JPH06233910A - Separation of mixed gas - Google Patents

Separation of mixed gas

Info

Publication number
JPH06233910A
JPH06233910A JP50A JP4580293A JPH06233910A JP H06233910 A JPH06233910 A JP H06233910A JP 50 A JP50 A JP 50A JP 4580293 A JP4580293 A JP 4580293A JP H06233910 A JPH06233910 A JP H06233910A
Authority
JP
Japan
Prior art keywords
heat
adsorption
gas
adsorbing
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Eiji Hayata
英司 早田
Tsutomu Takahashi
勉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP50A priority Critical patent/JPH06233910A/en
Publication of JPH06233910A publication Critical patent/JPH06233910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To enhance the yield and purity of product gas to a large extent by smoothly advancing adsorption and desorption reaction by effectively utilizing the heat generated when mixed gas is separated by a pressure swing adsorbing method using a heat exchanger. CONSTITUTION:Raw material gas is supplied to two adsorbing towers 3,3a and a high pressure adsorbing process and a low pressure desorbing process are alternately repeated in the respective adsorbing towers to separate mixed gas. At this time, the heat exchange of the heating medium in the adsorbing tower 3 generating heat by heat of adsorption in the adsorbing process with the cooled exhaust gas from the adsorbing tower 3a in the desorbing process is performed by a heat exchanger 13. The heat exchange of the heating medium in the adsorbing tower 3a cooled by heat of desorption in the desorbing process with the raw material mixed gas pressurized by a compressor 1 to generate heat is performed by a heat exchanger 13a. These heat exchange processes are alternately repeated. By this constitution, the separation of mixed gas due to a pressure swing adsorbing method can be efficiently performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧力スイング吸着法(以
下「PSA」法と略記する)による混合ガスの分離法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed gas separation method by a pressure swing adsorption method (hereinafter abbreviated as "PSA" method).

【0002】[0002]

【従来の技術】近年新しいガスの分離・精製方法として
選択的吸着能を持つ吸着剤を充填した吸着塔に混合ガス
を加圧下で供給し、高圧吸着工程と、低圧脱着工程とを
繰り返し行い混合ガスから特定のガス成分を分離精製す
る所謂PSA法によるガス分離方法が開発され、該方法
は空気中の酸素或いは窒素の分離、水素の精製、二酸化
炭素の分離回収等に応用され実用化されている。
2. Description of the Related Art In recent years, as a new gas separation / purification method, a mixed gas is supplied under pressure to an adsorption tower filled with an adsorbent having a selective adsorption ability, and a high pressure adsorption step and a low pressure desorption step are repeated to perform mixing. A gas separation method by the so-called PSA method for separating and purifying a specific gas component from a gas has been developed, and the method has been applied to practical use by separating oxygen or nitrogen in air, refining hydrogen, separating and recovering carbon dioxide, and the like. There is.

【0003】その一例を示すと例えば特公昭38−25
969号公報には吸着工程終了後の吸着塔内に製品ガス
の一部を逆流することにより、吸着剤の再生を効率的に
行なういわゆるパージ法が開示されている。また、特公
昭62−13047号公報には2塔の吸着塔で上下均圧
を行った後、吸着工程に入った1塔より流出する初期の
酸素含有量の多いガスを3〜10秒間大気中に放出する
ことにより純度の高い窒素ガスを得る方法が提案されて
いる。また特開平1─234313号公報及び同1─6
4714号公報には活性炭を吸着剤として用いたPSA
法による二酸化炭素の製造方法が開示されている。更に
又特開平1─34422号公報には吸着剤としてゼオラ
イト、活性炭、活性アルミナ又はシリカゲルを組み合わ
せて適用し、これらの吸着剤に吸着させた二酸化炭素を
効率的に回収する方法が開示されている。
An example of this is, for example, Japanese Patent Publication No. 38-25.
Japanese Patent No. 969 discloses a so-called purge method in which a part of a product gas is allowed to flow back into the adsorption tower after the adsorption step so that the adsorbent is efficiently regenerated. Further, Japanese Patent Publication No. 62-13047 discloses that after two columns of adsorption towers are pressure-equalized, a gas having a high initial oxygen content flowing out from one tower which has entered the adsorption step is introduced into the atmosphere for 3 to 10 seconds. A method for obtaining highly pure nitrogen gas by releasing it into the atmosphere has been proposed. In addition, JP-A-1-234313 and 1-6.
No. 4714 discloses PSA using activated carbon as an adsorbent.
A method for producing carbon dioxide by the method is disclosed. Furthermore, JP-A-1-34422 discloses a method in which zeolite, activated carbon, activated alumina, or silica gel is applied in combination as an adsorbent, and the carbon dioxide adsorbed by these adsorbents is efficiently recovered. .

【0004】しかしながら、これら好適な吸着剤や単位
操作条件の選定にも拘わらず、既存PSA法では分離ガ
スの純度、収率の点で未だ充分でないのが、現状であ
る。
However, in spite of the selection of these suitable adsorbents and unit operation conditions, the existing PSA method is still insufficient in terms of purity and yield of the separated gas under the present circumstances.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は既存のP
SA法の有する上述の諸問題点に鑑み、鋭意研究を続け
た結果、本発明を完成したものであって、その目的とす
るところは、PSA法による効率的な混合ガスの分離方
法を提供するにある。更に他の目的並びに効果は以下の
説明から明らかにされよう。
DISCLOSURE OF THE INVENTION The present inventors have found that the existing P
In view of the above-mentioned problems of the SA method, the present invention has been completed as a result of intensive studies, and an object thereof is to provide an efficient method for separating a mixed gas by the PSA method. It is in. Further objects and effects will be apparent from the following description.

【0006】[0006]

【課題を解決するための手段】上述の目的は、少なく共
2塔以上の吸着塔に原料混合ガスを供給し、高圧吸着工
程と、低圧脱着工程とを各吸着塔で交互に繰り返し、混
合ガスを分離する圧力スイング吸着法において、吸着工
程にある吸着熱により発熱した吸着塔内熱媒体と、脱着
工程にある吸着塔からの冷却された排出ガスとの熱交換
を行う一方、脱着工程にある脱着熱により冷却された吸
着塔内熱媒体と、加圧により発熱した原料混合ガスとの
熱交換を行うことを特徴とする混合ガスの分離方法によ
り達成される。
The above object is to supply the raw material mixed gas to at least two or more adsorption towers and alternately repeat the high-pressure adsorption step and the low-pressure desorption step in each adsorption tower. In the pressure swing adsorption method for separating the heat transfer medium, the heat medium in the adsorption tower that has generated heat due to the heat of adsorption in the adsorption step and the cooled exhaust gas from the adsorption tower in the desorption step are exchanged, while in the desorption step. This is achieved by a method for separating a mixed gas, characterized in that heat is exchanged between the heat medium in the adsorption tower cooled by the heat of desorption and the raw material mixed gas which is heated by pressurization.

【0007】本明細書に於いて「吸着塔内熱媒体」とは
「塔内ガス及び吸着剤」を意味する。本発明の混合ガス
の分離方法に用いる装置は主として吸着剤を充填した2
塔以上の吸着塔、ブロワー・コンプレッサーなどの原料
ガスを吸着塔に送り込む加圧供給手段、製品ガスを貯留
するサージタンクおよびこれらの構成要素を連結する配
管およびガスの流れを制御するための自動弁と、その制
御系などから構成されている。そして本装置には、必要
に応じて減圧再生を行なうための真空ポンプ、流量調節
計およびガス濃度の分析計等を装着してもよい。従来P
SA法による混合ガスの分離方法においては加圧により
発熱し、加熱された原料ガスはドライヤー等により冷却
・脱湿され、一方膨張によって冷却した排気ガスの冷熱
は利用されることなく放出されてきた。しかしながら、
通常の装置構成および吸着塔の構造では吸着時には吸着
熱による発熱が、又脱着時には脱着熱による冷却を生
じ、吸着塔内に蓄熱するため吸脱着反応の円滑な進行を
阻害してきた。
As used herein, the term "heat medium in the adsorption tower" means "gas in the tower and adsorbent". The apparatus used in the method for separating a mixed gas of the present invention is mainly filled with an adsorbent.
Adsorption tower above the tower, pressurized supply means for sending raw material gas such as blower / compressor to the adsorption tower, surge tank for storing product gas, piping connecting these components and automatic valve for controlling gas flow And its control system. The apparatus may be equipped with a vacuum pump, a flow controller, a gas concentration analyzer, and the like for performing decompression regeneration as required. Conventional P
In the method of separating a mixed gas by the SA method, heat is generated by pressurization, the heated raw material gas is cooled and dehumidified by a dryer or the like, while the cold heat of the exhaust gas cooled by expansion is released without being used. . However,
In a normal apparatus configuration and structure of an adsorption tower, heat is generated by adsorption heat during adsorption and cooling by desorption heat occurs during desorption, and heat is stored in the adsorption tower, which hinders smooth progress of adsorption / desorption reaction.

【0008】一方、本発明を実施するPSA装置におい
ては、吸着塔の底部に熱交換器が装着され、夫々の熱交
換器の一端は原料ガス供給ラインに他端は、他の吸着塔
底に導通し、バルブにより適宜流路が切り替えられるよ
うに構成されている。この様に構成したことにより、吸
着剤と原料ガス或いは排気ガスとの熱交換が可能な構造
となっている。熱交換器は例えば熱伝導性の良好な螺線
状に巻縮した金属中空管,又は中空管を塔底部に巡設す
る等公知の熱交換器から適宜のものを選定使用すればよ
い。
On the other hand, in the PSA apparatus for carrying out the present invention, a heat exchanger is attached to the bottom of the adsorption tower, one end of each heat exchanger is connected to the raw material gas supply line, and the other end is connected to the bottom of another adsorption tower. It is configured to be electrically connected, and the flow path can be appropriately switched by a valve. With this configuration, the adsorbent can exchange heat with the source gas or the exhaust gas. As the heat exchanger, for example, a metal hollow tube crimped in a spiral shape having good thermal conductivity, or a known heat exchanger such as a hollow tube laid around the bottom of the tower may be selected and used appropriately. .

【0009】熱交換器は、吸着剤とガスとの脱吸着反応
が生起する吸着塔高の1/2〜1/3程度の吸着塔底部
に装着するのが好適である。そして、熱交換器として中
空管を塔底部に巡設する場合、吸着塔内でのガス流の邪
魔にならない範囲でフィンを装着し、熱交換効率を増大
するのがよい。
The heat exchanger is preferably mounted on the bottom of the adsorption tower at about 1/2 to 1/3 of the height of the adsorption tower where the desorption reaction between the adsorbent and the gas occurs. When a hollow tube is installed as a heat exchanger at the bottom of the tower, it is preferable to increase the heat exchange efficiency by installing fins in a range that does not interfere with the gas flow in the adsorption tower.

【0010】次に本発明を図面に基いて説明する。図1
は本発明の混合ガスの分離方法の実施態様の一例を示す
説明図である。同図において1はコンプレッサー、2,
2aはドレン抜き、3,3aは吸着塔,4はサージタン
ク,5,5a,6,6a,7,7a及び11はバルブ、
8,8a,9,9a及び10はパイプ13,13aは熱
交換器である。
Next, the present invention will be described with reference to the drawings. Figure 1
FIG. 3 is an explanatory diagram showing an example of an embodiment of the method for separating a mixed gas of the present invention. In the figure, 1 is a compressor, 2
2a is a drain drain, 3,3a is an adsorption tower, 4 is a surge tank, 5,5a, 6,6a, 7, 7a and 11 are valves,
8, 8a, 9, 9a and 10 are pipes 13 and 13a are heat exchangers.

【0011】2基の吸着塔3及び3aでは、高圧吸着工
程と、低圧脱着工程とが各吸着塔で交互に繰り返し行わ
れる。ここでは、吸着塔3における吸脱着工程操作を例
に取って本発明を説明する。
In the two adsorption towers 3 and 3a, the high-pressure adsorption step and the low-pressure desorption step are alternately repeated in each adsorption tower. Here, the present invention will be described by taking the adsorption / desorption process operation in the adsorption tower 3 as an example.

【0012】混合ガス原料はコンプレッサー1により加
圧され、バルブ5a,パイプ8a,9a、熱交換器13
a、ドレン抜き2を慣流し、吸着塔3に加圧供給され、
吸着塔3内では高圧吸着工程が進行し、一方吸着塔3a
内では、低圧脱着工程が進行している。吸着塔3a内の
吸着剤は脱着熱により冷却されているが吸着塔3a内の
冷却された吸着塔内熱媒体は、コンプレッサー1により
加圧発熱した原料混合ガスと熱交換器13aにて熱交換
され、原料ガスは吸着塔3a内の冷却された吸着塔内熱
媒体により冷却されドレン抜き2で水分が除去された
後、吸着塔3内に圧入される。
The mixed gas raw material is pressurized by the compressor 1, and the valve 5a, the pipes 8a and 9a, the heat exchanger 13 are heated.
a, the drainage 2 is circulated, and the pressure is supplied to the adsorption tower 3,
In the adsorption tower 3, the high-pressure adsorption step proceeds, while the adsorption tower 3a
Inside, the low pressure desorption process is in progress. The adsorbent in the adsorption tower 3a is cooled by heat of desorption, but the cooled heat medium in the adsorption tower 3a is heat-exchanged with the raw material mixed gas heated by the compressor 1 in the heat exchanger 13a. The raw material gas is cooled by the cooled heat medium in the adsorption tower 3a and the water is removed by the drainage 2, and then the raw material gas is pressed into the adsorption tower 3.

【0013】吸着塔3では吸着工程が行なわれるが、こ
のとき吸着熱が発生する。またこのとき吸着塔3aでは
脱着工程が行なわれているためパイプ9内は温度が低下
した脱着ガスが通過している。このためパイプ9を通し
て熱交換が行われ、吸着塔3内で発生した吸着熱は系外
に取出され吸着工程は円滑に進行する。吸着工程で製造
された製品ガスはバルブ6、パイプ10、サージタンク
4、バルブ11を通して取り出される。
The adsorption step is carried out in the adsorption tower 3, but heat of adsorption is generated at this time. Further, at this time, since the desorption process is performed in the adsorption tower 3a, the desorbed gas having a lowered temperature is passing through the pipe 9. Therefore, heat is exchanged through the pipe 9, and the heat of adsorption generated in the adsorption tower 3 is taken out of the system, and the adsorption process proceeds smoothly. The product gas produced in the adsorption process is taken out through the valve 6, the pipe 10, the surge tank 4, and the valve 11.

【0014】そして吸着塔3内の吸着剤が飽和する前に
バルブ5a,6,7を閉止することにより吸着工程を終
了する。吸着工程が終了すると均圧工程が行なわれる。
均圧工程には塔頂均圧・塔底均圧・クロス均圧・上下同
時均圧等の方法があり、例えば塔頂均圧の場合には、バ
ルブ12が開放し吸着塔3内のガスが吸着塔3a内に供
給される。この均圧工程は省略することも出来る。均圧
工程が終了すると脱着工程に移る。この時吸着塔3aは
吸着工程に移る。脱着工程ではバルブ7a,5,6a,
11が開放される。
The adsorbing step is completed by closing the valves 5a, 6, 7 before the adsorbent in the adsorption tower 3 is saturated. When the adsorption process is completed, a pressure equalization process is performed.
The pressure equalization process includes methods such as pressure equalization at the top, pressure equalization at the bottom, cross pressure equalization, and simultaneous pressure equalization at the top and bottom. For example, in the case of pressure equalization at the top, the valve 12 is opened and the gas in the adsorption column 3 is opened. Is supplied into the adsorption tower 3a. This pressure equalizing step can be omitted. When the pressure equalizing step is completed, the desorption step is started. At this time, the adsorption tower 3a moves to the adsorption step. In the desorption process, the valves 7a, 5, 6a,
11 is opened.

【0015】吸着塔3内で脱着されたガスはパイプ9a
を通り、バルブ7aを通過し排出される。この脱着ガス
は脱着熱を奪われるため冷却されている。また、吸着塔
3aでは、吸着工程が進行し吸着塔3aは吸着熱により
蓄熱されている。上記過程において熱交換器13aによ
り吸着塔3aの排出ガスと吸着塔3a内の吸着塔内熱媒
体との熱交換がおこなわれ、吸着塔3a内での吸着工程
は円滑に進行する。
The gas desorbed in the adsorption tower 3 is pipe 9a.
Through the valve 7a and discharged. This desorption gas is cooled because it deprives the heat of desorption. In the adsorption tower 3a, the adsorption process proceeds and the adsorption tower 3a stores heat due to the heat of adsorption. In the above process, heat exchange between the exhaust gas of the adsorption tower 3a and the heat medium in the adsorption tower 3a is performed by the heat exchanger 13a, and the adsorption step in the adsorption tower 3a proceeds smoothly.

【0016】また熱交換器13内は原料ガスが通過して
いるため熱交換器13を通して、脱着熱により冷却して
いる吸着塔3の吸着塔内熱媒体との間で熱交換が行わ
れ、吸着塔3内は加熱され、脱着が円滑に進行する。
Further, since the raw material gas is passing through the heat exchanger 13, heat is exchanged with the heat medium inside the adsorption tower of the adsorption tower 3 which is being cooled by desorption heat through the heat exchanger 13. The inside of the adsorption tower 3 is heated so that desorption proceeds smoothly.

【0017】本発明の混合ガスの分離方法を実施する場
合吸脱着の圧力差が3kgf/cm2 以上であることが
好ましく、より好ましくは5kgf/cm2 以上であ
る。この圧力差が小さ過ぎると吸着剤の温度変化が小さ
く、十分な効果が得難い。また吸着時間が100秒以上
であると、吸着剤が十分な温度変化を起こし、好ましい
結果が得られる。
When the method for separating a mixed gas of the present invention is carried out, the pressure difference between adsorption and desorption is preferably 3 kgf / cm 2 or more, more preferably 5 kgf / cm 2 or more. If this pressure difference is too small, the temperature change of the adsorbent is small and it is difficult to obtain a sufficient effect. Further, when the adsorption time is 100 seconds or more, the adsorbent undergoes a sufficient temperature change, and favorable results are obtained.

【0018】[0018]

【発明の効果】本発明方法によれば、PAS法で混合ガ
スを分離する際に発生する熱を熱交換器を使用して有効
に利用することにより吸脱着反応を円滑に進行せしめる
ことができ、純度の高い製品ガスを高収率で得ることが
できる。また、本発明は吸着剤として分子ふるい炭素・
活性炭・ゼオライトなどを用いることができ、空気から
酸素あるいは窒素の分離,水素の精製、二酸化炭素の分
離など多くのガス分離に適用することができる。
According to the method of the present invention, the heat generated when the mixed gas is separated by the PAS method is effectively utilized by using the heat exchanger, so that the adsorption / desorption reaction can be smoothly progressed. A product gas with high purity can be obtained in high yield. In addition, the present invention uses a molecular sieve carbon
Activated carbon or zeolite can be used, and it can be applied to many gas separations such as separation of oxygen or nitrogen from air, purification of hydrogen, separation of carbon dioxide.

【0019】実施例1 図1に示す内径300mmφ×850mmLの2本の吸
着塔を備えたPSA装置の吸着塔に空気分離用の分子ふ
るい炭素を充填し、表1に示す操作サイクルで運転し
た。本実施例では吸着圧力は8kgf/cm2 Gとし、
脱着圧は大気圧とした。製品窒素の取出流量を変化させ
た時の収率と酸素濃度の関係を図3に示す。
Example 1 An adsorption tower of a PSA apparatus equipped with two adsorption towers having an inner diameter of 300 mmφ × 850 mmL shown in FIG. 1 was filled with molecular sieving carbon for air separation, and operated in the operation cycle shown in Table 1. In this embodiment, the adsorption pressure is 8 kgf / cm 2 G,
The desorption pressure was atmospheric pressure. FIG. 3 shows the relationship between the yield and the oxygen concentration when the product nitrogen extraction flow rate was changed.

【表1】 [Table 1]

【0020】また比較例として実施例1と同じく内径3
00mmφ×850mmLの2本の吸着塔を備えた図2
に示すPSA装置に実施例1で用いたものと同じ分子ふ
るい炭素を充填し、表1に示す操作サイクルで実施例1
と同様の実験を行った。その結果を図3に併記する。図
3から本発明の混合ガスの分離方法を実施した場合にお
いて良好な純度の製品窒素ガスが得られることがわか
る。
As a comparative example, the inner diameter is 3 as in Example 1.
FIG. 2 equipped with two adsorption towers of 00 mmφ × 850 mmL
The PSA apparatus shown in FIG. 1 was filled with the same molecular sieving carbon as that used in Example 1, and the operation cycle shown in Table 1 was applied to Example 1
The same experiment was performed. The results are also shown in FIG. It can be seen from FIG. 3 that product nitrogen gas with good purity can be obtained when the method for separating mixed gas of the present invention is carried out.

【図面の簡単な説明】[Brief description of drawings]

図1は本発明を実施する際に用いる装置の一例である。
図1において1…コンプレッサー、2,2a…ドレン抜
き、3,3a…吸着塔、4…サージタンク、5,5a,
6,6a,7,7a,11…バルブ、8,8a,9,9
a,10…パイプ、13,13a…熱交換器である。図
2は従来のPSA装置の一例である。図2において1…
空気圧縮機、2…エアドライヤ、3,3a…吸着塔、
4,4a,7,7a,10,10a,13,13a,1
5…バルブ、5,5a,8,9,9a,11,12,1
6…パイプ、14…サージタンクである。図3は実施例
1および比較例における製品窒素ガスの純度と収率との
関係を示す線図である。同図において縦軸は製品窒素ガ
スの不純物である酸素ガスの濃度、横軸は窒素の収率を
示す。
FIG. 1 is an example of an apparatus used when implementing the present invention.
In FIG. 1, 1 ... Compressor, 2, 2a ... Drain drain, 3, 3a ... Adsorption tower, 4 ... Surge tank, 5, 5a,
6, 6a, 7, 7a, 11 ... Valves, 8, 8a, 9, 9
a, 10 ... Pipes, 13, 13a ... Heat exchangers. FIG. 2 is an example of a conventional PSA device. In FIG. 2, 1 ...
Air compressor, 2 ... Air dryer, 3, 3a ... Adsorption tower,
4,4a, 7,7a, 10,10a, 13,13a, 1
5 ... Valve, 5, 5a, 8, 9, 9a, 11, 12, 1
6 ... Pipe, 14 ... Surge tank. FIG. 3 is a diagram showing the relationship between the purity and yield of product nitrogen gas in Example 1 and Comparative Example. In the figure, the vertical axis represents the concentration of oxygen gas, which is an impurity in the product nitrogen gas, and the horizontal axis represents the nitrogen yield.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なく共2塔以上の吸着塔に原料混合ガ
スを供給し、高圧吸着工程と、低圧脱着工程とを各吸着
塔で交互に繰り返し、混合ガスを分離する圧力スイング
吸着法において、吸着工程にある吸着熱により発熱した
吸着塔内熱媒体と、脱着工程にある吸着塔からの冷却さ
れた排出ガスとの熱交換を行う一方、脱着工程にある脱
着熱により冷却された吸着塔内熱媒体と、加圧により発
熱した原料混合ガスとの熱交換を行うことを特徴とする
混合ガスの分離方法
1. A pressure swing adsorption method in which a raw material mixed gas is supplied to at least two adsorption towers and the high pressure adsorption step and the low pressure desorption step are alternately repeated in each adsorption tower to separate the mixed gas, While exchanging heat between the heat medium in the adsorption tower that has generated heat due to the heat of adsorption in the adsorption step and the cooled exhaust gas from the adsorption tower in the desorption step, inside the adsorption tower cooled by the desorption heat in the desorption step A method for separating a mixed gas, characterized in that heat exchange is performed between a heat medium and a raw material mixed gas that is heated by pressurization.
JP50A 1993-02-09 1993-02-09 Separation of mixed gas Pending JPH06233910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06233910A (en) 1993-02-09 1993-02-09 Separation of mixed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06233910A (en) 1993-02-09 1993-02-09 Separation of mixed gas

Publications (1)

Publication Number Publication Date
JPH06233910A true JPH06233910A (en) 1994-08-23

Family

ID=12729406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06233910A (en) 1993-02-09 1993-02-09 Separation of mixed gas

Country Status (1)

Country Link
JP (1) JPH06233910A (en)

Similar Documents

Publication Publication Date Title
JP2634138B2 (en) Separation method of gas components by vacuum swing adsorption method
EP0042159B1 (en) Air fractionation by pressure swing adsorption
EP0489555A1 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
JPS6247051B2 (en)
JPH0459926B2 (en)
JP3737900B2 (en) Purification method of exhaust gas argon from single crystal production furnace
JPH0565206B2 (en)
JP5683390B2 (en) Helium gas purification method and purification apparatus
JP2003001061A (en) Method of concentrating carbon dioxide in combustion gas
JP5665120B2 (en) Argon gas purification method and purification apparatus
JP2012031049A (en) Method and apparatus for purifying helium gas
JPS6137970B2 (en)
JPH06233910A (en) Separation of mixed gas
JP2005103335A (en) Thermal desorption type oxygen concentrating apparatus
JPH01126203A (en) Production of high-purity gaseous hydrogen
JPH07251023A (en) Method for separating gas and apparatus therefor
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
JPH1015331A (en) Heat regeneration type pressure swing adsorbing apparatus
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH10263352A (en) Pressure variation adsorption tower and adsorption separation device and pressure variation adsorption separation
JP2002361023A (en) Improved process for separating air
JP2002079031A (en) Pressure swing adsorbing apparatus for manufacturing highly concentrated oxygen
JPH0351647B2 (en)
JP6851839B2 (en) Heat recovery type oxygen nitrogen supply system