スイング
吸着方法において、吸着したCOを効率よく脱着回収し、
かつ時間を有効に利用してその回収量を増加することの
できる方法の開発が要望されている。
For this reason, in the pressure swing adsorption method using a strong adsorbent, the adsorbed CO is efficiently desorbed and collected,
In addition, there is a demand for the development of a method that can effectively use time and increase the amount of recovery.

(発明の目的) この発明は、このような従来の課題を解決するために
なされたものであり、COの脱着回収量を容易かつ確実に
増大させることができ、しかも純度を向上させうる圧力
スイング吸着方法を提供するものである。
(Object of the Invention) The present invention has been made to solve such a conventional problem, and a pressure swing capable of easily and surely increasing the amount of CO desorbed and recovered and improving the purity. The present invention provides an adsorption method.

(発明の構成) この発明は、昇圧工程と吸着工程と減圧工程と洗浄工
程と脱着工程とを有し、銅化合物を添着した吸着剤を充
填した4つの圧力スイング吸着塔を用いて、上記工程を
互いにずらせて繰返すことによって一酸化炭素を含む混
合ガスから一酸化炭素を分離回収する圧力スイング吸着
方法において、ある吸着塔の脱着工程と他の吸着塔の脱
着工程とを互いにその一部を重複させて複数の吸着塔の
脱着工程が同時に行われるようにするものである。
(Constitution of the Invention) The present invention comprises a pressure boosting step, an adsorption step, a decompression step, a washing step, and a desorption step, and the above-mentioned step is carried out by using four pressure swing adsorption towers filled with an adsorbent impregnated with a copper compound. In a pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide by repeating the above steps, a part of the desorption step of one adsorption tower and a part of the desorption step of another adsorption tower overlap each other. In this way, a plurality of adsorption towers can be simultaneously desorbed.

上記構成によれば、ある吸着塔の脱着工程と他の吸着
塔の脱着工程とを互いにその一部を重複させて行うこと
により、1サイクル当たりの時間を増加させることなく
吸着塔の単位脱着工程当たりの脱着継続時間と総運転時
間に占める総脱着時間とを増加させることができる。
According to the above configuration, the desorption step of one adsorption tower and the desorption step of another adsorption tower are partially overlapped with each other, so that the unit desorption step of the adsorption tower can be performed without increasing the time per cycle. The desorption continuation time per unit and the total desorption time in the total operation time can be increased.

また脱着がある程度行なわれた吸着塔と、脱着が始ま
る吸着塔との2つが同時に脱着されるので、脱着当初、
2つの吸着塔の圧力が均圧し、脱着が始まった吸着塔は
脱着に有効な圧力値まで瞬間的に低下し、脱着工程の時
間のうちその吸着塔内が脱着に有効な圧力値に保たれる
時間が増加する。
In addition, since the adsorption tower where desorption has been performed to some extent and the adsorption tower where desorption starts are simultaneously desorbed, at the beginning of desorption,
The pressures of the two adsorption towers are equalized, and the adsorption tower where desorption has begun instantaneously drops to a pressure value effective for desorption, and the pressure inside the adsorption tower is maintained at a pressure value effective for desorption during the desorption process. Time is increased.

これらによって脱着回収量を従来法より増加させるこ
とができる。また一つの真空ポンプで同時に複数の吸着
塔を減圧脱着させるので脱着工程の最終脱着圧力は、従
来の一つの吸着塔を減圧脱着させる場合よりも高くな
り、このため不純物の脱着量も従来法よりも少なくな
る。
Thus, the amount of desorbed and recovered can be increased as compared with the conventional method. In addition, since a plurality of adsorption towers are simultaneously decompressed and desorbed by one vacuum pump, the final desorption pressure in the desorption step is higher than in the case where one conventional adsorption tower is depressurized and desorbed. Is also reduced.

(実施例) 第1図および第2図に示す工程は、第4図および第5
図に示す従来のサイクルにおける休止工程を廃止し、そ
の時間を脱着工程に組入れることによって1サイクルに
要する時間(12分)を増加させることなく脱着工程の時
間を長くしている。したがって、昇圧〜吸着〜減圧〜洗
浄〜脱着工程で1サイクルが構成され、脱着工程は他の
吸着塔との関係によって3つの段階、すなわち脱着第1
期、脱着第2期および脱着第3期とに分かれる。
(Example) The steps shown in FIG. 1 and FIG.
The pause step in the conventional cycle shown in the figure is eliminated, and the time is included in the desorption step, thereby extending the time of the desorption step without increasing the time required for one cycle (12 minutes). Therefore, one cycle is constituted by the steps of pressure increase, adsorption, decompression, washing, and desorption, and the desorption step has three stages, ie, the first desorption, depending on the relationship with other adsorption towers.
Phase, the second phase of desorption and the third phase of desorption.

例えば吸着塔Aについてみると脱着第1期にはこの吸
着塔Aと、脱着第3期にある吸着塔Dとの2つが真空ポ
ンプ50によって減圧脱着される。ついで脱着第2期では
吸着塔Aのみが真空ポンプ50によって減圧脱着され、脱
着第3期ではこの吸着塔Aと脱着第1期にある吸着塔C
との2つが真空ポンプ50によって減圧脱着されることに
なる。したがって4つの吸着塔A,B,C,Dにおける脱着工
程は、その始期と終期とが相互に重複しながら連続して
繰返されることになる。なお第2図は吸着塔Aの各工程
と第3図に示す装置におけるガスの流れとを示し、装置
については昇圧第1期にのみに主要符号を付し、他の工
程には符号を省略している。
For example, regarding the adsorption tower A, two of the adsorption tower A in the first stage of desorption and the adsorption tower D in the third stage of desorption are decompressed and desorbed by the vacuum pump 50. Next, in the second phase of desorption, only the adsorption tower A is decompressed and desorbed by the vacuum pump 50. In the third phase of desorption, the adsorption tower A and the adsorption tower C in the first phase of desorption are used.
Are decompressed and desorbed by the vacuum pump 50. Therefore, the desorption process in the four adsorption towers A, B, C, and D is continuously repeated while the beginning and end thereof overlap with each other. FIG. 2 shows each step of the adsorption tower A and the flow of gas in the apparatus shown in FIG. 3. In the apparatus, main symbols are assigned only to the first stage of the pressure increase, and symbols are omitted for other steps. doing.

第1図、第2図および第3図において、吸着塔Aは昇
圧第1期から昇圧第3期までの工程で第4図に示す従来
の工程と同様に2kg/cm2Gの吸着圧力まで昇圧され、続い
てその吸着圧力を維持しつつ吸着工程に入る。この後、
減圧工程で循環管路3の弁31aが開かれて吸着塔Aは大
気圧まで減圧される。そして洗浄工程で製品ガス貯留槽
6からの製品ガスを洗浄用ガスとして吸着塔Aに流し難
吸着成分をパージするとともに、吸着剤の空隙を高純度
のCO成分ガスで満たすようにする。この洗浄工程までは
第4図に示す従来の工程と同様に行われ、上記洗浄工程
の終了段階の吸着塔Aはほぼ大気圧にある。
1, 2 and 3, the adsorption tower A has a pressure of 2 kg / cm 2 G in the process from the first stage to the third stage in the same manner as the conventional process shown in FIG. The pressure is increased, and then the adsorption process is started while maintaining the adsorption pressure. After this,
In the pressure reduction step, the valve 31a of the circulation line 3 is opened, and the pressure in the adsorption tower A is reduced to the atmospheric pressure. Then, in the cleaning step, the product gas from the product gas storage tank 6 is passed as a cleaning gas to the adsorption tower A to purge the hardly adsorbable components, and to fill the voids of the adsorbent with the high-purity CO component gas. The cleaning process is performed in the same manner as the conventional process shown in FIG. 4, and the adsorption tower A at the end of the cleaning process is almost at atmospheric pressure.

弁41a、31a,32b,21bが閉じられることによって洗浄工
程は終了し、引続いて回収管路5の弁51aが開かれるこ
とによって吸着塔Aは脱着工程の脱着第1期に入る。こ
の脱着第1期に入る直前には吸着塔Dが脱着第2期にあ
り、吸着塔Dは真空ポンプ50によって弁51dを通して単
独で減圧脱着されている。したがって吸着塔Aが脱着第
1期に入ることによって吸着塔Aと吸着塔Dとの2つが
真空ポンプ50によって同時に減圧脱着されることにな
り、吸着塔Dは脱着第3期に入る。吸着塔Aが脱着第1
期、吸着塔Dが脱着第3期にそれぞれある間、吸着塔B
は昇圧第3期、吸着塔Cは吸着工程が行なわれている。
The cleaning process is completed by closing the valves 41a, 31a, 32b, and 21b, and subsequently, the valve 51a of the recovery line 5 is opened, so that the adsorption tower A enters the first stage of desorption in the desorption process. Immediately before entering the first phase of desorption, the adsorption tower D is in the second phase of desorption, and the adsorption tower D is independently decompressed and decompressed by the vacuum pump 50 through the valve 51d. Therefore, when the adsorption tower A enters the first stage of desorption, the two of the adsorption tower A and the adsorption tower D are simultaneously depressurized and desorbed by the vacuum pump 50, and the adsorption tower D enters the third stage of desorption. Adsorption tower A is desorbed first
During the period when the adsorption tower D is in the third phase of desorption, the adsorption tower B
In the third stage, the adsorption step is performed in the adsorption tower C.

回収管路5の弁51dが閉じられて吸着塔Dの脱着第3
期が終了しても吸着塔Aは引続いて減圧脱着が行われ
る。これによって吸着塔Aは脱着第2期に入り、単独で
減圧されるので吸着塔A内の圧力は上記脱着第1期と比
べて急速に下がりほぼ最終圧力近くまで減圧される。こ
の脱着第2期の間、他の吸着塔Bは吸着工程、吸着塔C
は減圧工程および洗浄工程、吸着塔Dは昇圧第2期がそ
れぞれ行なわれている。
The valve 51d of the recovery line 5 is closed, and the third desorption of the adsorption tower D is performed.
Even after the end of the period, the adsorption tower A is continuously desorbed under reduced pressure. As a result, the adsorption tower A enters the second stage of desorption and is decompressed alone, so that the pressure in the adsorption tower A decreases rapidly as compared with the first phase of desorption and is reduced to almost the final pressure. During the second stage of the desorption, the other adsorption tower B performs the adsorption step, the adsorption tower C
, The pressure reduction step and the washing step are performed, and the adsorption tower D is subjected to the second pressure raising phase.

この後、洗浄工程を終えた上記吸着塔Cは回収管路5
の弁51bが開かれることによって脱着工程の脱着第1期
に入る。これによって吸着塔Aは上記脱着第2期から2
つの吸着塔が同時に減圧脱着される脱着第3期に入る。
この脱着第3期では、吸着塔Aが引続いて真空ポンプ50
によって吸引されるが、同じ真空ポンプ50で同時に2つ
の吸着塔を吸引するとともに他の吸着塔Cが大気圧から
の吸引となるので、吸着塔A内の圧力と吸着塔C内の圧
力とは、吸着塔Aの脱着第2期終了時の圧力よりやや高
い圧力で均圧する。これによって吸着塔C内の圧力は徐
々に減圧作動されるのではなく、ある程度以下の減圧状
態まで瞬間的に減圧することができる。この後、上記2
つの吸着塔A,Cはさらに減圧されるが、脱着工程全体の
最終圧力は、従来法のように各吸着塔A,B,C,Dの脱着工
程を独立させて真空ポンプ50によって減圧させる場合よ
りも若干高くなる。
After that, the adsorption tower C after the washing step is returned to the recovery line 5.
When the valve 51b is opened, the first stage of the desorption process is started. As a result, the adsorption tower A is moved from the second stage of desorption to 2
The third stage of desorption, in which two adsorption towers are simultaneously desorbed under reduced pressure, is entered.
In the third stage of the desorption, the adsorption tower A is continuously operated by the vacuum pump 50.
However, since the same vacuum pump 50 simultaneously suctions the two adsorption towers and the other adsorption tower C is suctioned from the atmospheric pressure, the pressure in the adsorption tower A and the pressure in the adsorption tower C are different from each other. The pressure is equalized at a pressure slightly higher than the pressure at the end of the second stage of desorption of the adsorption tower A. As a result, the pressure in the adsorption tower C can be instantaneously reduced to a certain degree or less, instead of being gradually reduced. After this, the above 2
One of the adsorption towers A and C is further depressurized, but the final pressure of the entire desorption step is the same as in the conventional method when the desorption steps of each adsorption tower A, B, C and D are independently depressurized by the vacuum pump 50. Slightly higher than

吸着塔Bの吸着工程の終了とともに吸着塔Aの脱着工
程も終了し、これによって吸着塔Aでの1サイクルが終
了し、吸着塔Aは再び昇圧工程に入って次のサイクルに
入る。
With the end of the adsorption step of the adsorption tower B, the desorption step of the adsorption tower A is also ended, whereby one cycle in the adsorption tower A is ended, and the adsorption tower A enters the pressure increasing step again and enters the next cycle.

上記方法によれば、脱着工程における減圧状態を第4
図および第5図に示す従来法よりも長い時間継続させる
ことができるので、一回の脱着工程で従来よりも多くの
COを脱着回収することができる。しかも1サイクルに要
する時間は従来法と同じであるので総運転時間当たりお
よび単位時間当たりの脱着回収量も従来法よりも増加さ
せることができる。また脱着工程における最終圧力が従
来法よりも高くなるので、その分だけ不純物の脱着量も
少なくなり、これによってCO純度を向上させることがで
きる。
According to the above method, the decompression state in the desorption step is changed to the fourth state.
Since it can be continued for a longer time than the conventional method shown in FIG. 5 and FIG.
CO can be desorbed and recovered. In addition, since the time required for one cycle is the same as that of the conventional method, the amount of desorbed and recovered per total operating time and per unit time can be increased as compared with the conventional method. In addition, since the final pressure in the desorption step is higher than in the conventional method, the amount of desorbed impurities is reduced by that amount, thereby improving the CO purity.

(具体例) 第3図に示す装置を用いてCOが70%、CO2が15%、N2
が15%の組成の原料ガスからCOを分離回収する場合につ
いて第1図および第2図に示す工程にしたがって試験し
た。1サイクル12分間で繰返した結果、運転開始後80分
で製品ガスのCO純度は99.8%で一定となり、CO回収率は
50%を維持し、1サイクル当たりのCOの脱着ガス量は1.
5m3であった。なお吸着剤としては活性アルミナに銅化
合物を添着させたものを使用した。
(Examples) The 3 CO using the apparatus shown in figure 70%, CO 2 is 15%, N 2
Was tested according to the steps shown in FIGS. 1 and 2 for the case of separating and recovering CO from a raw material gas having a composition of 15%. As a result of repeating one cycle for 12 minutes, the CO purity of the product gas was constant at 99.8% 80 minutes after the start of operation, and the CO recovery rate was
Maintain 50%, and the amount of CO desorbed per cycle is 1.
It was 5m 3. The adsorbent used was an activated alumina with a copper compound impregnated.

(比較例) 上記具体例と同じ装置と同じ組成の原料ガスとを用い
て第4図および第5図に示す従来方法にしたがって試験
した。上記具体例と同じサイクルタイムで繰返した結
果、運転開始後80分間で製品ガスのCO純度は99.5%で一
定となり、また回収率はほぼ同じであったが、COの脱着
ガス量は1.2m3であった。
(Comparative Example) A test was performed according to the conventional method shown in FIGS. 4 and 5 using the same apparatus and the same source gas as in the above specific example. As a result of repeating the same cycle time as the above example, the CO purity of the product gas was constant at 99.5% in 80 minutes after the start of operation, and the recovery rate was almost the same, but the amount of CO desorbed gas was 1.2 m 3 Met.

すなわち第1図および第2図に示す実施例に基いた具
体例では、従来法に基いた比較例と比べてCOの脱着ガス
量を25%増加させることができた。また脱着量が増加す
るとともに、不純物の脱着量が従来法と比べて減少する
ためにCO純度は0.3%向上した。
That is, in the specific example based on the embodiment shown in FIGS. 1 and 2, the amount of CO desorbed gas could be increased by 25% as compared with the comparative example based on the conventional method. Also, as the amount of desorption increased, the amount of impurities desorbed decreased compared with the conventional method, so that the CO purity was improved by 0.3%.

(発明の効果) この発明の圧力スイング吸着方法によれば、ある吸着
塔の脱着工程と他の吸着塔の脱着工程とを互いにその一
部を重複させて行うことにより、1サイクル当たりの時
間を増加させることなく吸着塔の単位脱着工程当たりの
脱着継続時間と総運転時間に占める総脱着時間とを増加
させることができ、これによってCOの脱着回収量を容易
かつ確実に従来法より増加させることができる。しかも
一つの真空ポンプで同時に複数の吸着塔を減圧脱着させ
るので脱着工程の最終脱着圧力は従来法よりも高くな
り、このため不純物の脱着量は従来法よりも少なくなる
ので純度を向上させることができる。
(Effects of the Invention) According to the pressure swing adsorption method of the present invention, the desorption step of a certain adsorption tower and the desorption step of another adsorption tower are performed by partially overlapping each other to reduce the time per cycle. It is possible to increase the desorption duration per unit desorption step of the adsorption tower and the total desorption time in the total operation time without increasing the amount of CO, thereby easily and reliably increasing the amount of CO desorbed and recovered compared with the conventional method. Can be. Moreover, since a plurality of adsorption towers are simultaneously decompressed and depressurized by one vacuum pump, the final desorption pressure in the desorption step is higher than in the conventional method, and thus the amount of impurities desorbed is smaller than in the conventional method, so that the purity can be improved. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例の各工程と吸着塔内の圧力と
を経時的に示す工程説明図、第2図は第1図の各工程と
ガスの流れとを示す工程説明図、第3図は第1図の各工
程と第4図の各工程とを実施する装置の概略構成図、第
4図は従来の方法の各工程と吸着塔内の圧力とを経時的
に示す工程説明図、第5図は第4図の各工程とガスの流
れとを示す工程説明図である。 A,B,C,D……圧力スイング吸着塔、1……原料ガス供給
管路、2……排ガス排出管路、3……循環管路、4……
洗浄用ガス供給管路、5……脱着ガス回収管路、6……
製品ガス貯留槽。
FIG. 1 is a process explanatory diagram showing each step of the embodiment of the present invention and the pressure in the adsorption tower with time, FIG. 2 is a process explanatory diagram showing each process of FIG. 1 and a gas flow, FIG. 3 is a schematic configuration diagram of an apparatus for performing each step of FIG. 1 and each step of FIG. 4, and FIG. 4 is a description of each step of the conventional method and the pressure over time in the adsorption tower. FIG. 5 is a process explanatory view showing each process of FIG. 4 and the flow of gas. A, B, C, D ... pressure swing adsorption tower, 1 ... source gas supply line, 2 ... exhaust gas discharge line, 3 ... circulation line, 4 ...
Cleaning gas supply line, 5 ... Desorption gas recovery line, 6 ...
Product gas storage tank.

フロントページの続き (72)発明者 青方 卓 兵庫県神戸市須磨区妙法寺字蓮池366番 地の10 (72)発明者 山形 昌弘 大阪府大阪市西淀川区佃3丁目19番10― 1109号 (72)発明者 横江 甚太郎 兵庫県西宮市花園町8―8―101号 (72)発明者 辻 利明 大阪府泉佐野市南中岡本145Continued on the front page (72) Inventor Taku Aogata 366, Hasuike, Myohoji, Suma-ku, Kobe-shi, Hyogo Prefecture Inventor Jintaro Yokoe 8-8-101 Hanazono-cho, Nishinomiya-shi, Hyogo (72) Inventor Toshiaki Tsuji 145 Minaminakaokamoto, Izumisano-shi, Osaka

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】昇圧工程と吸着工程と減圧工程と洗浄工程
と脱着工程とを有し、銅化合物を添着した吸着剤を充填
した4つの圧力スイング吸着塔を用いて、上記工程を互
いにずらせて繰返すことによって一酸化炭素を含む混合
ガスから一酸化炭素を分離回収する圧力スイング吸着方
法において、ある吸着塔の脱着工程と他の吸着塔の脱着
工程とを互いにその一部を重複させて複数の吸着塔の脱
着工程が同時に行われるようにすることを特徴とする圧
力スイング吸着方法。
1. A pressure swinging step, an adsorbing step, a depressurizing step, a washing step, and a desorbing step, wherein the above steps are shifted from each other by using four pressure swing adsorption towers filled with an adsorbent to which a copper compound is impregnated. In a pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide by repeating, a desorption step of one adsorption tower and a desorption step of another adsorption tower are partially overlapped with each other by a plurality of steps. A pressure swing adsorption method, wherein the steps of desorbing the adsorption tower are performed simultaneously.
JP62315589A 1987-12-14 1987-12-14 Pressure swing adsorption method Expired - Lifetime JP2569095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315589A JP2569095B2 (en) 1987-12-14 1987-12-14 Pressure swing adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315589A JP2569095B2 (en) 1987-12-14 1987-12-14 Pressure swing adsorption method

Publications (2)

Publication Number Publication Date
JPH01155926A JPH01155926A (en) 1989-06-19
JP2569095B2 true JP2569095B2 (en) 1997-01-08

Family

ID=18067172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315589A Expired - Lifetime JP2569095B2 (en) 1987-12-14 1987-12-14 Pressure swing adsorption method

Country Status (1)

Country Link
JP (1) JP2569095B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658371A (en) * 1995-11-06 1997-08-19 Praxair Technology, Inc. Single bed pressure swing adsorption process for recovery of oxygen from air
FR2799987B1 (en) * 1999-10-25 2002-04-26 Air Liquide PROCESS FOR PURIFYING A GAS BY ADSORPTION OF TWO IMPURITIES AND CORRESPONDING DEVICE
US8029603B2 (en) * 2009-01-23 2011-10-04 Air Products And Chemicals, Inc. Pressure swing adsorption cycle for ozone production
JP5554649B2 (en) * 2010-07-08 2014-07-23 山陽電子工業株式会社 Gas generation method and gas generation apparatus
JP5675505B2 (en) * 2011-06-07 2015-02-25 住友精化株式会社 Target gas separation method and target gas separation device

Also Published As

Publication number Publication date
JPH01155926A (en) 1989-06-19

Similar Documents

Publication Publication Date Title
KR910009568B1 (en) Process for recovering oxygen enriched gas
JP3492869B2 (en) Single bed pressure swing adsorption method for oxygen recovery from air
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
JPH07265635A (en) Method for selective separation of component relatively strong in adsorbing power from component relatively weak in adsorbing power in feed material gas mixture
EP1018359A2 (en) Pressure swing adsorption process and system with product storage tank(s)
JP3073917B2 (en) Simultaneous pressure change adsorption method
JP3899282B2 (en) Gas separation method
JPH06254336A (en) Process for separating gas component by vacuum swing adsorbing method
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
JPH0244569B2 (en)
EP1175934A2 (en) Improved oxygen production
EP1004342A2 (en) Pressure swing adsorption gas separation process and system using single adsorber and product recycle
JPH0268111A (en) Improved pressure swing adsorbing method
JP2569095B2 (en) Pressure swing adsorption method
JP2638037B2 (en) Pressure swing adsorption method
JPH0733404A (en) Production of high concentration oxygen
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
JP2587334B2 (en) Method of separating CO gas not containing CH4
JP2569091B2 (en) Pressure swing adsorption method
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
KR0145787B1 (en) Process for preparing oxygen by changing pressure
JPH0967104A (en) Oxygen concentrating method by pressure swing adsorption
JPH01203018A (en) Pressure swing adsorption process
JP2909254B2 (en) How to concentrate chlorine gas
JP2001342013A (en) Nitorgen gas generation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12