JPH06231989A - Manufacture of magnetic thin film - Google Patents

Manufacture of magnetic thin film

Info

Publication number
JPH06231989A
JPH06231989A JP3608593A JP3608593A JPH06231989A JP H06231989 A JPH06231989 A JP H06231989A JP 3608593 A JP3608593 A JP 3608593A JP 3608593 A JP3608593 A JP 3608593A JP H06231989 A JPH06231989 A JP H06231989A
Authority
JP
Japan
Prior art keywords
thin film
composition
layer
substrate
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3608593A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Otani
佳光 大谷
Iwao Hatakeyama
巌 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3608593A priority Critical patent/JPH06231989A/en
Publication of JPH06231989A publication Critical patent/JPH06231989A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/325Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being noble metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain even in a thin film the same antiferromagnetism- ferromagnetism transition characteristic as a bulk by forming an alloy thin film having a specified Rh component by a method wherein layers of different Rh components are deposited alternately and then these layers are heat-treated to unify the Rh component in a thin film. CONSTITUTION:On a substrate 2, a layer 1a having 0-35at% of Rh and 100-65at% of Fe and a layer 1b having 65-100at% of Rh and 35-0at% of Fe are deposited by turns. After that, these layers are heat-treated to unify the composition in a thin film. Then, an alloy thin film 3, principal ingredients of which are 45-55at% of Rh and 55-45at% of Fe, is obtained. While depositing the thin film, the temperature of the substrate is kept at 100-1000 deg.C. While heat treatment is conducted for unification of the composition, tensile stress is applied to the thin film. By this method, the same antiferromagnetism- ferromagnetism transition characteristic as a bulk can be obtained even in a thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種のセンサ、アクチ
ュエータ等に応用できる磁性薄膜の作製方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic thin film applicable to various sensors, actuators and the like.

【0002】[0002]

【従来の技術】Fe−50at%Rh近傍組成の合金は
CsClタイプの体心立方格子(bodycentered cubic
以下bccと呼ぶ)規則合金となる。この規則合金は、
低温において反強磁性であるが、60℃〜100℃にお
いて強磁性に遷移する。磁化0の状態から不連続に磁化
約1100Gが発生するために、温度センサや感熱駆動
アクチュエータなど多くの応用の可能性がある。この規
則合金を薄膜形態で形成できれば、さらに応用範囲が広
がることが期待される。しかし、この合金を薄膜で形成
するには大きな困難がある。図7は、ジェ・エム・ロメ
ル(J. M. Lommel)によって1966年にジャーナル・
オブ・アプライド・フィジクス誌 37巻1483ペー
ジに発表された、Fe−50at%Rh近傍組成合金薄
膜の磁化の温度変化を示したものである。図からわかる
ように、薄膜はバルク材に比較して、大きな温度ヒステ
リシスを有しており、しかも磁化の遷移が広がってい
る。このような磁化遷移の不明瞭な特性は、センサ等に
応用する際には感度,分解能等の低下を招き、非常に限
られた用途にしか適用できないといった不都合があっ
た。
2. Description of the Related Art An alloy having a composition in the vicinity of Fe-50 at% Rh is a CsCl type body centered cubic lattice.
Hereinafter referred to as bcc) It becomes an ordered alloy. This ordered alloy is
It is antiferromagnetic at low temperatures, but transitions to ferromagnetism at 60 ° C to 100 ° C. Since about 1100 G of magnetization is generated discontinuously from the state of zero magnetization, there are many possible applications such as a temperature sensor and a heat-sensitive actuator. If this ordered alloy can be formed in a thin film form, it is expected that the range of application will be further expanded. However, there are great difficulties in forming this alloy as a thin film. Figure 7 is a journal published by JM Lommel in 1966.
It shows the temperature change of the magnetization of the Fe-50 at% Rh composition alloy thin film, which was announced in Vol. 37, page 1483 of The Applied Physics. As can be seen from the figure, the thin film has a large temperature hysteresis as compared with the bulk material, and the magnetization transition is widened. Such an unclear characteristic of the magnetization transition causes a decrease in sensitivity, resolution, etc. when applied to a sensor or the like, and has a disadvantage that it can be applied only to a very limited purpose.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の欠点を
解決するために提案されたもので、その目的は、バルク
特性とほぼ同等の急峻な磁化遷移を示すFeRh規則合
金薄膜の作製方法を提供することにある。まず、従来技
術において何故薄膜がバルクとは異なった挙動を示すの
かを説明する。一般に薄膜形成は気相成長であるため
に、平衡状態の相を得るのは難しく、高温相ができる場
合が多い。すなわち、液体状態から急冷した状況にな
り、Rhが50at%,Feが残りの50at%のRh
が50at%近傍組成では非磁性の面心立方格子(face
centered cubic 以下fccと呼ぶ)構造を有する薄膜
が得られやすい。このため、目的の規則合金を得るため
には、薄膜形成後に熱処理をして、fcc構造からbc
c構造へ変態させなければならない。fcc構造からb
cc構造に変化する過程において、せん断的な変形や体
積膨張が起こる。薄膜の場合には膜が基板と密着してい
るために大きな圧縮応力に増加され、これら変形,体積
膨張が十分にできないために、薄膜全体の変態が行われ
ず、未変態のfcc相を残留することになる。この残留
fcc相は変態したbcc相の結晶成長を妨げ、多くの
不規則配列部分や欠陥を形成する結果を招くために、反
強磁性状態が不安定になり、磁化遷移を不明瞭にするの
である。本発明はこのFeRh規則合金の薄膜に特有な
上記問題点を解決するための技術である。
The present invention has been proposed to solve the above-mentioned drawbacks, and an object thereof is to provide a method for producing a FeRh ordered alloy thin film exhibiting a sharp magnetization transition almost equivalent to bulk characteristics. To provide. First, the reason why the thin film behaves differently from the bulk in the prior art will be described. Generally, since thin film formation is vapor phase growth, it is difficult to obtain an equilibrium phase, and a high temperature phase is often formed. That is, the liquid state is rapidly cooled, and Rh is 50 at% and Fe is the remaining 50 at%.
Is a non-magnetic face-centered cubic lattice (face
A thin film having a centered cubic (hereinafter referred to as fcc) structure is easily obtained. Therefore, in order to obtain the target ordered alloy, heat treatment is performed after the thin film is formed, and bc is obtained from the fcc structure.
It must be transformed into the c structure. b from fcc structure
In the process of changing to a cc structure, shearing deformation and volume expansion occur. In the case of a thin film, since the film is in close contact with the substrate, the compressive stress is increased, and the deformation and volume expansion cannot be sufficiently performed, so that the entire thin film is not transformed and the untransformed fcc phase remains. It will be. This residual fcc phase hinders the crystal growth of the transformed bcc phase, resulting in the formation of many irregularly arranged portions and defects, so that the antiferromagnetic state becomes unstable and the magnetization transition becomes unclear. is there. The present invention is a technique for solving the above problems peculiar to the thin film of the FeRh ordered alloy.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明はRhが0〜35at%,Feが残りの10
0〜65at%組成の層と、Rhが65〜100at
%,Feが残りの35〜0at%組成の層とを交互に堆
積し、この後薄膜内で組成を均一にするための熱処理を
施し、Rhが45〜55at%,Feが残りの55〜4
5at%を主成分とする合金薄膜を形成することを特徴
とする磁性薄膜の作製方法を発明の要旨とするものであ
る。
In order to achieve the above object, the present invention is such that Rh is 0 to 35 at% and Fe is the remaining 10%.
0 to 65 at% composition layer and Rh 65 to 100 at
%, Fe are alternately deposited with the remaining 35 to 0 at% composition layer, and then heat treatment is performed to make the composition uniform in the thin film. Rh is 45 to 55 at% and Fe is 55 to 4 at%.
The gist of the invention is a method for producing a magnetic thin film, which comprises forming an alloy thin film containing 5 at% as a main component.

【0005】[0005]

【作用】本発明においては、Rhが0〜35at%,F
eが残りの100〜65at%組成の層と、Rhが65
〜100at%,Feが残りの35〜0at%組成の層
とを交互に堆積し、この後薄膜内で組成を均一にするた
めの熱処理を施し、Rhが45〜55at%,Feが残
りの55〜45at%を主成分とする合金薄膜を形成す
ることによって、薄膜においてもバルクと同等な反強磁
性−強磁性遷移の特性が得られる。
In the present invention, Rh is 0 to 35 at%, F
e is the remaining 100 to 65 at% composition layer and Rh is 65
˜100 at%, Fe is alternately deposited with the remaining 35 to 0 at% composition layer, and then heat treatment is performed to make the composition uniform in the thin film, Rh is 45 to 55 at%, and Fe is the remaining 55. By forming an alloy thin film whose main component is ˜45 at%, an antiferromagnetic-ferromagnetic transition characteristic similar to that of bulk can be obtained even in the thin film.

【0006】[0006]

【実施例】次に本発明の実施例について説明する。図1
(a)は本発明における薄膜の構成を示したものであ
る。図中、基板2上に1aならびに1bの薄膜を多層構
造で形成する。第1層ならびに奇数層(図では1a)は
Rh組成が35at%以下のFeリッチ層、第2層なら
びに偶数層(図では1b)はRh組成が65at%以上
のRhリッチ層となる交互の堆積を行う。3は堆積され
た薄膜を示す。薄膜トータルの組成は、Fe−45〜5
5at%Rh(Rhが45〜55at%,Feが残りの
55〜45at%)の組成になるように、各層の組成,
膜厚を制御する。この構成の特徴は、薄膜を形成する段
階において、fcc相の生成を防ぎ、bcc構造とする
ために、堆積の初めにbcc構造を有する組成、すなわ
ちFe−50at%Rh(Rh,Fe共に50at%)
組成よりもFeリッチな組成、の層を形成する点であ
る。図2は組成を変化させて、スパッタリングで薄膜形
成した際の構造を示したものであるが、図からわかるよ
うに、Rh組成が35at%を境にして35at%未満
ではbccに、35at%超過のではfcc構造にな
る。このbcc構造をとる35at%未満の組成を初期
堆積層に用いるのである。このような構成にすると2つ
の利点がある。一つは、引き続き堆積する層がbcc構
造を取りやすくなる点、もう一つは、たとえ第2層以降
の偶数層がfcc構造となっても熱処理中にfccから
bccに変態する際の基板と薄膜間の応力が緩和される
点である。これら構成の薄膜を形成した後、熱処理によ
り層間の拡散を生じさせると、図1(b)のような全体
が均一なbcc構造を有するFe−45〜55at%R
h薄膜3を形成することができる。さらに、bcc構造
を安定化させる目的で発明したのが、請求項3,4であ
る。まず、薄膜の堆積過程で基板の温度を上昇させる
と、bcc構造が得やすくなり、また、結晶粒の成長が
促進されて反強磁性が安定化する。薄膜堆積時にfcc
構造が残留している場合、熱処理過程でfccからbc
cに変態させる際に、薄膜に引っ張り応力を加えると体
積膨張を助長し、変態が容易に行われる、という特徴が
ある。
EXAMPLES Next, examples of the present invention will be described. Figure 1
(A) shows the structure of the thin film in this invention. In the figure, thin films 1a and 1b are formed in a multilayer structure on a substrate 2. The first and odd layers (1a in the figure) are Fe-rich layers with a Rh composition of 35 at% or less, and the second layers and the even layers (1b in the figure) are Rh-rich layers with a Rh composition of 65 at% or more. I do. 3 indicates the deposited thin film. The composition of the thin film is Fe-45 to 5
The composition of each layer should be 5 at% Rh (Rh is 45 to 55 at%, Fe is the remaining 55 to 45 at%).
Control the film thickness. The feature of this constitution is that, in the step of forming a thin film, in order to prevent the formation of the fcc phase and form a bcc structure, a composition having a bcc structure at the beginning of deposition, that is, Fe-50 at% Rh (both Rh and Fe are 50 at% )
The point is to form a layer having a composition richer in Fe than the composition. Fig. 2 shows the structure when a thin film is formed by sputtering by changing the composition. As can be seen from the figure, when the Rh composition is less than 35 at%, the bcc and the excess of 35 at% are exceeded when the Rh composition is less than 35 at%. Becomes the fcc structure. A composition of less than 35 at% having this bcc structure is used for the initial deposition layer. This configuration has two advantages. One is that the layer to be subsequently deposited tends to have the bcc structure, and the other is that even if the even layers after the second layer have the fcc structure, the substrate used when fcc is transformed into bcc during heat treatment is used. This is the point where the stress between the thin films is relaxed. After forming a thin film having these structures, heat treatment causes diffusion between layers, and Fe-45 to 55 at% R having a uniform bcc structure as shown in FIG.
The thin film 3 can be formed. Furthermore, claims 3 and 4 were invented for the purpose of stabilizing the bcc structure. First, if the temperature of the substrate is raised during the thin film deposition process, the bcc structure is easily obtained, and the growth of crystal grains is promoted to stabilize the antiferromagnetism. Fcc during thin film deposition
If the structure remains, fcc to bc during heat treatment
When transformed into c, a tensile stress is applied to the thin film, which promotes volume expansion and facilitates transformation.

【0007】〔実施例1〕図3のように、ガラス基板4
上に、Arガス圧3×10-1Pa,150Wの条件でス
パッタリングを行い、Fe−20at%Rh(Rhが2
0at%,Feが残りの80at%)層を第1層5とし
てFe−60at%Rh(Rhが60at%,Feが残
りの40at%)層6と交互に形成した。層厚はそれぞ
れ200Åと600Åで、層数は各3でトータル膜厚は
2400Åである。この状態における薄膜の平均Rh組
成は約50at%になっていた。また、X線回折の測定
では、bccとfccの混相である。一方、比較のた
め、従来方法でFe−50at%Rh(Rh,Fe共に
50at%)組成の薄膜を膜厚2400Å作製した場合
はfccであった。両薄膜を500℃で60時間アニー
ルを行った。1kGの印加磁場で磁化の温度変化を測定
した結果、図4に示すように、従来方法の薄膜はブロー
ドな遷移しか示さなかったが、本発明の作製方法をとっ
た薄膜はバルクとほぼ同等な急峻な磁化遷移を示す特性
が得られた。図4において、横軸に温度、縦軸に磁化を
とり、本発明と従来方法による特性を示してある。
Example 1 As shown in FIG. 3, a glass substrate 4
Sputtering was performed under the conditions of Ar gas pressure of 3 × 10 −1 Pa and 150 W, and Fe-20 at% Rh (Rh was 2
A layer of Fe-60 at% Rh (60 at% of Rh and 40 at% of Fe remaining) was alternately formed as a first layer 5 with 0 at% and 80 at% remaining Fe. The layer thicknesses are 200Å and 600Å, the number of layers is 3 each, and the total film thickness is 2400Å. The average Rh composition of the thin film in this state was about 50 at%. Further, in the X-ray diffraction measurement, it is a mixed phase of bcc and fcc. On the other hand, for comparison, when a thin film having a composition of Fe-50 at% Rh (both Rh and Fe is 50 at%) was manufactured to a film thickness of 2400 Å, it was fcc. Both thin films were annealed at 500 ° C. for 60 hours. As a result of measuring the temperature change of the magnetization with an applied magnetic field of 1 kG, as shown in FIG. 4, the thin film of the conventional method showed only a broad transition, but the thin film obtained by the manufacturing method of the present invention was almost equivalent to the bulk. A characteristic showing a sharp magnetization transition was obtained. In FIG. 4, the horizontal axis represents temperature and the vertical axis represents magnetization, and the characteristics according to the present invention and the conventional method are shown.

【0008】〔実施例2〕2元蒸着により、第1層をF
e、第2層をRhとし、各膜厚300Å、各5層の積層
薄膜を形成した。この時石英基板を用いて、基板温度を
室温、500℃、1000℃と変化させた。X線回折の
結果、基板温度が高いものほどbccの比率が高くなっ
ており、基板加熱の効果が認められた。その後、400
℃のアニールにおいて、どの位の時間保持するとシャー
プな遷移が現われるかを調べた。基板温度が、室温、5
00℃、1000℃と高くなるに従い、遷移が完全にな
るアニール時間は短縮され、それぞれ、50時間、30
時間、10時間であった。このように、薄膜堆積時に基
板温度を高くすると、短いアニール時間で目的の規則合
金薄膜が得られやすくなることが示された。
[Embodiment 2] The first layer is F
e, the second layer was Rh, and a film thickness of 300 Å and a laminated thin film of 5 layers each were formed. At this time, using a quartz substrate, the substrate temperature was changed to room temperature, 500 ° C., and 1000 ° C. As a result of X-ray diffraction, the higher the substrate temperature, the higher the bcc ratio, and the effect of heating the substrate was confirmed. Then 400
It was investigated how long the temperature was kept to show a sharp transition in the annealing at ℃. Substrate temperature is room temperature, 5
As the temperature rises to 00 ° C. and 1000 ° C., the annealing time required for complete transition is shortened to 50 hours and 30 hours, respectively.
It was 10 hours. Thus, it has been shown that if the substrate temperature is increased during thin film deposition, the targeted ordered alloy thin film can be easily obtained in a short annealing time.

【0009】〔実施例3〕基板にカプトン100μmを
用いて、基板温度は室温でスパッタリング成膜した。F
e−30at%Rh(Rhが30at%,Feが残りの
70at%)、Fe−70at%Rh(Rhが70at
%,Feが残りの30at%)層をそれぞれ、膜厚50
0Å、一層ずつ計2層を形成した。この薄膜を図5に示
すように、(a)基板ごと基板側に曲げた状態、(b)
薄膜側に曲げた状態、(c)どちらにも曲げない状態の
3つの状態にして、600℃で40時間アニールした。
磁化の温度変化をそれぞれ測定したところ、図6のよう
に、B,C,Aの順に、だんだんと特性が良くなること
がわかった。基板側に曲げて、膜に対して引っ張り応力
を加えた場合に、最も良好な特性が得られることが示さ
れた。
Example 3 Kapton 100 μm was used as the substrate, and the film was formed by sputtering at the substrate temperature of room temperature. F
e-30at% Rh (Rh is 30at%, Fe is the remaining 70at%), Fe-70at% Rh (Rh is 70at%
%, Fe is the remaining 30 at%) and the film thickness is 50
0Å, a total of 2 layers were formed. As shown in FIG. 5, this thin film is bent to the substrate side together with (a) the substrate, and (b).
It was annealed at 600 ° C. for 40 hours in three states of bending to the thin film side and (c) no bending.
When the temperature change of magnetization was measured, it was found that the characteristics gradually improved in the order of B, C, and A as shown in FIG. It was shown that the best characteristics were obtained when the film was bent to the substrate side and tensile stress was applied to the film.

【0010】[0010]

【発明の効果】以上説明したように、本発明の作製方法
を用いれば、薄膜においてもバルクと同等な反強磁性−
強磁性遷移の特性が得られるようになる。さらに、基板
温度の上昇、および、熱処理中の引っ張り応力の印加
は、バルクと同等の特性を短いアニール時間で得られる
ようになるという利点がある。
As described above, when the manufacturing method of the present invention is used, even in a thin film, an antiferromagnetic property equivalent to that of a bulk-
The characteristic of the ferromagnetic transition can be obtained. Further, the increase of the substrate temperature and the application of the tensile stress during the heat treatment have the advantage that the characteristics equivalent to those of the bulk can be obtained in a short annealing time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作製方法を示し、(a)は薄膜形成時
の構成、(b)はアニール後の薄膜の状態を示す。
1A and 1B show a manufacturing method of the present invention, in which FIG. 1A shows a structure during thin film formation, and FIG. 1B shows a state of a thin film after annealing.

【図2】従来法による薄膜形成で得られる薄膜の構造の
組成依存性を示す。
FIG. 2 shows the composition dependence of the structure of a thin film obtained by forming a thin film by a conventional method.

【図3】実施例1における薄膜の構成を示す。FIG. 3 shows a structure of a thin film in Example 1.

【図4】実施例1におけるアニール後の薄膜の磁化の温
度変化を示す。
FIG. 4 shows the temperature change of the magnetization of the thin film after annealing in Example 1.

【図5】実施例3におけるアニールの形態を示し、
(a),(b),(c)は種々の形を示す。
FIG. 5 shows a form of annealing in Example 3,
(A), (b) and (c) show various shapes.

【図6】実施例3におけるアニール後の薄膜の磁化の温
度変化を示す。
FIG. 6 shows temperature changes in magnetization of a thin film after annealing in Example 3.

【図7】従来方法で作製したFe−50at%Rh合金
薄膜の特性を示す。
FIG. 7 shows characteristics of a Fe-50 at% Rh alloy thin film produced by a conventional method.

【符号の説明】[Explanation of symbols]

1,1a,1b 薄膜 2 基板 3 堆積された薄膜 4 ガラス基板 5 Fe−20at%Rh層 6 Fe−60at%Rh層 1, 1a, 1b thin film 2 substrate 3 deposited thin film 4 glass substrate 5 Fe-20 at% Rh layer 6 Fe-60 at% Rh layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Rhが0〜35at%,Feが残りの1
00〜65at%組成の層と、Rhが65〜100at
%,Feが残りの35〜0at%組成の層とを交互に堆
積し、この後薄膜内で組成を均一にするための熱処理を
施し、Rhが45〜55at%,Feが残りの55〜4
5at%を主成分とする合金薄膜を形成することを特徴
とする磁性薄膜の作製方法。
1. Rh is 0 to 35 at%, Fe is the remaining 1
Layer with a composition of 00 to 65 at% and Rh of 65 to 100 at
%, Fe are alternately deposited with the remaining 35 to 0 at% composition layer, and then heat treatment is performed to make the composition uniform in the thin film. Rh is 45 to 55 at% and Fe is 55 to 4 at%.
A method for producing a magnetic thin film, which comprises forming an alloy thin film containing 5 at% as a main component.
【請求項2】 初期堆積層(基板に堆積する第1層)が
Rhが0〜35at%,Feが残りの100〜65at
%組成の層であり、体心立方格子の結晶構造をとること
を特徴とする請求項1記載の磁性薄膜の作製方法。
2. The initial deposition layer (first layer deposited on the substrate) has Rh of 0 to 35 at% and Fe of the remaining 100 to 65 at.
The method for producing a magnetic thin film according to claim 1, wherein the magnetic thin film is a layer having a% composition and has a crystal structure of a body-centered cubic lattice.
【請求項3】 薄膜の堆積中に基板温度を100℃〜1
000℃に保つことを特徴とする請求項1記載の磁性薄
膜の作製方法。
3. The substrate temperature is 100 ° C. to 1 during the deposition of the thin film.
The method for producing a magnetic thin film according to claim 1, wherein the method is maintained at 000 ° C.
【請求項4】 組成均一化のための熱処理を行いなが
ら、薄膜に引張り応力を加えることを特徴とする請求項
1記載の磁性薄膜の作製方法。
4. The method for producing a magnetic thin film according to claim 1, wherein tensile stress is applied to the thin film while performing heat treatment for homogenizing the composition.
JP3608593A 1993-02-01 1993-02-01 Manufacture of magnetic thin film Pending JPH06231989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3608593A JPH06231989A (en) 1993-02-01 1993-02-01 Manufacture of magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3608593A JPH06231989A (en) 1993-02-01 1993-02-01 Manufacture of magnetic thin film

Publications (1)

Publication Number Publication Date
JPH06231989A true JPH06231989A (en) 1994-08-19

Family

ID=12459914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3608593A Pending JPH06231989A (en) 1993-02-01 1993-02-01 Manufacture of magnetic thin film

Country Status (1)

Country Link
JP (1) JPH06231989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103646749A (en) * 2013-12-27 2014-03-19 青岛大学 Quasi-isotropy microwave ferromagnetic multilayer film and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103646749A (en) * 2013-12-27 2014-03-19 青岛大学 Quasi-isotropy microwave ferromagnetic multilayer film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2004311925A (en) FePt MAGNETIC THIN-FILM HAVING PERPENDICULAR MAGNETIC ANISOTROPY AND ITS MANUFACTURING METHOD
US5529814A (en) Method of producing exchange coupled magnetic thin films with post-deposition annealing
Hashi et al. A large thermal elasticity of the ordered FeRh alloy film with sharp magnetic transition
JPH06231989A (en) Manufacture of magnetic thin film
JPH09106514A (en) Ferromagnetic tunnel element and its production
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JPH11186035A (en) Amorphous soft magnetic thin-film material and manufacture thereof
JP2003099920A (en) MANUFACTURING METHOD OF THIN FePt MAGNETIC THIN FILM
JPS61194635A (en) Production of thin film permanent magnet
JP3823051B2 (en) Magnetic thin film and heat treatment method thereof
JPH03263306A (en) Magnetic film and magnetic head
WO2023038158A1 (en) Ordered alloy ferromagnetic nanowire structure and method for producing same
US20240209494A1 (en) Ordered alloy ferromagnetic nanowire structure and method for producing same
JPH07235420A (en) Fe-rh magnetic thin film and manufacture thereof
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JPH07263773A (en) Magnetoresistance effect element and its manufacture
JP2003282992A (en) Ferromagnetic supermagnetostriction film and its thermal treatment method
JPH0582342A (en) Thin film for magneto-resistance effect element and its manufacture
JPH0192359A (en) Manufacture of thin amorphous film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JP3058654B2 (en) Ultra-microcrystalline alloy and method for producing the same
JPS62164205A (en) Magnetic recording medium
JPH0562147A (en) Magnetic recording medium and its manufacture
JPH0439905A (en) Magnetically soft alloy film