JPH06231993A - Grain boundary insulating semiconductor ceramic composition - Google Patents

Grain boundary insulating semiconductor ceramic composition

Info

Publication number
JPH06231993A
JPH06231993A JP5013135A JP1313593A JPH06231993A JP H06231993 A JPH06231993 A JP H06231993A JP 5013135 A JP5013135 A JP 5013135A JP 1313593 A JP1313593 A JP 1313593A JP H06231993 A JPH06231993 A JP H06231993A
Authority
JP
Japan
Prior art keywords
capacitance
value
grain boundary
main component
semiconductor ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5013135A
Other languages
Japanese (ja)
Inventor
Yuji Shigeta
祐二 繁田
Yukiharu Shibata
行治 柴田
Goro Nishioka
吾朗 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5013135A priority Critical patent/JPH06231993A/en
Publication of JPH06231993A publication Critical patent/JPH06231993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide excellent characteristics such as capacitance, apparent dielectric constant, a dielectric loss, a capacitance temperature characteristic, or the like and reduce variations in the characteristics of each product by a method wherein a formula (Sr(1-x)Cax)zTi(1-y)NbyO3 is a main component, which includes specified Cu, Si. CONSTITUTION:A main component is a formula (Sr(1-x)Cax)zTi(1-y)NbyO3 (x, y, z are respectively x=0.025 to 0.08, y=0.004 to 0.01, z=0.992 to 0.998). For this main component 100g, Cu is converted into CuO of which 0.005 to 0.1g is included, and Si is converted into SiO2 of which 0.01 to 0.08g is included to obtain a grain boundary insulating semiconductor ceramic composition. Thus, it is possible to provide a grain boundary insulating semiconductor ceramic capacitor having excellent characteristics such as higher capacitance and specific inductive capacity, smaller variations of capacitance, a smaller dielectric loss, and a capacitance temperature characteristic + or -10% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粒界絶縁型半導体磁器組
成物に関し、より詳細にはチタン酸ストロンチウムを主
成分する大容量で静電容量温度特性に優れ、かつ各製品
において静電容量のばらつきの少ない粒界絶縁型半導体
磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain boundary insulating semiconductor porcelain composition, and more specifically, it has a large capacity of strontium titanate as a main component and excellent capacitance-temperature characteristics, and the capacitance of each product is The present invention relates to a grain boundary insulation type semiconductor ceramic composition having little variation.

【0002】[0002]

【従来の技術】一般に、粒界絶縁型半導体磁器コンデン
サは、粒界部分のみが誘電体として利用されるので非常
に大きな実効容量が得られるコンデンサとして知られて
いる。これら粒界絶縁型半導体磁器コンデンサの構成材
料としては、チタン酸ストロンチウム(SrTiO3)、チタ
ン酸バリウム(BaTiO3)、チタン酸マグネシウム(MgTi
O3)、チタン酸カルシウム(CaTi03)、チタン酸鉛(Pb
TiO3)等の成分に種々の化合物を添加し、あるいはお互
いの成分を混合した組成を主成分とするものが知られて
いる。
2. Description of the Related Art Generally, a grain boundary insulation type semiconductor ceramic capacitor is known as a capacitor which can obtain a very large effective capacitance because only a grain boundary portion is used as a dielectric. Strontium titanate (SrTiO 3 ), barium titanate (BaTiO 3 ), magnesium titanate (MgTi
O 3 ), calcium titanate (CaTi0 3 ), lead titanate (Pb
It is known that various compounds are added to components such as TiO 3 ) or the main component is a composition obtained by mixing the components.

【0003】前記粒界絶縁型半導体磁器コンデンサの特
性に関し、例えばチタン酸バリウム(BaTiO3)を主成分
に用い、酸化ジスプロシウム(Dy2O3 )を添加したもの
を構成材料とした粒界絶縁型半導体磁器コンデンサで
は、最大実効比誘電率(εS )が40,000〜50,000と大き
な値を示すが、一方その静電容量温度特性(TC値)と
して、20℃における静電容量を基準値として−30℃
〜+85℃の温度範囲内の基準静電容量に対する最大変
化率をとった場合、その値が±40%と大きく、また誘
電損失(tan δ)も約5%と大きな値になるという問題
があった。
Regarding the characteristics of the grain boundary insulation type semiconductor ceramic capacitor, for example, the grain boundary insulation type using, as a constituent material, barium titanate (BaTiO 3 ) as a main component and dysprosium oxide (Dy 2 O 3 ) is added. In the semiconductor porcelain capacitor, the maximum effective relative permittivity (ε S ) shows a large value of 40,000 to 50,000, while its capacitance temperature characteristic (TC value) is −30 with the capacitance at 20 ° C. as a reference value. ℃
When the maximum rate of change with respect to the reference capacitance in the temperature range of to + 85 ° C is taken, the value is as large as ± 40%, and the dielectric loss (tan δ) is as large as about 5%. It was

【0004】また、半導体磁器組成物の主成分がチタン
酸ストロンチウム(SrTiO3)で、酸化ジスプロシウム
(Dy2O3 )または二酸化セリウム(CeO3)を添加した粒
界絶縁型半導体磁器コンデンサでは、最大実効比誘電率
(εS )は30,000程度と低くなるものの、チタン酸バリ
ウム系と比較して温度変化による静電容量温度特性(T
C値)が改善されて±20%程度となり、誘電損失(ta
n δ)も2〜3%程度と改善されることがわかった。
Further, the main component of the semiconductor porcelain composition is strontium titanate (SrTiO 3 ), and the grain boundary insulation type semiconductor porcelain capacitor to which dysprosium oxide (Dy 2 O 3 ) or cerium dioxide (CeO 3 ) is added has a maximum Although the effective relative permittivity (ε S ) is as low as about 30,000, the capacitance-temperature characteristic (T
C value is improved to about ± 20%, and dielectric loss (ta
It was found that n δ) was also improved to about 2 to 3%.

【0005】コンデンサとしては、一般に静電容量及び
それに関係する見掛けの比誘電率(εapp )が十分に高
いこと、また誘電損失(tan δ)、静電容量温度特性
(TC値)が十分に小さいこと等が必要である。
As a capacitor, generally, the capacitance and the apparent relative permittivity (ε app ) related thereto are sufficiently high, and the dielectric loss (tan δ) and the temperature characteristic of capacitance (TC value) are sufficient. It is necessary to be small.

【0006】そして上記した公知例のように、一般にチ
タン酸ストロンチウム(SrTiO3)系の粒界絶縁型半導体
磁器は、チタン酸バリウム(BaTiO3)系のものに較べて
見掛けの比誘電率(εapp )では多少劣るものの、誘電
損失(tan δ)、静電容量温度特性(TC値)、高周波
特性等に優れるために様々の用途に使用され、種々の焼
結助剤又は拡散物質を加えた系で検討がなされている。
As in the above-mentioned known example, the strontium titanate (SrTiO 3 ) based grain boundary insulating semiconductor ceramics generally have an apparent relative dielectric constant (ε) in comparison with barium titanate (BaTiO 3 ) based ones. App ) is slightly inferior, but it is used in various applications due to its excellent dielectric loss (tan δ), capacitance temperature characteristic (TC value), high frequency characteristic, etc., and various sintering aids or diffusing substances were added. It is being studied by the system.

【0007】従来から使用されているチタン酸ストロン
チウム(SrTiO3)系の粒界絶縁型半導体磁器組成物の製
法の一例を説明する。まずチタン酸ストロンチウム(Sr
TiO3)を主原料とし、これに原子価制御用助剤として五
酸化ニオブ(Nb2O5 )、酸化イットリウム(Y2O3)等を
添加し、また焼結助剤として酸化ケイ素(SiO2)、酸化
アルミニウム(Al2O3 )、酸化マンガン(MnO2)、酸化
第二銅(CuO )等を1種又は複数の組み合わせで添加
し、還元雰囲気中にて焼結して半導体磁器組成物を得
る。次にこの半導体磁器組成物の粒界に絶縁層を設ける
べく、酸化ビスマス(Bi2O3 )、酸化第二銅(CuO )、
酸化マンガン(MnO2)等の金属酸化物を熱拡散させて粒
界絶縁型半導体磁器組成物を製造する。
An example of a method for producing a conventionally used strontium titanate (SrTiO 3 ) based grain boundary insulating semiconductor ceramic composition will be described. First, strontium titanate (Sr
TiO 3 ) as a main raw material, niobium pentoxide (Nb 2 O 5 ), yttrium oxide (Y 2 O 3 ) etc. are added to this as a valence control aid, and silicon oxide (SiO 2 ) is used as a sintering aid. 2 ), aluminum oxide (Al 2 O 3 ), manganese oxide (MnO 2 ), cupric oxide (CuO), etc. are added in one kind or in a combination, and sintered in a reducing atmosphere to form a semiconductor ceramic composition. Get things. Next, bismuth oxide (Bi 2 O 3 ), cupric oxide (CuO 2), in order to provide an insulating layer at the grain boundaries of this semiconductor porcelain composition,
A grain boundary insulating semiconductor porcelain composition is manufactured by thermally diffusing a metal oxide such as manganese oxide (MnO 2 ).

【0008】[0008]

【発明が解決しようとする課題】近年機器の小型化に伴
い、より大容量で静電容量温度特性(TC値)等の良好
なコンデンサが望まれている。一般に、粒界絶縁型半導
体磁器コンデンサの静電容量を大きくし、静電容量温度
特性(TC値)を改善する方法としては、磁器組成物中
の結晶粒を大きくし、結晶粒界に熱拡散させる金属酸化
物の量を多くする方法や結晶粒界に熱拡散させる際にそ
の温度を低くする方法が考えられる。しかし、前記磁器
組成物中の結晶粒を大きくし、熱拡散させる金属酸化物
の量を多くしたり、熱拡散温度を低くしたりすると、熱
拡散時に半導体磁器の表面に金属酸化物が残留すること
があり、このために静電容量温度特性(TC値)が劣化
したり、製造された磁器組成物ごとの静電容量にバラツ
キが生じ、さらに誘電損失(tan δ)の値に異常値が発
生することがあるという課題があった。
With the recent miniaturization of equipment, there is a demand for a capacitor having a larger capacity and a good capacitance temperature characteristic (TC value). Generally, as a method of increasing the electrostatic capacity of a grain boundary insulation type semiconductor ceramic capacitor and improving the temperature characteristic (TC value) of the electrostatic capacity, the crystal grains in the ceramic composition are increased and thermal diffusion to the crystal grain boundaries is performed. A method of increasing the amount of the metal oxide to be made and a method of lowering the temperature when thermally diffusing to the crystal grain boundaries are conceivable. However, when the crystal grains in the porcelain composition are increased to increase the amount of metal oxide to be thermally diffused or the thermal diffusion temperature is lowered, the metal oxide remains on the surface of the semiconductor porcelain during thermal diffusion. As a result, the temperature characteristic of capacitance (TC value) is deteriorated, the capacitance of each manufactured porcelain composition varies, and an abnormal value of dielectric loss (tan δ) is generated. There was a problem that it might occur.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記課題に
鑑み、チタン酸ストロンチウム系半導体磁器組成物の静
電容量温度特性(TC値)等を改善するため、チタン酸
ストロンチウムにチタン酸カルシウムを固溶させた系に
ついて検討した結果、五酸化ニオブを半導体化剤とし、
これに酸化ケイ素と酸化第二銅とを特定量添加した粒界
絶縁型半導体磁器組成物は焼結時に結晶粒が均一に成長
し、得られた半導体磁器に絶縁化剤を熱拡散させて粒界
絶縁層を形成することにより、静電容量、見掛けの比誘
電率(εapp )、誘電損失(tan δ)及び静電容量温度
特性(TC値)等の特性に優れ、各製品ごとに特性のバ
ラツキの少ない粒界絶縁型半導体磁器組成物が得られる
ことを見い出し、本発明を完成するに至った。
In view of the above-mentioned problems, the present inventors have found that strontium titanate contains calcium titanate in order to improve the capacitance-temperature characteristic (TC value) of the strontium titanate-based semiconductor ceramic composition. As a result of studying a system in which is dissolved, niobium pentoxide is used as a semiconductor agent,
In the grain boundary insulating type semiconductor porcelain composition in which a specific amount of silicon oxide and cupric oxide is added to this, the crystal grains grow uniformly during sintering, and the insulating agent is thermally diffused in the obtained semiconductor porcelain to form grains. By forming the field insulation layer, it has excellent characteristics such as capacitance, apparent relative permittivity (ε app ), dielectric loss (tan δ) and capacitance temperature characteristic (TC value). It was found that a grain boundary insulating type semiconductor ceramic composition with less variation in the above can be obtained, and the present invention has been completed.

【0010】すなわち、本発明に係る粒界絶縁型半導体
磁器組成物は、(Sr(1-x)Cax)zTi1-yNbyO3 (式中、x、
y、zはそれぞれ、x=0.025 〜0.08、y=0.004 〜0.
01、z=0.992 〜0.998 の範囲の値)を主成分とし、前
記主成分100gに対し、CuをCuO に換算して0.005 〜0.1
g、SiをSiO2に換算して0.01〜0.08g 含有していること
を特徴としている。
[0010] That is, the grain boundary insulation type semiconductor ceramic composition according to the present invention, (Sr (1-x) Ca x) z Ti 1-y Nb y O 3 ( wherein, x,
y and z are x = 0.025 to 0.08 and y = 0.004 to 0, respectively.
01, a value in the range of z = 0.992 to 0.998) as a main component, and 0.005 to 0.1 when Cu is converted to CuO with respect to 100 g of the main component.
It is characterized by containing 0.01 to 0.08 g of g and Si converted to SiO 2 .

【0011】本発明において主成分である前記(Sr(1-x)
Cax)zTi1-yNbyO3 のSrとCaの割合に関係するxの値を0.
025 〜0.08と規定したのは、前記xの値が0.025 未満で
あると静電容量温度特性(TC値)が劣化し、また前記
xの値が0.08を超えると静電容量及び見掛けの比誘電率
(εapp )が小さくなるためである。
In the present invention, the main component (Sr (1-x)
Ca x) z Ti 1-y Nb y O 0 the value of x involved in the ratio of Sr and Ca in 3.
025 to 0.08 means that the capacitance temperature characteristic (TC value) is deteriorated when the value of x is less than 0.025, and the capacitance and the apparent dielectric constant are increased when the value of x exceeds 0.08. This is because the rate (ε app ) becomes small.

【0012】また主成分である前記(Sr(1-x)Cax)zTi1-y
NbyO3 の(Sr(1-x)Cax)とTiとの割合に関係するzの値
を0.992 〜0.998 と規定したのは、前記zの値が0.992
未満であると焼結性が劣化して、緻密化されず、また前
記zの値が0.998 を超えると異常粒成長が発生して緻密
な焼結体を得ることができないためである。
The main component (Sr (1-x) Ca x ) z Ti 1-y
Nb y of O 3 (Sr (1-x ) Ca x) as defined as the value of 0.992 to 0.998 of z related to the proportion of the Ti, the value of the z is 0.992
If it is less than the above range, the sinterability is deteriorated and it is not densified, and if the value of z exceeds 0.998, abnormal grain growth occurs and a dense sintered body cannot be obtained.

【0013】また主成分である前記(Sr(1-x)Cax)zTi1-y
NbyO3 のNbとTiとの割合に関係するyの値を0.004 〜0.
01と規定したのは、前記yの値が0.004 未満であると誘
電損失(tan δ)の値が大きくなり、また前記yの値が
0.01を超えると焼結性が劣化して、緻密な焼結体を得る
ことができないためである。
Further, the main component (Sr (1-x) Ca x ) z Ti 1-y
The value of y related to the ratio of Nb to Ti of Nb y O 3 is 0.004 to 0.
The definition of 01 is that when the value of y is less than 0.004, the value of dielectric loss (tan δ) becomes large, and when the value of y is
This is because if it exceeds 0.01, the sinterability deteriorates and a dense sintered body cannot be obtained.

【0014】前記主成分100gに対するSiの含有量をSiO2
に換算して0.01〜0.08g としたのは、主成分100gに対す
るSiの含有量がSiO2に換算して0.01g 未満であると各製
品ごとの静電容量のバラツキが大きくなり、またSiの含
有量がSiO2に換算して0.08gを超えると、静電容量や見
掛けの比誘電率(εapp )の値が小さくなるためであ
る。
The content of Si based on 100 g of the main component is SiO 2
The value of 0.01 to 0.08 g was calculated as follows: If the Si content per 100 g of the main component is less than 0.01 g in terms of SiO 2 , the variation in capacitance between products will increase, and the Si This is because when the content exceeds 0.08 g in terms of SiO 2 , the capacitance and the apparent relative permittivity (ε app ) become small.

【0015】主成分100gに対するCuの含有量をCuO に換
算して0.005 〜0.1gとしたのは、主成分100gに対するCu
の含有量がCuO に換算して0.005g未満であると静電容量
のバラツキが大きくなり、またCuの含有量がCuO に換算
して0.1gを超えると、異常粒成長が発生し、絶縁体とし
ての特性を具備せず、静電容量温度特性(TC値)が劣
化するためである。
The content of Cu based on 100 g of the main component is 0.005 to 0.1 g in terms of CuO, which means that Cu based on 100 g of the main component is
If the content of Cu is less than 0.005g in terms of CuO, the variation in capacitance will increase, and if the content of Cu exceeds 0.1g in terms of CuO, abnormal grain growth will occur and This is because the temperature characteristic (TC value) of the capacitance is deteriorated without providing the above characteristics.

【0016】[0016]

【作用】上記した構成によれば、(Sr(1-x)Cax)zTi1-yNb
yO3 からなる主成分中のzの値が0.992 〜0.998 である
ので、BサイトのTiが過剰となり格子欠陥が増加して半
導体化が促進され、また、前記主成分中のyの値が0.00
4 〜0.01であるので、原子価制御により一層半導体化が
促進される。また前記主成分中のxの値が0.025〜0.08
であるので、CaによりAサイトの一部が置換され、異常
粒成長が抑制される。さらに、SiO2を含有することによ
り焼結が促進されて緻密な焼結体となり、結晶粒が一様
の大きさになる。従って、得られた本発明に係る粒界絶
縁型半導体磁器組成物は、静電容量、見掛けの比誘電率
(εapp )、誘電損失(tan δ)及び静電容量温度特性
(TC値)等の各特性に優れ、各製品ごとの特性のバラ
ツキの少ないものとなる。
According to the above structure, (Sr (1-x) Ca x ) z Ti 1-y Nb
Since the value of z in the main component composed of y O 3 is 0.992 to 0.998, Ti at the B site becomes excessive, lattice defects increase, and semiconductor formation is promoted. Further, the value of y in the main component is 0.00
Since it is 4 to 0.01, the semiconductor conversion is further promoted by controlling the valence. The value of x in the main component is 0.025 to 0.08.
Therefore, part of the A site is replaced by Ca, and abnormal grain growth is suppressed. Further, by containing SiO 2 , sintering is promoted to form a dense sintered body and the crystal grains have a uniform size. Therefore, the obtained grain boundary insulating semiconductor ceramic composition according to the present invention has a capacitance, an apparent relative permittivity (ε app ), a dielectric loss (tan δ), a capacitance temperature characteristic (TC value), etc. The above characteristics are excellent, and there is little variation in the characteristics of each product.

【0017】[0017]

【実施例】以下、本発明に係る粒界絶縁型半導体磁器組
成物の実施例及び比較例を説明する。まず、原料として
純度99.9%以上の炭酸ストロンチウム(SrCO3 )と
炭酸カルシウム(CaCO3 )の原料粉末に純度99.9%
以上の酸化チタン(TiO2)を加えて(Sr(1-x)Cax)/Ti
のモル比であるzの値を調整した粉末に、純度99.9
%以上の五酸化ニオブ(Nb2O5 )、酸化第二銅(CuO )
及び酸化ケイ素(SiO2)の添加量を種々変えて調合を行
う。各原料の調合割合を下記の表1及び2に示してい
る。調合は、各原料を正確に秤量し、ボールミルなどに
より約20時間湿式混合、粉砕することにより行う。こ
の粉砕粉末を乾燥させた後解砕し、空気中で、1000〜12
00℃の温度範囲で2時間の仮焼合成を行う。前記仮焼合
成により、所定の固溶体が合成されていることを、X線
回折分析、組成分析等により確認した。
EXAMPLES Examples and comparative examples of the grain boundary insulating semiconductor ceramic composition according to the present invention will be described below. First, the raw material powder of strontium carbonate (SrCO 3 ) and calcium carbonate (CaCO 3 ) with a purity of 99.9% or higher is used as a raw material and has a purity of 99.9%.
By adding the above titanium oxide (TiO 2 ), (Sr (1-x) Ca x ) / Ti
The powder having the z value, which is the molar ratio of
% Or more niobium pentoxide (Nb 2 O 5 ), cupric oxide (CuO).
Also, various amounts of silicon oxide (SiO 2 ) are added for the preparation. The mixing ratio of each raw material is shown in Tables 1 and 2 below. The compounding is performed by accurately weighing each raw material, wet mixing and pulverizing for about 20 hours by a ball mill or the like. This crushed powder is dried and then crushed, and in air, 1000-12
Calcination synthesis is performed for 2 hours in the temperature range of 00 ° C. It was confirmed by X-ray diffraction analysis, composition analysis, etc. that a predetermined solid solution was synthesized by the calcination synthesis.

【0018】次に仮焼合成粉を解砕し、整粒、造粒を行
った後、1.0 〜2.0t/cm2 の圧力をかけて直径10mm、
厚さ0.8mmの円板状の成形体を形成する。この成形体
を、空気中、約1000℃で2時間熱処理することにより脱
脂を行い、さらに、水素1〜15 vol%、窒素99〜8
5 vol%からなる還元雰囲気下、1400〜1450℃の範囲で
4〜8時間焼成する。
Next, the calcined synthetic powder is crushed, sized and granulated, and then a pressure of 1.0 to 2.0 t / cm 2 is applied to the crushed synthetic powder to obtain a diameter of 10 mm,
A disk-shaped molded body having a thickness of 0.8 mm is formed. This molded body is degreased by heat treatment in air at about 1000 ° C. for 2 hours, and further hydrogen 1 to 15 vol% and nitrogen 99 to 8
Baking is performed in the range of 1400 to 1450 ° C. for 4 to 8 hours in a reducing atmosphere of 5 vol%.

【0019】得られた焼結体の組成については、前記焼
結体を酸等で溶解した後、ICP分析等によりその組成
を分析し、調合した原料の組成と変わらないことを確認
した。
Regarding the composition of the obtained sintered body, the composition was analyzed by ICP analysis or the like after dissolving the sintered body with an acid or the like, and it was confirmed that the composition was the same as that of the prepared raw material.

【0020】次に、得られた焼結体を有機溶剤、熱水中
で充分洗浄した後、この焼結体の片面に拡散物質として
酸化ビスマス(Bi2O3)、酸化第二銅(CuO )、炭酸ナト
リウム(Na2CO3)又は酸化ナトリウム(Na2O)のうち少
なくとも1種類を含む金属酸化物のペーストを塗布し、
大気中、1050〜1200℃の範囲で1〜2時間加熱して熱拡
散させて、絶縁粒界型半導体磁器組成物を得る。最後
に、このようにして得られた絶縁粒界型半導体磁器組成
物の両面に銀ペーストを印刷し、800 ℃、2時間程度の
条件で焼き付けて銀電極を形成し、半導体磁器コンデン
サを得る。
Next, the obtained sintered body was thoroughly washed with an organic solvent and hot water, and then bismuth oxide (Bi 2 O 3 ) and cupric oxide (CuO 2) (CuO) were used as diffusion materials on one surface of the sintered body. ), Sodium carbonate (Na 2 CO 3 ) or sodium oxide (Na 2 O), at least one metal oxide paste is applied,
In the air, it is heated in the range of 1050 to 1200 ° C. for 1 to 2 hours for thermal diffusion to obtain an insulating grain boundary type semiconductor ceramic composition. Finally, a silver paste is printed on both sides of the thus-obtained insulating grain boundary type semiconductor porcelain composition and baked at 800 ° C. for about 2 hours to form a silver electrode to obtain a semiconductor porcelain capacitor.

【0021】得られた本導体磁器コンデンサの各種電気
特性の評価は、以下のように行った。
Evaluation of various electrical characteristics of the obtained conductor ceramic capacitor was carried out as follows.

【0022】静電容量、誘電損失(tan δ)及び見掛け
の比誘電率(εapp )は、インピーダンスアナライザー
を用い、周波数1KHz、測定電圧1Vにて測定し、静
電容量温度特性(TC値)は、20℃で測定した静電容
量を基準とし、−25℃と+85℃で測定した静電容量
の変化率により評価した。静電容量のバラツキ(3c
V)は下記の数1式で示される値であり、同じ条件で製
造された半導体磁器コンデンサ50個につき静電容量を
測定し、それらの値から求められた標準偏差(σ)と平
均値(ξ)を使用して求める。
The capacitance, the dielectric loss (tan δ) and the apparent relative permittivity (ε app ) were measured with an impedance analyzer at a frequency of 1 KHz and a measurement voltage of 1 V, and the capacitance-temperature characteristic (TC value) Was evaluated by the rate of change of the capacitance measured at −25 ° C. and + 85 ° C. with reference to the capacitance measured at 20 ° C. Capacitance variation (3c
V) is a value expressed by the following mathematical formula 1, and the capacitance is measured for 50 semiconductor ceramic capacitors manufactured under the same conditions, and the standard deviation (σ) and the average value (σ) obtained from these values are measured. ξ) is used.

【0023】[0023]

【数1】 静電容量のバラツキ(3cV)=3×σ×ξ (ただし、σ:標準偏差、ξ:平均値) なお、表1において、試料番号に*印をつけたのは本発
明の範囲外の比較例に係るのものであり、その他は本発
明の範囲内の実施例に係るものである。
## EQU00001 ## Capacitance variation (3 cV) = 3.times..sigma..xi. (Where, .sigma. Standard deviation, .xi .: average value) In Table 1, the sample numbers are marked with * in the present invention. The present invention relates to comparative examples outside the range, and the others relate to examples within the scope of the present invention.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表1及び表2の比較例のデータより、以下
のことがわかる。xの値が0.025 より小さい0.01、0.02
になると静電容量温度特性(TC値)や静電容量のバラ
ツキが大きくなり、またxの値が0.08を超えた0.10にな
ると静電容量が小さくなる。またyの値が0.004 より小
さい0.002 になると誘電損失(tan δ)の値が大きく、
静電容量のバラツキも増加する。またzの値が0.992 よ
り小さい0.990 になると焼結性が劣化して緻密な焼結体
が得られないため電気的特性を測定できず、zの値が0.
998 を超えた1.000 になると静電容量が小さくなる。ま
たCuO を含有しない場合は静電容量のバラツキが大きく
なり、CuO の含有量が主成分100gに対して0.1gを超えた
0.15g や0.2gになると絶縁不良となる。さらにSiO2を含
有しない場合は静電容量のバラツキが大きくなり、SiO2
の含有量が主成分100gに対して0.08g を超えた0.10g や
0.12g になると静電容量が小さくなる。
The following can be seen from the data of the comparative examples in Tables 1 and 2. The value of x is less than 0.025 0.01, 0.02
The variation in capacitance temperature characteristics (TC value) and the capacitance increase, and the capacitance decreases when the value of x exceeds 0.08 and becomes 0.10. When the value of y becomes 0.002 which is smaller than 0.004, the value of dielectric loss (tan δ) becomes large,
The variation in capacitance also increases. When the z value is 0.990, which is smaller than 0.992, the sinterability deteriorates and a dense sintered body cannot be obtained, so that the electrical characteristics cannot be measured and the z value is 0.
The capacitance becomes smaller at 1.000, which exceeds 998. In addition, when CuO was not contained, the variation in capacitance increased, and the content of CuO exceeded 0.1 g per 100 g of the main component.
If it is 0.15g or 0.2g, the insulation will be poor. Further if not containing SiO 2 becomes large variation in capacitance, SiO 2
The content of 0.10g that exceeds 0.08g for 100g of the main component
The capacitance becomes smaller at 0.12g.

【0027】これに対し、実施例に係る粒界絶縁型半導
体磁器組成物にあっては、静電容量や見かけの比誘電率
(εapp )が大きく、静電容量のバラツキが少なく、誘
電損失(tan δ)が小さく、かつ静電容量温度特性(T
C値)が±10%以内と各特性に優れたものとなってい
る。
On the other hand, in the grain boundary insulating semiconductor ceramic composition according to the example, the capacitance and the apparent relative permittivity (ε app ) are large, the variation in the capacitance is small, and the dielectric loss is small. (Tan δ) is small, and the capacitance-temperature characteristic (T
The C value) is within ± 10%, which is excellent in each characteristic.

【0028】[0028]

【発明の効果】以上詳述したように、本発明に係る粒界
絶縁型半導体磁器組成物にあっては、(Sr(1-x)Cax)zTi
1-yNbyO3 (式中、x、y、zはそれぞれ、x=0.025
〜0.08、y=0.004 〜0.01、z=0.992 〜0.998 の範囲
の値)を主成分とし、前記主成分100gに対し、CuをCuO
に換算して0.005 〜0.1g、SiをSiO2に換算して0.01〜0.
08g 含有しているので、静電容量や見かけの比誘電率
(εapp )が大きく、静電容量のバラツキが少なく、誘
電損失(tan δ)が小さく、かつ静電容量温度特性(T
C値)が±10%以内と各特性に優れた粒界絶縁型半導
体磁器コンデンサを提供することができる。
As described above in detail, in the grain boundary insulating semiconductor ceramic composition according to the present invention, (Sr (1-x) Ca x ) z Ti
1-y Nb y O 3 (where x, y, and z are respectively x = 0.025
.About.0.08, y = 0.004 to 0.01, z = 0.992 to 0.998) as the main component, and Cu is CuO for 100 g of the main component.
Converted to 0.005 to 0.1 g, and Si converted to SiO 2 0.01 to 0.
Since it contains 08g, the capacitance and apparent relative permittivity (ε app ) are large, the variation in capacitance is small, the dielectric loss (tan δ) is small, and the capacitance temperature characteristic (T
It is possible to provide a grain boundary insulation type semiconductor ceramic capacitor having excellent C-values within ± 10%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (Sr(1-x)Cax)zTi1-yNbyO3 (式中、x、
y、zはそれぞれ、x=0.025 〜0.08、y=0.004 〜0.
01、z=0.992 〜0.998 の範囲の値)を主成分とし、前
記主成分100gに対し、CuをCuO に換算して0.005 〜0.1
g、SiをSiO2に換算して0.01〜0.08g 含有していること
を特徴とする粒界絶縁型半導体磁器組成物。
[Claim 1] (Sr (1-x) Ca x) z Ti 1-y Nb y O 3 ( wherein, x,
y and z are x = 0.025 to 0.08 and y = 0.004 to 0, respectively.
01, a value in the range of z = 0.992 to 0.998) as a main component, and 0.005 to 0.1 when Cu is converted to CuO with respect to 100 g of the main component.
A grain boundary insulating semiconductor porcelain composition containing 0.01 to 0.08 g of g and Si in terms of SiO 2 .
JP5013135A 1993-01-29 1993-01-29 Grain boundary insulating semiconductor ceramic composition Pending JPH06231993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5013135A JPH06231993A (en) 1993-01-29 1993-01-29 Grain boundary insulating semiconductor ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5013135A JPH06231993A (en) 1993-01-29 1993-01-29 Grain boundary insulating semiconductor ceramic composition

Publications (1)

Publication Number Publication Date
JPH06231993A true JPH06231993A (en) 1994-08-19

Family

ID=11824723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5013135A Pending JPH06231993A (en) 1993-01-29 1993-01-29 Grain boundary insulating semiconductor ceramic composition

Country Status (1)

Country Link
JP (1) JPH06231993A (en)

Similar Documents

Publication Publication Date Title
JPS6249977B2 (en)
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
KR100312605B1 (en) Semiconducting ceramic and semiconducting ceramic electronic element
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JP2005041721A (en) Dielectric porcelain composition and ceramic electronic component
JPH06231993A (en) Grain boundary insulating semiconductor ceramic composition
JP3588210B2 (en) Dielectric porcelain composition
JP2734910B2 (en) Method for producing semiconductor porcelain composition
JPH0571538B2 (en)
JP2970405B2 (en) Grain boundary insulating semiconductor porcelain composition and method for producing the same
JPS6249976B2 (en)
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPH06231994A (en) Semiconductor ceramic composition
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPH07277818A (en) Grain boudnary insulated semiconductor porcelain composition
JPS6249975B2 (en)
JPS6342849B2 (en)
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0757956A (en) Semiconductor ceramic composition and production thereof
JP2773479B2 (en) Grain boundary insulated semiconductor porcelain material and method of manufacturing the same
JP3512587B2 (en) Multilayer ceramic capacitors
JPH0761897B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH0761898B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JP2001302333A (en) Dielectric ceramic composition