JPH06238295A - Drain treatment - Google Patents

Drain treatment

Info

Publication number
JPH06238295A
JPH06238295A JP5028943A JP2894393A JPH06238295A JP H06238295 A JPH06238295 A JP H06238295A JP 5028943 A JP5028943 A JP 5028943A JP 2894393 A JP2894393 A JP 2894393A JP H06238295 A JPH06238295 A JP H06238295A
Authority
JP
Japan
Prior art keywords
tank
nitrification
stage
organic substance
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5028943A
Other languages
Japanese (ja)
Inventor
Katsuhide Fujita
克英 藤田
Nobuyoshi Katagai
信義 片貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP5028943A priority Critical patent/JPH06238295A/en
Publication of JPH06238295A publication Critical patent/JPH06238295A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To obtain a method for treating drained water for efficient organic substance removal and nitrification by performing nitrification using a back-stage tank filled with a porous carrier which is best suited for the growth of nitrification bacterium after removing an organic substance using a front-stage tank of a multi-stage divided biotreatment tank. CONSTITUTION:In a drain treatment method, a treatment tank consists of a biotreatment tank 1 divided by a diaphragm 9 in a multi-stage fashion as the front stage being the first stage 4 of an organic substance removal tank and the second stage 5 of an organic substance removal tank, and the back stage being the first stage 6 of a nitrification tank and the second stage 7 of a nitrification tank. In addition, the organic substance removal tanks 4, 5 are filled with a plate-like vinyl chloride carrier 2, for example, which is best suited for the growth of BOD oxidation bacterium for removal of the organic substance. On the other hand, the nitrification tanks 6, 7 are filled with a granulated ceramic carrier 8, for example, which is best suited for the growth of nitrification bacterium as a porous carrier. In addition, each tank 4 to 7 is equipped with arranged air diffusion pipe 3 for aeration, and waste water is purified by nitrification in the nitrification tanks 6, 7 after the removal of an organic substance in the organic substance removal tanks 4, 5. Thus water purification takes place and the treated water is discharged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機物の除去及び硝化
を行うための排水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method for removing organic substances and nitrifying.

【0002】[0002]

【従来の技術】し尿、下水、各種産業廃水等に含まれる
有機物を分解除去するための方法として、微生物を利用
した生物処理法が広く用いられているが、近年、閉鎖水
域における富栄養化の問題が深刻となり、有機物だけで
なく、これら排水中の窒素及び燐の高度な処理が望まれ
ている。生物処理技術を用いた窒素除去を行うために
は、先ず硝化が行われなければならない。即ち、硝化菌
(亜硝酸菌及び硝酸菌の総称)によるアンモニア態窒素
(以下、NH4−N)からの亜硝酸態窒素(以下、NO2
N)又は硝酸態窒素(以下、NO3−N)への酸化である。
また、これより更に窒素除去を行うためには、嫌気的雰
囲気に成育する脱窒菌により、これらを窒素ガスまでに
還元する必要がある。
2. Description of the Related Art As a method for decomposing and removing organic matter contained in human waste, sewage, various industrial wastewaters, etc., a biological treatment method utilizing microorganisms is widely used. The problem becomes serious, and not only organic substances but also advanced treatment of nitrogen and phosphorus in these wastewater is desired. In order to perform nitrogen removal using biological treatment technology, nitrification must first be performed. That is, nitrifying bacteria
Nitrite nitrogen (hereinafter, NO 2 −) from ammonia nitrogen (hereinafter, NH 4 —N) due to (generic term for nitrite bacteria and nitric acid bacteria)
N) or nitrate nitrogen (hereinafter, NO 3 —N).
Further, in order to further remove nitrogen, it is necessary to reduce these to nitrogen gas by denitrifying bacteria growing in an anaerobic atmosphere.

【0003】[0003]

【発明が解決しようとする課題】硝化を行う従来の生物
的処理技術には、大別して懸濁状の微生物による活性汚
泥法及び槽内に担体を充填して微生物を捕捉する生物膜
法がある。活性汚泥法においては、有機物を除去するB
OD酸化細菌及び硝化菌は懸濁状態で混合しながら成育
する。ところが、硝化菌の増殖時間は小さく、倍加時間
はBOD酸化細菌の数10分間に比べて10〜70時間
と長時間である。このために、従来の活性汚泥法では硝
化菌が槽内から洗い流され易く、この際硝化が発現しな
いという欠点を持つ。生物膜法は、充填する担体の形状
や材質の違いにより様々なものがある。その中で、塩化
ビニル等の合成樹脂による板状担体を使った処理方法は
従来から広く用いられている。これは、担体の表面にB
OD酸化細菌をスライム状に形成させて有機物除去を行
うと共に、担体内部に成育する硝化菌により硝化を行う
ものである。しかし、外的な環境条件の変化が起こる
と、担体表面から生物が剥離して処理槽外に流出してし
まい、硝化が進行しないという欠点を持つ。
The conventional biological treatment techniques for nitrification are roughly classified into an activated sludge method using suspended microorganisms and a biofilm method in which a tank is filled with a carrier to capture the microorganisms. . In the activated sludge method, organic matter is removed B
The OD-oxidizing bacteria and the nitrifying bacteria grow in a suspended state while being mixed. However, the growth time of nitrifying bacteria is short, and the doubling time is as long as 10 to 70 hours as compared with several 10 minutes of BOD-oxidizing bacteria. Therefore, the conventional activated sludge method has a drawback in that nitrifying bacteria are easily washed out from the tank and nitrification does not occur at this time. There are various biofilm methods depending on the shape and material of the carrier to be filled. Among them, a treatment method using a plate-shaped carrier made of a synthetic resin such as vinyl chloride has been widely used. This is B on the surface of the carrier.
The OD-oxidizing bacteria are formed into a slime shape to remove organic substances, and nitrification is carried out by nitrifying bacteria growing inside the carrier. However, when external environmental conditions change, organisms are separated from the surface of the carrier and flow out of the treatment tank, which has a drawback that nitrification does not proceed.

【0004】また、その他の生物膜処理法として、多孔
質担体を用いた処理法がある。多孔質担体には、粒状の
セラミック等の無機材質のものや、ポリエチレン等の合
成樹脂のものがある。これら多孔質担体は、その形状に
より硝化菌の成育に適した環境を提供する。即ち、多孔
質担体は、外的環境条件の変化に弱い硝化菌の特性を緩
衝する効果を持つからである。ところが、有機物負荷の
高い廃水においてはBOD酸化細菌が優勢となり、担体
表面が菌体成分や代謝産物等に由来するスライム状物質
に覆われ、表層内部の硝化菌の成育を阻害する場合があ
る。これは、以下の理由によるものとされている。硝化
菌は、二酸化炭素を唯一の炭素源として細胞合成を行う
独立栄養細菌である。このため、従属栄養細菌であるB
OD酸化細菌との間に基質の競合関係は成立しないが、
成育のエネルギーを得る際にNH4−NやNO2−Nを酸
化するための酸素が必要となるため、酸素の奪い合いが
生じる。この際、硝化菌はBOD酸化細菌に対して劣性
となることが知られており、成育やその活性が抑制され
ると言われている。
As another biofilm treatment method, there is a treatment method using a porous carrier. The porous carrier may be an inorganic material such as granular ceramic or a synthetic resin such as polyethylene. The shape of these porous carriers provides an environment suitable for the growth of nitrifying bacteria. That is, the porous carrier has the effect of buffering the characteristics of nitrifying bacteria that are weak against changes in external environmental conditions. However, in wastewater having a high organic matter load, BOD-oxidizing bacteria become predominant, and the carrier surface may be covered with slime-like substances derived from bacterial cell components, metabolites, etc., thereby inhibiting the growth of nitrifying bacteria inside the surface layer. This is due to the following reasons. Nitrifying bacteria are autotrophic bacteria that perform cell synthesis using carbon dioxide as the sole carbon source. Therefore, the heterotrophic bacterium B
There is no substrate competition with OD-oxidizing bacteria,
Oxygen is required to oxidize NH 4 —N and NO 2 —N when obtaining energy for growth, so that competition for oxygen occurs. At this time, nitrifying bacteria are known to be inferior to BOD-oxidizing bacteria, and it is said that growth and activity thereof are suppressed.

【0005】このため、多孔質担体を用いた生物処理方
法において、硝化を効果的に進行させるためには、BO
D酸化細菌の成育に由来するスライム状物質を、逆洗浄
や引き抜き操作を頻繁に行わなければならないという欠
点を持っている。上記したように、し尿、下水、各種産
業排水等の生物処理槽において硝化を充分に進行させる
ために、従来より活性汚泥法や生物膜法が行われてき
た。しかしながら、これらはBOD酸化細菌との共生に
よる酸素の供給不足や硝化菌の槽外への流出等の問題点
を残しており、良好な硝化を示さない原因となってい
る。本発明は、上記した問題点に鑑み、効率的に有機物
除去及び硝化を行うための排水処理方法を提供するもの
である。
Therefore, in a biological treatment method using a porous carrier, in order to effectively promote nitrification, BO
It has a drawback that a slime-like substance derived from the growth of D-oxidizing bacteria must be frequently backwashed or withdrawn. As described above, the activated sludge method and the biofilm method have been conventionally performed in order to sufficiently promote nitrification in biological treatment tanks such as human waste, sewage, and various industrial wastewater. However, these remain problems such as insufficient supply of oxygen due to symbiosis with BOD-oxidizing bacteria and outflow of nitrifying bacteria to the outside of the tank, which is a cause of not exhibiting good nitrification. In view of the above problems, the present invention provides a wastewater treatment method for efficiently removing organic substances and nitrifying.

【0006】[0006]

【課題を解決するための手段】本発明は、生物処理槽を
多段式に区切り、前段の槽で有機物の除去を行った後
に、硝化菌の成育に適した多孔質担体を充填した後段の
槽で硝化を行う排水処理方法に関する。先ず、処理フロ
ーについて述べる。処理槽は、生物処理槽を多段式に区
切ることにより、前段を有機物除去槽、後段を硝化槽に
設定し、有機物除去及び硝化をそれぞれの槽において行
う。なお、両槽をあらかじめ分別した多相式による処理
方法によっても可能である。全槽に占める各槽の容積比
や槽数は、流入する廃水の有機物及び窒素の負荷条件に
依存するものとする。なお、当該処理槽に嫌気処理槽を
組み合わせることにより、硝化が進行した処理水を窒素
ガスまで還元し、除去することも可能である。
DISCLOSURE OF THE INVENTION The present invention is directed to dividing a biological treatment tank into multiple stages, removing organic substances in the previous stage tank, and then filling a porous carrier suitable for growth of nitrifying bacteria with the latter stage tank. The present invention relates to a wastewater treatment method for nitrification. First, the processing flow will be described. In the treatment tank, the biological treatment tank is divided into multiple stages, so that the front stage is set as an organic matter removal tank and the rear stage is set as a nitrification tank, and organic matter removal and nitrification are performed in each tank. It is also possible to use a multi-phase treatment method in which both tanks are separated in advance. The volume ratio of each tank to the total tank and the number of tanks depend on the load conditions of organic matter and nitrogen in the inflowing waste water. By combining the treatment tank with an anaerobic treatment tank, it is possible to reduce the treated water in which nitrification has progressed to nitrogen gas and remove it.

【0007】次に、当該処理槽に充填する担体について
述べる。生物処理槽に用いる担体には各種あるが、その
材質としてポリエチレン、ポリプロピレン等の合成樹脂
やアンスラサイトやセラミックス等の無機系物質があ
り、また形状も板状、粒状、サドル状等がある。一般
に、有機物除去を行うBOD酸化細菌の成育は、これら
の多くの担体に親和性を持つために、その選定に限定を
加えるものではないが、高密度に多孔質担体を充填する
場合、逆洗浄操作が必要となるため、これは避けた方が
良いと考える。次に、硝化槽に充填する担体について述
べる。本発明では前段の有機物除去槽で既に有機物成分
が除かれ、硝化槽に流入する廃水にはNH4−N等の無
機態成分が多くを占める。このため、硝化槽にはBOD
酸化細菌の存在は少なく、硝化菌が優先するため、有機
物除去槽で見られる汚泥の発生は少ない。
Next, the carrier to be filled in the processing tank will be described. There are various types of carriers used in the biological treatment tank, and as their materials, there are synthetic resins such as polyethylene and polypropylene, inorganic substances such as anthracite and ceramics, and the shapes are plate-like, granular, saddle-like, and the like. In general, the growth of BOD-oxidizing bacteria that removes organic matter has no affinity for the selection of many of these carriers, and therefore does not limit the selection. It is necessary to avoid this, as it requires manipulation. Next, the carrier to be filled in the nitrification tank will be described. In the present invention, the organic substance components have already been removed in the organic substance removal tank in the preceding stage, and the inorganic water components such as NH 4 —N occupy most of the wastewater flowing into the nitrification tank. For this reason, the nitrification tank has a BOD
Since the presence of oxidizing bacteria is low and nitrifying bacteria take precedence, the sludge generated in the organic matter removal tank is low.

【0008】このような処理フローに鑑み、本発明では
硝化槽に充填する担体として多孔質担体を採用する。従
来より多孔質担体は硝化菌の成育に適していると言われ
る。これは多孔質担体は酸素の透過性が良いことや、処
理槽の外に菌体が流出する危険性を回避する等の特長を
有していることに由来する。しかし、先に示したよう
に、従来の処理フローではBOD酸化細菌の共生による
スライム状物質の発生により、このような特長を充分に
引き出すことが出来なかった。本発明は、多段式に有機
物除去槽及び硝化槽を区分することにより、前記した問
題を解決し、多孔質担体の特長を発揮させることができ
る。
In view of such a processing flow, in the present invention, a porous carrier is adopted as the carrier to be filled in the nitrification tank. It has been conventionally said that the porous carrier is suitable for the growth of nitrifying bacteria. This is because the porous carrier has characteristics such as good oxygen permeability and avoiding the risk of bacterial outflow to the outside of the treatment tank. However, as described above, in the conventional processing flow, such characteristics cannot be sufficiently brought out due to the generation of slime-like substances due to the symbiosis of BOD-oxidizing bacteria. INDUSTRIAL APPLICABILITY The present invention can solve the above-mentioned problems and bring out the characteristics of the porous carrier by dividing the organic substance removal tank and the nitrification tank in multiple stages.

【0009】[0009]

【実施例】次に、本発明の実施例を説明する。先ず、有
機物及び有機態窒素を含む廃水を人工的に作製し、これ
を本発明に従った図1に示す多段式生物処理槽1に供す
る廃水として使用し、連続処理運転を行った。図1にお
いて、2は有機物除去槽第1段4及び同第2段5に収納
された板状塩化ビニル担体、8は硝化槽第1段6及び同
第2段7に充填された粒状セラミック担体、9は4、
5、6及び7の各槽を仕切る隔壁、3は各槽に曝気用の
空気を送り込むための散気管であり、廃水は4、5、6
及び7の順に各槽を移動して浄化され、処理水として排
出される。また、多段式生物処理槽の処理特性を見極め
るため、図2に示す1相式生物処理槽に連続処理を対象
として行った。図2において、1相式生物処理槽10に
は粒状セラミック担体8が充填されており、3は図1の
場合と同じ散気管である。廃水は左端から導入され、浄
化されて右端から処理水として排出される。廃水成分の
組成を表1に、両処理槽の諸元及び負荷条件を表2に示
す。なお、温度は約25℃の室温で行った。
EXAMPLES Next, examples of the present invention will be described. First, a wastewater containing organic matter and organic nitrogen was artificially produced, and this was used as wastewater to be supplied to the multistage biological treatment tank 1 shown in FIG. 1 according to the present invention, and continuous treatment operation was performed. In FIG. 1, 2 is a plate-shaped vinyl chloride carrier housed in the first stage 4 and the second stage 5 of the organic substance removing tank, and 8 is a granular ceramic carrier filled in the first stage 6 and the second stage 7 of the nitrification tank. , 9 is 4,
Partition walls 3, 5 and 6 for partitioning each tank are air diffusers for feeding aeration air into each tank, and waste water is 4, 5, 6
Then, the water is moved in the order of 7 and 7 to be purified and discharged as treated water. Further, in order to determine the treatment characteristics of the multi-stage biological treatment tank, continuous treatment was applied to the one-phase biological treatment tank shown in FIG. In FIG. 2, the one-phase biological treatment tank 10 is filled with the granular ceramic carrier 8, and 3 is the same air diffuser as in the case of FIG. Wastewater is introduced from the left end, purified, and discharged as treated water from the right end. Table 1 shows the composition of the wastewater components, and Table 2 shows the specifications and load conditions of both treatment tanks. The temperature was about 25 ° C.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】(1)有機物除去及び硝化特性 先ず、それぞれの処理槽による有機物除去及び硝化の能
力を見るために、最終処理水の溶存有機態炭素濃度(以
下、DOC)と硝化率の経日変化を求めた。結果を図3
に示す。図中、●印及び○印は多段式生物処理槽のもの
(●はDOC、○は硝化率)、▲印及び△印は1相式生
物処理槽のもの(▲はDOC、△は硝化率)を示す。な
お、硝化率は以下の計算式により算出した。
(1) Organic matter removal and nitrification characteristics First, in order to see the organic matter removal and nitrification abilities of each treatment tank, the dissolved organic carbon concentration (hereinafter DOC) and the nitrification rate of the final treated water change with time. I asked. The result is shown in Figure 3.
Shown in. In the figure, ● and ○ are multi-stage biological treatment tanks (● is DOC, ○ is nitrification rate), ▲ and △ are single-phase biological treatment tanks (▲ is DOC, △ is nitrification rate) ) Is shown. The nitrification rate was calculated by the following calculation formula.

【0013】[0013]

【数1】硝化率(%)={(処理水NOx−原水NOx)
/処理水TN}×100 但し、NOx=NO2 2-−N+NO3 -−N
[Equation 1] Nitrification rate (%) = {(treated water NOx-raw water NOx)
/ Treated water TN} × 100 However, NOx = NO 2 2- -N + NO 3 -- N

【0014】これにより、両者の有機物除去は同様に進
行したが、硝化の立上りに違いが見られた。即ち、多段
式生物処理槽において培養の初期に硝化が発現し、その
後安定な処理を示した。1相式生物処理槽に充填された
担体を観察したところ、その表面はBOD酸化細菌の菌
体成分や代謝産物に由来するであろうスライム状物質に
覆われていた。これが、前述したように硝化菌の成育を
抑制し、硝化が良好に進行しなかった原因と考える。以
上、当該処理法は硝化に対する有用性を持つことを確認
することができた。
As a result, the removal of both organic substances proceeded similarly, but there was a difference in the rise of nitrification. That is, nitrification was expressed in the early stage of the culture in the multi-stage biological treatment tank, and then stable treatment was shown. When the carrier packed in the one-phase biological treatment tank was observed, its surface was covered with slime-like substances which might be derived from the bacterial cell components and metabolites of BOD-oxidizing bacteria. This is considered to be the reason why the growth of nitrifying bacteria was suppressed and nitrification did not proceed well as described above. As described above, it was confirmed that the treatment method had utility for nitrification.

【0015】更に、当該処理槽の各槽における有機物除
去及び硝化特性を見極めるために、培養100日目の各
槽のDOC及び硝化率を求めた。結果を図4に示す。図
中、●印はDOC及び○印は硝化率を示す。この結果か
ら、有機物除去槽第1段でほぼDOCが除去され、硝化
槽第1段では有機態炭素成分が殆ど含まれないことがわ
かった。また、有機物除去槽第2段目より硝化が進行し
はじめて、その後硝化率が徐々に高まって行くことが明
らかになった。従って、当該処理槽による処理により、
BOD酸化細菌と硝化菌との棲み分けがなされ、後者の
成育は阻害されずに、効率的な有機物除去及び硝化を行
うことが出来ることが分かった。
Further, in order to determine the organic matter removal and nitrification characteristics in each tank of the treatment tank, the DOC and nitrification rate of each tank on the 100th day of culture were determined. The results are shown in Fig. 4. In the figure, ● indicates DOC and ○ indicates nitrification rate. From this result, it was found that almost DOC was removed in the first stage of the organic matter removal tank, and the organic carbon component was scarcely contained in the first stage of the nitrification tank. In addition, it became clear that nitrification started to progress from the second stage of the organic matter removal tank, and thereafter the nitrification rate gradually increased. Therefore, by the treatment by the treatment tank,
It was found that the BOD-oxidizing bacteria and the nitrifying bacteria were separated from each other, and the growth of the latter was not hindered, and efficient organic matter removal and nitrification could be performed.

【0016】(2)SS捕捉特性 各槽におけるSS捕捉特性を見極めるために、培養10
0日目の各槽内のSSを求めた。結果を表3に示す。
(2) SS trapping characteristics In order to determine the SS trapping characteristics in each tank, culture 10
The SS in each tank on day 0 was determined. The results are shown in Table 3.

【0017】[0017]

【表3】 [Table 3]

【0018】先ず、有機物除去槽第1段でSSが発生し
ていた。これは槽内に充填した担体に付着するBOD酸
化細菌の菌体成分や代謝産物が遊離したものに由来する
と考えられる。次に、DOC除去が進行した有機物除去
槽第2段ではSSは減少していた。これは、第1段で発
生したSSの多くが第2段の担体に捕捉されたことによ
るものであろう。更に、硝化槽ではSSが殆ど検出され
なかった。これは、有機物除去槽第2段で既にSSの多
くが捕捉されたことと、硝化槽にはBOD酸化細菌が存
在しないために、菌体成分等の流出がないことが原因と
考える。以上のことから、本発明により、有機物除去槽
においてSSの発生及び捕捉の多くが行われ、余剰汚泥
の引き抜き操作が全槽にわたることなく、限定されて簡
便になるという利点を有することがわかった。
First, SS was generated in the first stage of the organic matter removing tank. It is considered that this is derived from liberated bacterial components and metabolites of BOD-oxidizing bacteria attached to the carrier filled in the tank. Next, SS was decreased in the second stage of the organic substance removal tank where DOC removal proceeded. This is probably because much of the SS generated in the first stage was captured by the carrier in the second stage. Furthermore, SS was hardly detected in the nitrification tank. It is considered that this is because most of the SS was already captured in the second stage of the organic matter removal tank and that there was no outflow of bacterial cell components or the like because there were no BOD-oxidizing bacteria in the nitrification tank. From the above, it was found that the present invention has an advantage that SS is generated and captured in the organic matter removal tank in many cases, and the operation for extracting excess sludge is limited and simple without extending over the entire tank. .

【0019】上記の実施例から、本発明による多段式生
物処理槽によって、有機物除去及び硝化が効率的に進行
することが明らかとなり、更に余剰汚泥の引き抜き操作
も容易となることがわかった。
From the above examples, it was revealed that the multi-stage biological treatment tank according to the present invention efficiently promotes organic substance removal and nitrification, and further facilitates the operation of extracting excess sludge.

【0020】[0020]

【発明の効果】本発明によれば、効率的に有機物除去及
び硝化が進行し、更には余剰汚泥の引き抜き操作の簡便
化を図ることができる。
EFFECTS OF THE INVENTION According to the present invention, the removal of organic substances and the nitrification proceed efficiently, and the operation of extracting excess sludge can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例になる排水処理方法における多
段式生物処理槽の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a multistage biological treatment tank in a wastewater treatment method according to an embodiment of the present invention.

【図2】1相式生物処理槽の構成を示す図である。FIG. 2 is a diagram showing a configuration of a one-phase biological treatment tank.

【図3】DOC及び硝化率の経日変化を示すグラフであ
る。
FIG. 3 is a graph showing daily changes in DOC and nitrification rate.

【図4】図1の多段式生物処理槽各槽のDOC及び硝化
率を示すグラフである。
FIG. 4 is a graph showing DOC and nitrification rate of each tank of the multi-stage biological treatment tank of FIG.

【符号の説明】[Explanation of symbols]

1…多段式生物処理槽、2…板状塩化ビニル担体、3…
散気管、4…有機物除去槽第1段、5…有機物除去槽第
2段、6…硝化槽第1段、7…硝化槽第2段、8…粒状
セラミック担体、9…隔壁、10…1相式生物処理槽
1 ... Multi-stage biological treatment tank, 2 ... Plate-shaped vinyl chloride carrier, 3 ...
Air diffuser, 4 ... Organic matter removal tank first stage, 5 ... Organic matter removal tank second stage, 6 ... Nitrification tank first stage, 7 ... Nitrification tank second stage, 8 ... Granular ceramic carrier, 9 ... Partition wall, 10 ... 1 Phase-type biological treatment tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 生物処理槽を多段式に区切り、前段の槽
で有機物の除去を行った後、硝化菌の成育に適した多孔
質担体を充填した後段の槽で硝化を行うことを特徴とす
る排水処理方法。
1. A biological treatment tank is divided into multiple stages, organic substances are removed in the former tank, and then nitrification is performed in the latter tank filled with a porous carrier suitable for growth of nitrifying bacteria. Wastewater treatment method.
JP5028943A 1993-02-18 1993-02-18 Drain treatment Pending JPH06238295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5028943A JPH06238295A (en) 1993-02-18 1993-02-18 Drain treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5028943A JPH06238295A (en) 1993-02-18 1993-02-18 Drain treatment

Publications (1)

Publication Number Publication Date
JPH06238295A true JPH06238295A (en) 1994-08-30

Family

ID=12262495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5028943A Pending JPH06238295A (en) 1993-02-18 1993-02-18 Drain treatment

Country Status (1)

Country Link
JP (1) JPH06238295A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588357A (en) * 2013-10-17 2014-02-19 江苏兴海环保科技有限公司 Biological nitrogen removing tank integrating synchronous realization of partial nitrification and denitrification
US11325853B2 (en) 2018-11-07 2022-05-10 Kyogyoku Engineering Co., Ltd Sewage treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588357A (en) * 2013-10-17 2014-02-19 江苏兴海环保科技有限公司 Biological nitrogen removing tank integrating synchronous realization of partial nitrification and denitrification
US11325853B2 (en) 2018-11-07 2022-05-10 Kyogyoku Engineering Co., Ltd Sewage treatment system

Similar Documents

Publication Publication Date Title
Abeysinghe et al. Biofilters for water reuse in aquaculture
JP5150993B2 (en) Denitrification method and apparatus
TWI449675B (en) System and method for treating waste water containing ammonia
JP4578278B2 (en) Sewage treatment apparatus and treatment method
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP3914587B2 (en) Methods for treating aqueous waste with biofilters or other devices using immobilized cultures
JP4336947B2 (en) Waste water treatment equipment
JP3391057B2 (en) Biological nitrogen removal equipment
Schlegel The use of submerged biological filters for nitrification
JP2000061494A (en) Biological treatment of ammonia nitrogen
KR900011673A (en) Biological nitrogen and phosphorus removal method and processing device
JPH06238295A (en) Drain treatment
JP2003311295A (en) Membrane separation activated sludge method
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JPH10174998A (en) Inclusion-fixed carrier and apparatus for treating wastewater containing ammonia
JPH1157778A (en) Waste water treating device and treatment
JPH06182377A (en) Method for treating sewage
JPH05192687A (en) Batch type sewage treatment
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
KR100504150B1 (en) Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor
JPH0929282A (en) Method for biological denitrification of wastewater, and device therefor
JPH10165981A (en) Apparatus for treating ammonia-containing waste water
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus
JPH03202196A (en) Waste water treatment apparatus having phosphorus releasing chamber and waste water treatment method