JP2003282992A - Ferromagnetic supermagnetostriction film and its thermal treatment method - Google Patents

Ferromagnetic supermagnetostriction film and its thermal treatment method

Info

Publication number
JP2003282992A
JP2003282992A JP2002083163A JP2002083163A JP2003282992A JP 2003282992 A JP2003282992 A JP 2003282992A JP 2002083163 A JP2002083163 A JP 2002083163A JP 2002083163 A JP2002083163 A JP 2002083163A JP 2003282992 A JP2003282992 A JP 2003282992A
Authority
JP
Japan
Prior art keywords
film layer
ferromagnetic
atomic
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002083163A
Other languages
Japanese (ja)
Inventor
Masayuki Gonda
正幸 権田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002083163A priority Critical patent/JP2003282992A/en
Publication of JP2003282992A publication Critical patent/JP2003282992A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferromagnetic supermagnetostriction film wherein thickness is reduced while large magnetostriction constant is ensured. <P>SOLUTION: This ferromagnetic supermagnetostriction film is provided with a substrate, a base material film layer formed on the substrate, and a magnetic film layer formed on the base material film layer. The base material film layer is constituted of at least one kind out of tantalum and titanium. The magnetic film layer is composed of an Ni-Mn-Ca based alloy wherein the amount of Ni is at least 45 at.% and at most 58 at.%, the amount of Mn is at least 18 at.% and at most 28 at.%, and residual Ga and unavoidable impurities are contained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、所定の合金を用い
て多層構造とすることで強磁性と超磁歪特性を有する強
磁性超磁歪膜に関するものである。また、強磁性超磁歪
膜の製造に係る熱処理条件を規定した強磁性超磁歪膜の
熱処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic giant magnetostrictive film having a ferromagnetic property and a giant magnetostrictive property by forming a multilayer structure using a predetermined alloy. The present invention also relates to a heat treatment method for a ferromagnetic giant magnetostrictive film, which defines heat treatment conditions for manufacturing a ferromagnetic giant magnetostrictive film.

【0002】[0002]

【従来の技術】磁歪特性を有する磁性材料は、外部磁界
を印加した際に伸びや縮みなどの変位を発生させる性質
を持っており、これを応用したデバイスには変位制御用
あるいは駆動用アクチュエータ、トルクセンサ、超音波
振動子などに用いられ、材料としてTd-Dy-Fe希土
類系合金などが知られている。
2. Description of the Related Art A magnetic material having a magnetostrictive property has a property of causing displacement such as expansion and contraction when an external magnetic field is applied. A device to which this is applied is a displacement control or drive actuator, Td-Dy-Fe rare earth alloys and the like are known as materials used for torque sensors, ultrasonic vibrators, and the like.

【0003】最近、上記材料に加えてFe-Pt系合金
(特開平11‐269611号公報)やNi-Mn-Ga
系合金(特開平10‐259438号公報)が提案され
た。これらは磁界によって、例えば正方晶構造から立方
晶構造への、結晶変態が起こり、したがって従来知られ
ていた磁歪材料より遥かに大きな値を現出することがで
きる。
Recently, in addition to the above materials, Fe--Pt alloys (Japanese Patent Laid-Open No. 11-269611) and Ni--Mn--Ga
A system alloy (Japanese Patent Laid-Open No. 10-259438) has been proposed. A magnetic field causes a crystal transformation, for example, from a tetragonal crystal structure to a cubic crystal structure, and therefore, a value much larger than that of a conventionally known magnetostrictive material can be exhibited.

【0004】[0004]

【発明が解決しようとする課題】Ni−Mn−Ga系合
金は主として粉末冶金法によって製造されている。しか
しながら当該材料を磁気デバイスへ展開させることを考
えると、薄膜化し形状加工することが望ましいが、大き
な磁歪定数を確保しつつ薄膜化したという報告はされて
いない。
Ni-Mn-Ga alloys are mainly manufactured by powder metallurgy. However, considering the development of the material into a magnetic device, it is desirable to make the material thin and shape it, but there has been no report that the material was thinned while securing a large magnetostriction constant.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めには、ターゲットなど母材から真空成膜法などで基板
上に薄膜を形成する。基板上に成膜するために下地膜層
を形成した後、Ni−Mn−Ga系合金の磁性膜層を形
成し、真空中または非酸化性雰囲気中で熱処理を行うこ
とにより大きな磁歪を誘導する。
To solve the above problems, a thin film is formed on a substrate from a base material such as a target by a vacuum film forming method or the like. After forming an underlayer for forming a film on a substrate, a magnetic layer of Ni—Mn—Ga based alloy is formed, and a large magnetostriction is induced by heat treatment in a vacuum or a non-oxidizing atmosphere. .

【0006】即ち、本発明の強磁性超磁歪膜は、基板
と、前記基板上に形成された下地膜層と、前記下地膜層
上に形成された磁性膜層を備える強磁性超磁歪膜であっ
て、前記下地膜層はタンタル(Ta)、チタン(Ti)
のいずれか一種以上から構成され、且つ前記磁性膜層は
Ni量が45原子%以上且つ58原子%以下で、Mn量
が18原子%以上且つ28原子%以下で残部Gaおよび
不可避不純物を有するNi−Mn‐Ga系合金であるこ
とを特徴とする。これにより優れた強磁性超磁歪膜が実
現される。Ni量とMn量のさらに好ましい範囲は、N
i量が48原子%以上且つ55原子%以下で、Mn量が
20原子%以上且つ26原子%以下である。また、磁性
膜層は100nm以上且つ3000nm以下の厚さで形
成されていることが好ましい。あまりに薄いと十分な強
磁性特性と超磁歪特性が得られない。また厚さが300
0nmを超えると、薄膜の残留応力により基板から剥離
し素子化が困難となる。ここで、原子%とは、磁性膜層
もしくはその任意の一部について、構成する全原子の数
を100としたときに、含有される各々の元素の数を百
分率で表現する単位である。例えば、Ni量が45原子
%とは、磁性膜層の表面を定量分析したときに、検知し
た全原子数(100%)に対してNi原子の個数が45
%であることに相当する。磁性膜層を定量分析したとき
の単位がmass%(=重量%もしくはwt%)である
場合、前記磁性膜層はNi量が50〜58mass%
で、Mn量が21〜23mass%で残部Gaおよび不
可避不純物を有するNi−Mn−Ga系合金を用いる。
なお、不可避的不純物としては、磁性膜層の作製に用い
る原料、例えばJISで規定されるNi、Mn、Gaお
よびそれらの化合物に含まれる不純物元素が挙げられ
る。他にも、磁性膜層やその原料を形成する工程で含ま
れ得る気体元素(酸素、窒素、水素等)等も不可避的不
純物に含まれる。これら不可避的不純物はppmオーダ
ー、すなわち10−4原子%もしくは10−4mass
%の単位もしくはそれ以下であることが望ましい。より
好ましいは組成分析装置の測定限界以下もしくは数pp
m以下とする。基板とは、下地膜層を介して磁性膜層を
支える部材である。“基板上”とは基板の面に下地膜層
と磁性膜層が形成されている状態を指し、配置の上下関
係を束縛する用語ではない。
That is, the ferromagnetic giant magnetostrictive film of the present invention is a ferromagnetic giant magnetostrictive film comprising a substrate, a base film layer formed on the substrate, and a magnetic film layer formed on the base film layer. The underlying layer is tantalum (Ta), titanium (Ti)
And the magnetic film layer has a Ni content of 45 atomic% or more and 58 atomic% or less, a Mn content of 18 atomic% or more and 28 atomic% or less, and a balance Ga and unavoidable impurities. It is characterized by being a -Mn-Ga-based alloy. As a result, an excellent ferromagnetic giant magnetostrictive film is realized. The more preferable range of the amount of Ni and the amount of Mn is N
The i amount is 48 atom% or more and 55 atom% or less, and the Mn amount is 20 atom% or more and 26 atom% or less. Further, the magnetic film layer is preferably formed with a thickness of 100 nm or more and 3000 nm or less. If it is too thin, sufficient ferromagnetic properties and giant magnetostrictive properties cannot be obtained. Also, the thickness is 300
If it exceeds 0 nm, the residual stress of the thin film peels it off from the substrate, making it difficult to form an element. Here, the atomic% is a unit expressing the number of each element contained in the magnetic film layer or an arbitrary part of the magnetic film layer as a percentage, when the number of all the constituent atoms is 100. For example, when the amount of Ni is 45 atom%, when the surface of the magnetic film layer is quantitatively analyzed, the number of Ni atoms is 45 with respect to the total number of detected atoms (100%).
% Is equivalent to. When the unit of quantitative analysis of the magnetic film layer is mass% (= wt% or wt%), the Ni content of the magnetic film layer is 50 to 58 mass%.
Then, a Ni-Mn-Ga-based alloy having a Mn content of 21 to 23 mass% and a balance of Ga and unavoidable impurities is used.
The unavoidable impurities include the impurities used in the raw materials used for producing the magnetic film layer, such as Ni, Mn, Ga and their compounds defined by JIS. In addition, unavoidable impurities include gas elements (oxygen, nitrogen, hydrogen, etc.) that may be contained in the step of forming the magnetic film layer and its raw material. These unavoidable impurities are in the ppm order, that is, 10 −4 atomic% or 10 −4 mass.
It is desirable that the unit is% or less. More preferably less than the measurement limit of the composition analyzer or several pp
m or less. The substrate is a member that supports the magnetic film layer via the underlayer film layer. “On the substrate” refers to a state in which the base film layer and the magnetic film layer are formed on the surface of the substrate, and is not a term limiting the vertical relationship of the arrangement.

【0007】本発明の強磁性超磁歪膜は、下地膜層にタ
ンタル(Ta)、チタン(Ti)のいずれか一種以上の
組成から成り、下地膜層の膜厚は特に制限されるもので
はないが、厚い膜厚は生産上好ましくなく、さらに素子
の超磁歪特性が低下する薄い膜厚ではその上に形成する
強磁性磁歪膜の特性発現に有効ではないため、0.1n
m以上且つ100nm以下の範囲とするのが好ましい。
下地膜層はNi−Mn−Ga系合金強磁性超磁歪膜の結
晶配向性や膜質を改善し、強磁性特性と超磁歪特性を向
上させる効果を有する。さらに、強磁性磁歪膜層の機械
的破壊や耐食性を高めるために下地膜層と同一な材料で
保護膜を設けても良い。
The ferromagnetic giant magnetostrictive film of the present invention has a composition of at least one of tantalum (Ta) and titanium (Ti) in the base film layer, and the film thickness of the base film layer is not particularly limited. However, a thick film thickness is not preferable in terms of production, and a thin film thickness that deteriorates the giant magnetostrictive characteristic of the device is not effective for manifesting the characteristics of the ferromagnetic magnetostrictive film formed thereon.
It is preferable that the thickness is in the range of m or more and 100 nm or less.
The underlayer has the effect of improving the crystal orientation and film quality of the Ni—Mn—Ga alloy ferromagnetic giant magnetostrictive film and improving the ferromagnetic properties and giant magnetostrictive properties. Further, a protective film made of the same material as that of the base film layer may be provided in order to improve mechanical breakdown and corrosion resistance of the ferromagnetic magnetostrictive film layer.

【0008】本発明の強磁性超磁歪膜の熱処理方法は、
成膜後に真空中または非酸化性雰囲気中で723K以上
且つ973K以下の熱処理を施す。大気中の熱処理では
膜が酸化され所望する特性が発現しない。熱処理を行う
ことにより結晶性が改善し、優れた強磁性特性と超磁歪
特性が実現する。723K未満では前記効果が得らな
い。上限の温度は特に制限されるものではないが、基板
の耐熱温度などから基板材種が限定され生産上好ましく
ない。773K以上且つ973K以下では特に優れた強
磁性特性と超磁歪特性が得られる。従来のバルク材では
用いない低温度である773K以上且つ973K以下の
熱処理温度で優れた強磁性特性と超磁歪特性であること
を特徴とする。より詳細には、本発明の強磁性超磁歪膜
の熱処理方法は、基板上に下地膜層を形成し、前記下地
膜層上にNi量が45原子%以上且つ58原子%以下
で、Mn量が18原子%以上且つ28原子%以下で残部
Gaおよび不可避不純物を有するNi−Mn−Ga系合
金の磁性膜層を形成し、その後真空中または非酸化性雰
囲気中で723K以上且つ973K以下の熱処理を施す
ことを特徴とする。
The heat treatment method for the ferromagnetic giant magnetostrictive film of the present invention is
After film formation, heat treatment is performed at 723 K or more and 973 K or less in a vacuum or a non-oxidizing atmosphere. The heat treatment in the atmosphere oxidizes the film and the desired characteristics are not exhibited. The heat treatment improves the crystallinity and realizes excellent ferromagnetic and giant magnetostrictive properties. If it is less than 723K, the above effect cannot be obtained. The upper limit temperature is not particularly limited, but the substrate material type is limited due to the heat resistant temperature of the substrate and the like, which is not preferable in production. Above 773K and below 973K, particularly excellent ferromagnetic properties and giant magnetostrictive properties are obtained. It is characterized by excellent ferromagnetic properties and giant magnetostriction properties at heat treatment temperatures of 773 K or higher and 973 K or lower, which are low temperatures not used in conventional bulk materials. More specifically, in the method for heat treating a ferromagnetic giant magnetostrictive film of the present invention, a base film layer is formed on a substrate, the Ni amount is 45 atom% or more and 58 atom% or less, and the Mn content is on the base film layer. Forming a magnetic film layer of a Ni-Mn-Ga-based alloy having a balance of Ga and inevitable impurities of 18 atomic% or more and 28 atomic% or less, and then performing heat treatment at 723 K or more and 973 K or less in a vacuum or a non-oxidizing atmosphere It is characterized by applying.

【0009】本発明のNi−Mn−Ga系合金強磁性超
磁歪膜は、X線回折より得られたa軸の格子定数が従来
のバルク材の0.583より小さい、0.580nm以下
で優れた強磁性特性と超磁歪特性が実現する。かつa軸
とc軸の格子定数比c/aが0.95以下では特に優れ
た強磁性特性と超磁歪特性が得られる。0.95を超え
る領域では目的とする超磁歪特性が十分発現しない。よ
り詳細には、本発明の強磁性超磁歪膜は、基板と、前記
基板上に形成された下地膜層と、前記下地膜層上に形成
された磁性膜層を備える強磁性超磁歪膜であって、前記
磁性膜層はNi−Mn−Ga系合金であり、前記Ni−
Mn−Ga系合金のa軸の格子定数が0.58nm以下
であり、かつa軸とc軸の格子定数比c/aが0.95
以下であることを特徴とする。c/aにおいて、aがa
軸の格子定数であり、cがc軸の格子定数に相当する。
The Ni-Mn-Ga-based alloy ferromagnetic giant magnetostrictive film of the present invention has an a-axis lattice constant obtained by X-ray diffraction smaller than 0.583 of the conventional bulk material and excellent at 0.580 nm or less. The ferromagnetic property and the giant magnetostrictive property are realized. Further, when the lattice constant ratio c / a of the a-axis and the c-axis is 0.95 or less, particularly excellent ferromagnetic properties and giant magnetostrictive properties can be obtained. In the region exceeding 0.95, the desired giant magnetostrictive property is not sufficiently expressed. More specifically, the ferromagnetic giant magnetostrictive film of the present invention is a ferromagnetic giant magnetostrictive film including a substrate, a base film layer formed on the substrate, and a magnetic film layer formed on the base film layer. And the magnetic film layer is a Ni-Mn-Ga-based alloy,
The a-axis lattice constant of the Mn-Ga alloy is 0.58 nm or less, and the a-axis to c-axis lattice constant ratio c / a is 0.95.
It is characterized by the following. In c / a, a is a
It is the lattice constant of the axis, and c corresponds to the lattice constant of the c-axis.

【0010】なお、本発明では基板上に下地膜層、磁性
膜層を一層ずつ形成しているが、下地膜層と磁性膜層を
交互に複数層重ねても良い。基板は熱膨張係数や耐熱温
度などを考慮の上その材料を選定して良い。
In the present invention, the base film layer and the magnetic film layer are formed on the substrate one by one, but a plurality of base film layers and magnetic film layers may be alternately stacked. The material of the substrate may be selected in consideration of the coefficient of thermal expansion and the heat resistant temperature.

【0011】本発明の強磁性超磁歪膜の作製にはスパッ
タ法、イオンビーム法などを用いることが出来る。
A sputtering method, an ion beam method or the like can be used for producing the ferromagnetic giant magnetostrictive film of the present invention.

【0012】本発明は、上記本発明のいずれかに係る強
磁性超磁歪膜と、前記強磁性超磁歪膜に磁場を印加する
手段(例えば導体もしくはコイル)を備えるアクチュエ
ータを構成することができる。さらに、前記基板が、カ
ンチレバー、片持ち梁もしくは両持ち梁を構成し、前記
強磁性超磁歪膜に磁場を印加することにより、前記基板
を変位させることができる。特に、MEMS(Micro E
lectro MechanicalSystem)や微小なマイクロアクチュ
エータ等に、本発明に係る強磁性超磁歪膜を適用するこ
とが望ましい。
The present invention can constitute an actuator comprising a ferromagnetic giant magnetostrictive film according to any one of the above-mentioned present invention and means (for example, a conductor or a coil) for applying a magnetic field to the ferromagnetic giant magnetostrictive film. Further, the substrate can be a cantilever, a cantilever beam or a double-supported beam, and the substrate can be displaced by applying a magnetic field to the ferromagnetic giant magnetostrictive film. In particular, MEMS (Micro E
It is desirable to apply the ferromagnetic giant magnetostrictive film according to the present invention to a micro mechanical system) or a micro actuator.

【0013】[0013]

【発明の実施の形態】次に本発明の強磁性超磁歪膜を実
施例によって具体的に説明するが、これら実施例により
本発明が限定されるものではない。 (実施例1)片面が研磨され、表面に1μm酸化処理を
施したSi基板と両面研磨されたガラス基板を用い、ス
パッタ装置内に設置し、下地膜層用にTaターゲットを、
磁性膜層に53原子%Ni−21.5原子%Mn−2
5.5原子%Gaターゲットをスパッタ装置内に設置し
た。装置内を3×10−5Pa以下まで排気した後、A
rガスを100ml/s流し、装置内の圧力を0.35P
aに保ち、放電出力200Wで放電させ基板洗浄を60
s(60秒)行った。放電出力150Wに設定し、下地
膜層に用いるTaターゲットに放電させ基板上にTa下
地膜層を50nm成膜した。その後、53原子%Ni−
21.5原子%Mn−25.5原子%Gaターゲットに
放電させ、磁性膜層を200nm形成し、本発明の強磁性
超磁歪膜(発明品1-1)を得た。磁性膜層の膜厚の影
響を調査するため、500nmの磁性膜層の強磁性超磁
歪膜(発明品1‐2)、1000nmの磁性膜層の強磁
性超磁歪膜(発明品1‐3)、3000nmの磁性膜層
の強磁性超磁歪膜(発明品1‐4)をそれぞれ製造し
た。ガス流量の単位ml/sは、1秒当たり10−6
方メートルのガスを流すこと(10−6(m/s))
に相当する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the ferromagnetic giant magnetostrictive film of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. (Example 1) A Si substrate having one surface polished and a surface having a 1 μm oxidation treatment and a glass substrate having both surfaces polished were placed in a sputtering apparatus, and a Ta target was used for a base film layer.
53 atomic% Ni-2 1.5 atomic% Mn-2 in the magnetic film layer
A 5.5 atom% Ga target was set in the sputtering apparatus. After exhausting the inside of the apparatus to 3 × 10 −5 Pa or less, A
Flow r gas at 100 ml / s and set the pressure inside the device at 0.35P
Keep the temperature at a and discharge at 200 W to discharge the substrate for 60
s (60 seconds). The discharge output was set to 150 W, and the Ta target used for the underlayer film was discharged to form a Ta underlayer film of 50 nm on the substrate. After that, 53 atomic% Ni-
A 21.5 atom% Mn-25.5 atom% Ga target was discharged to form a magnetic film layer with a thickness of 200 nm to obtain a ferromagnetic giant magnetostrictive film (Invention Product 1-1) of the invention. In order to investigate the influence of the film thickness of the magnetic film layer, a ferromagnetic giant magnetostrictive film having a magnetic film layer of 500 nm (invention product 1-2) and a ferromagnetic giant magnetostrictive film having a magnetic film layer of 1000 nm (invention product 1-3). Ferromagnetic giant magnetostrictive films (invention products 1-4) having magnetic film layers of 3000 nm were manufactured. The unit of gas flow rate, ml / s, is to flow 10 −6 cubic meters of gas per second (10 −6 (m 3 / s)).
Equivalent to.

【0014】また、熱処理温度の影響を調査するため、発
明品1‐1に対しては、真空熱処理炉を用いて熱処理温
度を573〜1073Kの所定の温度で実験を行った。
熱処理時間は1時間で試料の酸化防止のため、6.7×
10−3Pa以下の真空中で熱処理を行い、発明品1‐
2から発明品1‐4に対しては熱処理温度を873K、
熱処理時間を1時間、酸化防止のため6.7×10−3
a以下の真空中で熱処理を行い、特性を評価した。
In order to investigate the influence of the heat treatment temperature, the invention product 1-1 was subjected to an experiment using a vacuum heat treatment furnace at a predetermined heat treatment temperature of 573 to 1073K.
Heat treatment time is 1 hour and 6.7x to prevent sample oxidation.
Heat treatment is performed in a vacuum of 10 −3 Pa or less, and the invention product 1-
2 to invention products 1-4, heat treatment temperature is 873K,
Heat treatment time is 1 hour, 6.7 × 10 -3 P to prevent oxidation
Heat treatment was performed in a vacuum of a or less to evaluate the characteristics.

【0015】(比較例1)磁性膜層の膜厚による影響を
比較するため、比較実験を行った。実施例1と同様にS
i基板とガラス基板を用い、スパッタ装置内に設置し、下
地膜層用にTaターゲットを、磁性膜層に実施例1と同
様の54原子%Ni‐21原子%Mn‐25原子%Ga
ターゲットをスパッタ装置内に設置した。装置内を3×
10−5Pa以下まで排気した後、Arガスを100m
l/s流し、装置内の圧力を0.35Paに保ち、放電出
力200Wで放電させ基板洗浄を60s(60秒)行っ
た。放電出力150Wに設定し、下地膜層に用いるTa
ターゲットに放電させ基板上にTa下地膜層を50nm
成膜した。その後、54原子%Ni‐21原子%Mn‐
25原子%Gaターゲットに放電させ、磁性膜層を50
00nm形成し、比較用の強磁性超磁歪膜(比較品1)
を得た。
Comparative Example 1 A comparative experiment was conducted to compare the influence of the film thickness of the magnetic film layer. S as in the first embodiment
Using an i substrate and a glass substrate, the i target was placed in a sputtering apparatus, a Ta target was used for the underlying film layer, and 54 atomic% Ni-21 atomic% Mn-25 atomic% Ga similar to that in Example 1 was used for the magnetic film layer.
The target was set in the sputtering device. 3 × inside the device
After exhausting to 10 −5 Pa or less, Ar gas is set to 100 m
The flow rate was 1 / s, the pressure inside the apparatus was maintained at 0.35 Pa, the discharge was performed at a discharge output of 200 W, and the substrate was washed for 60 s (60 seconds). Ta used for the base film layer by setting the discharge output to 150 W
The target is discharged and the Ta underlayer is 50 nm on the substrate.
A film was formed. After that, 54 atomic% Ni-21 atomic% Mn-
Discharge to a 25 atomic% Ga target and apply a magnetic layer of 50
A ferromagnetic giant magnetostrictive film with a thickness of 00 nm for comparison (Comparative product 1)
Got

【0016】また、熱処理条件は実施例1と同様に、熱処
理温度を873K、熱処理時間を1時間、酸化防止のため
6.7×10−3Pa以下の真空中で熱処理を行い、特
性を評価した。
The heat treatment conditions were the same as in Example 1, such that the heat treatment temperature was 873 K, the heat treatment time was 1 hour, and the heat treatment was performed in a vacuum of 6.7 × 10 −3 Pa or less to prevent oxidation, and the characteristics were evaluated. did.

【0017】発明品1‐1を573〜1073Kの熱処
理後に磁気特性をVSM(振動型磁力計)を用いて測定
磁界200kA/mで評価し、図1に熱処理温度と飽和磁
化の関係を示す。成膜上がりでは、飽和磁化が得られな
いが、熱処理を行うことにより飽和磁化が得られ、723
〜973Kで0.2T以上の飽和磁化が得られた。さら
に773〜923Kでは0.35T以上の飽和磁化が得
られることがわかる。
The magnetic properties of the invention product 1-1 after heat treatment at 573 to 1073K were evaluated by a VSM (vibrating magnetometer) at a measurement magnetic field of 200 kA / m, and FIG. 1 shows the relation between heat treatment temperature and saturation magnetization. Saturation magnetization cannot be obtained after film formation, but saturation magnetization is obtained by performing heat treatment.
A saturation magnetization of 0.2 T or more was obtained at ˜973 K. Further, it can be seen that a saturation magnetization of 0.35 T or more is obtained at 773 to 923K.

【0018】また、磁歪測定装置を用いて、測定磁界12
0kA/mで磁歪を評価し、図2に熱処理温度と磁歪の関
係を示す。熱処理を行うことにより磁歪値が向上し、7
73〜923Kでは4×10−6以上の磁歪が得られる
ことがわかる。
Further, by using a magnetostriction measuring device, a measuring magnetic field 12
Magnetostriction was evaluated at 0 kA / m, and FIG. 2 shows the relationship between heat treatment temperature and magnetostriction. The magnetostriction value is improved by heat treatment,
It is understood that a magnetostriction of 4 × 10 −6 or more can be obtained at 73 to 923K.

【0019】また、図3に327K熱処理後の磁性膜層
の膜厚と膜応力との関係を示す。磁性膜層の膜厚が厚く
なるにしたがい、膜応力が高くなることがわかる。磁性
膜層を5000nm形成した比較品1は873K熱処理
後に膜応力が膜の付着力より高くなり膜剥離が発生し
た。
FIG. 3 shows the relationship between the film thickness and the film stress of the magnetic film layer after the heat treatment at 327K. It can be seen that the film stress increases as the film thickness of the magnetic film layer increases. In Comparative product 1 in which the magnetic film layer was formed to a thickness of 5000 nm, the film stress was higher than the adhesive force of the film after the heat treatment at 873K, and film peeling occurred.

【0020】(実施例2)実施例1で用いたSiウエハ
と両面研磨されたガラス基板を用い、スパッタ装置内に
設置し、下地膜層用にTaターゲットを、磁性膜層に54
原子%Ni‐21原子%Mn‐25原子%Ga、52原
子%Ni‐23原子%Mn‐25原子%Gaターゲット
をそれぞれスパッタ装置内に設置した。装置内を3×1
−5Pa以下まで排気した後、Arガスを100ml/
s流し、装置内の圧力を0.35Paに保ち、放電出力2
00Wで放電させ基板洗浄を60s行った。放電出力1
50Wに設定し、下地膜層に用いるTaターゲットに放
電させ基板上にTa下地膜層を50nm成膜した。その
後、54原子%Ni‐21原子%Mn‐25原子%Ga
ターゲットに放電させ、磁性膜層を200nm形成し、本
発明の強磁性超磁歪膜(発明品2‐1)を得た。また、
52原子%Ni‐23原子%Mn‐25原子%Ga組成
の磁性膜層を有する強磁性超磁歪膜(発明品2‐2)を
それぞれ製造した。
(Example 2) Using the Si wafer used in Example 1 and a glass substrate whose both surfaces were polished, the glass substrate was placed in a sputtering apparatus, and a Ta target was used for the underlayer and a magnetic layer was used for the magnetic film layer.
Atomic% Ni-21 atomic% Mn-25 atomic% Ga and 52 atomic% Ni-23 atomic% Mn-25 atomic% Ga targets were placed in the sputtering apparatus, respectively. 3 × 1 inside the device
0 -5 Pa was evacuated to below, the Ar gas 100ml /
s flow, keep the pressure in the device at 0.35Pa, discharge output 2
The substrate was washed at 60 W for 60 seconds. Discharge output 1
It was set to 50 W and the Ta target used for the base film layer was discharged to form a Ta base film layer of 50 nm on the substrate. After that, 54 atomic% Ni-21 atomic% Mn-25 atomic% Ga
The target was discharged to form a magnetic film layer with a thickness of 200 nm to obtain a ferromagnetic giant magnetostrictive film of the present invention (Invention Product 2-1). Also,
A ferromagnetic giant magnetostrictive film (invention product 2-2) having a magnetic film layer having a composition of 52 atomic% Ni-23 atomic% Mn-25 atomic% Ga was manufactured.

【0021】また、熱処理温度は熱処理温度を873K、
熱処理時間を1時間、酸化防止のため6.7×10−3
a以下の真空中で熱処理を行い、特性を評価した。
The heat treatment temperature is 873K.
Heat treatment time is 1 hour, 6.7 × 10 -3 P to prevent oxidation
Heat treatment was performed in a vacuum of a or less to evaluate the characteristics.

【0022】(比較例2)磁性膜層の膜組成による影響
を比較するため、比較実験を行った。実施例2と同様に
Si基板とガラス基板を用い、スパッタ装置内に設置し、
下地膜層用にTaターゲットを、磁性膜層に44原子%
Ni‐35原子%Mn‐21原子%Gaターゲットをス
パッタ装置内に設置した。装置内を3×10−5Pa以
下まで排気した後、Arガスを100ml/s流し、装置
内の圧力を0.35Paに保ち、放電出力200Wで放
電させ基板洗浄を60s行った。放電出力150Wに設
定し、下地膜層に用いるTaターゲットに放電させ基板
上にTa下地膜層を50nm成膜した。その後、44原
子%Ni‐35原子%Mn‐21原子%Gaターゲット
に放電させ、磁性膜層を200nm形成し、比較用の強磁
性超磁歪膜(比較品2)を得た。
Comparative Example 2 A comparative experiment was conducted to compare the effect of the film composition of the magnetic film layer. As in Example 2, a Si substrate and a glass substrate were used and placed in a sputtering apparatus,
Ta target for underlayer and 44 atom% for magnetic layer
A Ni-35 atom% Mn-21 atom% Ga target was placed in the sputtering apparatus. After exhausting the inside of the apparatus to 3 × 10 −5 Pa or less, Ar gas was caused to flow at 100 ml / s, the pressure inside the apparatus was maintained at 0.35 Pa, and discharge was performed at a discharge output of 200 W to wash the substrate for 60 seconds. The discharge output was set to 150 W, and the Ta target used for the underlayer film was discharged to form a Ta underlayer film of 50 nm on the substrate. Then, it was discharged to a target of 44 atomic% Ni-35 atomic% Mn-21 atomic% Ga to form a magnetic film layer with a thickness of 200 nm to obtain a comparative ferromagnetic giant magnetostrictive film (comparative product 2).

【0023】また、熱処理条件は実施例2と同様に、熱処
理温度を873K、熱処理時間を1時間、酸化防止のため
6.7×10−3Pa以下の真空中で熱処理を行い、特
性を評価した。
The heat treatment conditions were the same as in Example 2 except that the heat treatment temperature was 873 K, the heat treatment time was 1 hour, and the heat treatment was performed in a vacuum of 6.7 × 10 −3 Pa or less to prevent oxidation, and the characteristics were evaluated. did.

【0024】図4には実施例2と比較例2で作製した発
明品2−1と発明品2−2と比較品2の室温でのX線回
折結果を示す。図4より2θが43°付近に発明品、比
較品ともNi-Mn-Gaの(220)面の回折ピークが
発現した。それぞれのa軸の格子定数を測定すると発明
品2−1と発明品2−2は0.5786nmと0.580
0nmである。一方、比較品2は0.5816nmと大
きい。このとき、測定磁界120kA/mで磁歪を測定
した結果、発明品2−1と発明品2−2の磁歪値は9.
0×10−6と8.5×10−6と高く、比較品2は
3.0×10−6と低いことがわかった。
FIG. 4 shows the X-ray diffraction results at room temperature of the invention product 2-1 and the invention product 2-2 produced in Example 2 and Comparative Example 2. From FIG. 4, a diffraction peak of the (220) plane of Ni-Mn-Ga appeared in the invention product and the comparative product at 2θ of around 43 °. When the lattice constants of the respective a-axes were measured, the invention product 2-1 and the invention product 2-2 were 0.5786 nm and 0.580.
It is 0 nm. On the other hand, Comparative product 2 has a large value of 0.5816 nm. At this time, as a result of measuring the magnetostriction with a measurement magnetic field of 120 kA / m, the magnetostriction value of the invention product 2-1 and the invention product 2-2 was 9.
It was found that 0 × 10 −6 and 8.5 × 10 −6 were high, and Comparative product 2 was low, 3.0 × 10 −6 .

【0025】(実施例3)実施例2で用いたSiウエハ
と両面研磨されたガラス基板を用い、スパッタ装置内に
設置し、下地膜層用にTaターゲットを、51原子%Ni
‐25原子%Mn‐24原子%Ga、48.5原子%N
i‐26原子%Mn‐25.5原子%Gaターゲットを
それぞれスパッタ装置内に設置した。装置内を3×10
−5Pa以下まで排気した後、Arガスを100ml/s
流し、装置内の圧力を0.35Paに保ち、放電出力20
0Wで放電させ基板洗浄を60s行った。放電出力15
0Wに設定し、下地膜層に用いるTaターゲットに放電
させ基板上にTa下地膜層を50nm成膜した。その
後、51原子%Ni‐25原子%Mn‐24原子%Ga
ターゲットに放電させ、磁性膜層を200nm形成し、本
発明の強磁性超磁歪膜(発明品3‐1)を得た。また、
48.5原子%Ni‐26原子%Mn‐25.5原子%
Ga組成の磁性膜層を有する強磁性超磁歪膜(発明品3
‐2)をそれぞれ製造した。
(Example 3) Using the Si wafer used in Example 2 and a glass substrate having both sides polished, the glass substrate was placed in a sputtering apparatus, a Ta target was used for the underlayer and 51 atomic% Ni was used.
-25 atom% Mn-24 atom% Ga, 48.5 atom% N
An i-26 atomic% Mn-25.5 atomic% Ga target was placed in each sputtering apparatus. 3 × 10 inside the device
After exhausting to -5 Pa or less, Ar gas 100 ml / s
Flow to maintain the pressure inside the device at 0.35 Pa, and discharge output 20
The discharge was performed at 0 W and the substrate was washed for 60 seconds. Discharge output 15
It was set to 0 W and the Ta target used for the base film layer was discharged to form a Ta base film layer of 50 nm on the substrate. After that, 51 atomic% Ni-25 atomic% Mn-24 atomic% Ga
The target was discharged to form a magnetic film layer with a thickness of 200 nm to obtain a ferromagnetic giant magnetostrictive film (invention product 3-1) of the present invention. Also,
48.5 atom% Ni-26 atom% Mn-25.5 atom%
Ferromagnetic giant magnetostrictive film having a magnetic film layer of Ga composition (Invention product 3
-2) were produced respectively.

【0026】また、熱処理温度は熱処理温度を873K、
熱処理時間を1時間、酸化防止のため6.7×10−3
a以下の真空中で熱処理を行い、特性を評価した。
The heat treatment temperature is 873K,
Heat treatment time is 1 hour, 6.7 × 10 -3 P to prevent oxidation
Heat treatment was performed in a vacuum of a or less to evaluate the characteristics.

【0027】(比較例3)磁性膜層の膜組成による影響
を比較するため、比較実験を行った。実施例3と同様に
Si基板とガラス基板を用い、スパッタ装置内に設置し、
下地膜層用にTaターゲットを、磁性膜層に56原子%
Ni‐15原子%Mn‐29原子%Gaをスパッタ装置
内に設置した。装置内を3×10−5Pa以下まで排気
した後、Arガスを100ml/s流し、装置内の圧力を
0.35Paに保ち、放電出力200Wで放電させ基板
洗浄を60s行った。放電出力150Wに設定し、下地
膜層に用いるTaターゲットに放電させ基板上にTa下
地膜層を50nm成膜した。その後、56原子%Ni‐
15原子%Mn‐29原子%Gaターゲットに放電さ
せ、磁性膜層を200nm形成し、比較用の強磁性超磁歪
膜(比較品3)を得た。
Comparative Example 3 A comparative experiment was conducted to compare the effect of the film composition of the magnetic film layer. As in Example 3, a Si substrate and a glass substrate were used and placed in a sputtering apparatus,
Ta target for underlayer and 56 atom% for magnetic layer
Ni-15 atomic% Mn-29 atomic% Ga was installed in the sputtering apparatus. After exhausting the inside of the apparatus to 3 × 10 −5 Pa or less, Ar gas was caused to flow at 100 ml / s, the pressure inside the apparatus was maintained at 0.35 Pa, and discharge was performed at a discharge output of 200 W to wash the substrate for 60 seconds. The discharge output was set to 150 W, and the Ta target used for the underlayer film was discharged to form a Ta underlayer film of 50 nm on the substrate. After that, 56 atomic% Ni-
A 15 atomic% Mn-29 atomic% Ga target was discharged to form a magnetic film layer with a thickness of 200 nm to obtain a ferromagnetic giant magnetostrictive film for comparison (comparative product 3).

【0028】また、熱処理条件は実施例3と同様に、熱処
理温度を873K、熱処理時間を1時間、酸化防止のため
6.7×10−3Pa以下の真空中で熱処理を行い、特
性を評価した。
The heat treatment conditions were the same as in Example 3, such that the heat treatment temperature was 873 K, the heat treatment time was 1 hour, and the heat treatment was performed in a vacuum of 6.7 × 10 −3 Pa or less to prevent oxidation, and the characteristics were evaluated. did.

【0029】図5には実施例3と比較例3で作製した発
明品3−1と発明品3−2と比較品3の室温でのX線回
折結果を示す。図5より2θが43°付近に発明品、比
較品ともNi-Mn-Gaの低角度側に(220)面の回
折ピークが、広角度側に(202)面の回折ピークが発
現し、正方晶構造であることがわかる。それぞれのa軸
とc軸の格子定数比c/aを測定すると発明品3−1と
発明品3−2は0.950と0.945である。一方、比
較品3は0.962と大きい。このとき、測定磁界12
0kA/mで磁歪を測定した結果、発明品3−1と発明
品3−2の磁歪値は7.5×10−6と6.0×10
−6と高く、比較品3は1.0×10−6と低いことが
わかった。
FIG. 5 shows the X-ray diffraction results at room temperature of the invention product 3-1, invention product 3-2 and comparison product 3 produced in Example 3 and Comparative Example 3. As shown in FIG. 5, the diffraction peak of the (220) plane appears on the low angle side of Ni-Mn-Ga and the diffraction peak of the (202) plane appears on the wide angle side in both of the invention product and the comparative product when 2θ is around 43 °. It can be seen that it has a crystal structure. When the lattice constant ratios c / a of the a-axis and the c-axis are measured, the invention product 3-1 and the invention product 3-2 are 0.950 and 0.945. On the other hand, Comparative product 3 is 0.962, which is large. At this time, the measurement magnetic field 12
As a result of measuring the magnetostriction at 0 kA / m, the magnetostriction values of the invention product 3-1 and the invention product 3-2 are 7.5 × 10 −6 and 6.0 × 10.
It was found that the value was as high as −6 and the value for Comparative product 3 was as low as 1.0 × 10 −6 .

【0030】[0030]

【発明の効果】上述のように、本発明の強磁性超磁歪膜
によれば、Ni-Mn-Ga系合金を所定の構成で成膜し、
所定の温度で熱処理することにより強磁性特性と超磁歪
特性を有する優れた強磁性超磁歪膜を実現することがで
きる。
As described above, according to the ferromagnetic giant magnetostrictive film of the present invention, a Ni-Mn-Ga-based alloy is formed in a predetermined structure,
By heat-treating at a predetermined temperature, an excellent ferromagnetic giant magnetostrictive film having ferromagnetic properties and giant magnetostrictive properties can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の強磁性超磁歪膜の飽和磁化の熱処理温
度依存性を示した図である。
FIG. 1 is a diagram showing the heat treatment temperature dependence of the saturation magnetization of the ferromagnetic giant magnetostrictive film of the present invention.

【図2】本発明の強磁性超磁歪膜の磁歪の熱処理温度依
存性を示した図である。
FIG. 2 is a diagram showing the heat treatment temperature dependence of the magnetostriction of the ferromagnetic giant magnetostrictive film of the present invention.

【図3】本発明の強磁性超磁歪膜の膜応力の膜厚依存性
を示した図である。
FIG. 3 is a diagram showing the film thickness dependence of the film stress of the ferromagnetic giant magnetostrictive film of the present invention.

【図4】強磁性超磁歪膜の膜組成を変えて873Kで熱
処理をしたときのX線回折図である。
FIG. 4 is an X-ray diffraction diagram when the film composition of the ferromagnetic giant magnetostrictive film is changed and a heat treatment is performed at 873K.

【図5】強磁性超磁歪膜の膜組成を変えて873Kで熱
処理をしたときのX線回折図である。
FIG. 5 is an X-ray diffraction diagram when a film composition of a ferromagnetic giant magnetostrictive film is changed and a heat treatment is performed at 873K.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板と、前記基板上に形成された下地膜
層と、前記下地膜層上に形成された磁性膜層を備える強
磁性超磁歪膜であって、前記下地膜層はタンタル、チタ
ンのいずれか一種以上から構成され、且つ前記磁性膜層
はNi量が45原子%以上且つ58原子%以下で、Mn
量が18原子%以上且つ28原子%以下で残部Gaおよ
び不可避不純物を有するNi−Mn−Ga系合金である
ことを特徴とする強磁性超磁歪膜。
1. A ferromagnetic giant magnetostrictive film comprising a substrate, a base film layer formed on the substrate, and a magnetic film layer formed on the base film layer, wherein the base film layer is tantalum, The magnetic film layer is composed of at least one kind of titanium, and the magnetic film layer has a Ni content of 45 atomic% or more and 58 atomic% or less and Mn.
A ferromagnetic giant magnetostrictive film, characterized in that the amount is 18 atomic% or more and 28 atomic% or less and is a Ni-Mn-Ga based alloy having the balance Ga and unavoidable impurities.
【請求項2】 前記磁性膜層は100nm以上且つ30
00nm以下の厚さで形成されている請求項1に記載の
強磁性超磁歪膜。
2. The magnetic film layer has a thickness of 100 nm or more and 30 or more.
The ferromagnetic giant magnetostrictive film according to claim 1, which is formed with a thickness of 00 nm or less.
【請求項3】 基板と、前記基板上に形成された下地膜
層と、前記下地膜層上に形成された磁性膜層を備える強
磁性超磁歪膜であって、前記磁性膜層はNi−Mn−G
a系合金であり、前記Ni−Mn−Ga系合金のa軸の
格子定数が0.58nm以下であり、かつa軸とc軸の
格子定数比c/aが0.95以下であることを特徴とす
る強磁性超磁歪膜。
3. A ferromagnetic giant magnetostrictive film comprising a substrate, a base film layer formed on the substrate, and a magnetic film layer formed on the base film layer, wherein the magnetic film layer is Ni-- Mn-G
It is an a-based alloy, the a-axis lattice constant of the Ni-Mn-Ga-based alloy is 0.58 nm or less, and the lattice constant ratio c / a of the a-axis and the c-axis is 0.95 or less. Characteristic ferromagnetic giant magnetostrictive film.
【請求項4】 基板上に下地膜層を形成し、前記下地膜
層上にNi量が45原子%以上且つ58原子%以下で、
Mn量が18原子%以上且つ28原子%以下で残部Ga
および不可避不純物を有するNi−Mn−Ga系合金の
磁性膜層を形成し、その後真空中または非酸化性雰囲気
中で723K以上且つ973K以下の熱処理を施すこと
を特徴とする強磁性超磁歪膜の熱処理方法。
4. A base film layer is formed on a substrate, and the amount of Ni is 45 atom% or more and 58 atom% or less on the base film layer,
When the amount of Mn is 18 atomic% or more and 28 atomic% or less, the balance Ga
And a magnetic film layer of a Ni-Mn-Ga-based alloy having unavoidable impurities, and thereafter heat-treated at 723 K or more and 973 K or less in a vacuum or a non-oxidizing atmosphere. Heat treatment method.
JP2002083163A 2002-03-25 2002-03-25 Ferromagnetic supermagnetostriction film and its thermal treatment method Pending JP2003282992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083163A JP2003282992A (en) 2002-03-25 2002-03-25 Ferromagnetic supermagnetostriction film and its thermal treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083163A JP2003282992A (en) 2002-03-25 2002-03-25 Ferromagnetic supermagnetostriction film and its thermal treatment method

Publications (1)

Publication Number Publication Date
JP2003282992A true JP2003282992A (en) 2003-10-03

Family

ID=29231060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083163A Pending JP2003282992A (en) 2002-03-25 2002-03-25 Ferromagnetic supermagnetostriction film and its thermal treatment method

Country Status (1)

Country Link
JP (1) JP2003282992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846551A (en) * 2019-11-26 2020-02-28 贵州师范大学 Preparation method of NiMnGaCoCu memory alloy thin strip
WO2021192069A1 (en) * 2020-03-25 2021-09-30 Tdk株式会社 Reservoir element and neuromorphic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846551A (en) * 2019-11-26 2020-02-28 贵州师范大学 Preparation method of NiMnGaCoCu memory alloy thin strip
WO2021192069A1 (en) * 2020-03-25 2021-09-30 Tdk株式会社 Reservoir element and neuromorphic device

Similar Documents

Publication Publication Date Title
US20210210260A1 (en) Alloy, magnetic core &amp; process for the production of a tape from an alloy
JP4328853B2 (en) Piezoelectric element and manufacturing method thereof
Wuttig et al. Phase transformations in ferromagnetic NiMnGa shape memory films
EP3239318B1 (en) Fe-based soft magnetic alloy ribbon and magnetic core comprising same
KR101911569B1 (en) Alloy, magnetic core and process for the production of a tape from an alloy
JP4931992B2 (en) Measuring apparatus including a magnetoelastic alloy layer and method for forming the alloy layer
JPH08273930A (en) Thin-film magnetic element and its manufacture
JP2019192740A (en) Strain resistance film, strain sensor, and manufacturing method thereof
JP2003282992A (en) Ferromagnetic supermagnetostriction film and its thermal treatment method
JP2004265900A (en) Piezoelectric element and its manufacturing method
TW202239981A (en) Magnetic material, laminate, laminate manufacturing method, thermoelectric conversion element, and magnetic sensor
JP3023778B2 (en) Method for producing TiNi shape memory alloy thin film by substrate heating
Jenner et al. Pulsed laser deposition–an alternative route to the growth of magnetic thin films
JP3823051B2 (en) Magnetic thin film and heat treatment method thereof
JP3976467B2 (en) Method for producing giant magnetostrictive alloy
JPH07235420A (en) Fe-rh magnetic thin film and manufacture thereof
JPH0499005A (en) Magnetostriction film
JPH09219313A (en) R-tm-b hard magnetic thin film and its manufacture
JP2004084000A (en) Ferromagnetic supermagnetostriction film and heat treatment method therefor
JP3969125B2 (en) Fe-Pt magnet and method for producing the same
JP2002335027A (en) Supermagnetostriction thin film element and method of manufacturing it
JP5240826B2 (en) Giant magnetostrictive thin film element and manufacturing method thereof
JPH04275407A (en) Soft magnetic film high in saturation magnetic flux density and its manufacture
JP2005194591A (en) Fe-Pt ALLOY, AND METHOD OF PRODUCING Fe-Pt ALLOY
JPH06231989A (en) Manufacture of magnetic thin film