JPH07235420A - Fe-rh magnetic thin film and manufacture thereof - Google Patents

Fe-rh magnetic thin film and manufacture thereof

Info

Publication number
JPH07235420A
JPH07235420A JP2410194A JP2410194A JPH07235420A JP H07235420 A JPH07235420 A JP H07235420A JP 2410194 A JP2410194 A JP 2410194A JP 2410194 A JP2410194 A JP 2410194A JP H07235420 A JPH07235420 A JP H07235420A
Authority
JP
Japan
Prior art keywords
film
thin film
magnetic thin
magnetic
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2410194A
Other languages
Japanese (ja)
Inventor
Bunichi Yoshimura
文一 吉村
Yoshimitsu Otani
佳光 大谷
Iwao Hatakeyama
巌 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2410194A priority Critical patent/JPH07235420A/en
Publication of JPH07235420A publication Critical patent/JPH07235420A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • H01F10/3231Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To manufacture an Fe-Rh regular magnetic thin film which exhibits steep magnetization transition substantially equivalent to that of bulk characteristic by relaxing stress in the thin film and forming a film of a thickness of specific Angstrom . CONSTITUTION:At least four or more of magnetic thin film layers 2 each containing composition of FexRh(1-x) and nonmagnetic thin films 3 each having a melting point for generating a compression stress of 1000 deg.C or higher are alternately laminated on a board 1. In this case, 0.45<=X<=0.55 is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Fe-Rh磁性薄膜及
びその作製方法に関し、特に、様々なセンサ、アクチュ
エータ、マイクロマシーン等に応用できる磁性薄膜に適
用して有効な技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-Rh magnetic thin film and a method for producing the same, and more particularly to a technique effective when applied to a magnetic thin film applicable to various sensors, actuators, micromachines and the like.

【0002】[0002]

【従来の技術】Fe-50at%Rh近傍組成の合金はC
sC1タイプのbcc(body-centered-curbic)規則
(体心立方格子構造)合金となる。この規則合金は、低
温において反強磁性であるが、60℃〜100℃におい
て強磁性に遷移する。磁化ゼロの状態から不連続に磁化
約1100Gが発生するために、温度センサや感熱駆動
アクチュエータなど多くの応用の可能性がある。このb
cc規則合金を薄膜形態で形成できれば、高感度化、高
速化、小型化が可能となり、さらに、応用範囲が広がる
ことが期待される。
2. Description of the Related Art An alloy with a composition near Fe-50 at% Rh is C
It is an sC1 type bcc (body-centered-curbic) ordered (body-centered cubic lattice structure) alloy. This ordered alloy is antiferromagnetic at low temperatures, but transitions to ferromagnetism at 60 ° C to 100 ° C. Since about 1100 G of magnetization is generated discontinuously from the state of zero magnetization, there are many possible applications such as a temperature sensor and a heat-sensitive drive actuator. This b
If the cc ordered alloy can be formed in the form of a thin film, higher sensitivity, higher speed, and smaller size are possible, and it is expected that the range of application will be expanded.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記合金を薄
膜で形成するには大きな困難がある。これは薄膜プロセ
スにてFeRhを形成すると、多くの欠陥を含むため、
規則的な格子を組む際に大きな応力が加わることであ
る。この大きな応力によって二つの不都合がある。一つ
は膜厚を一定以上に増加させると剥離してしまうことで
ある。
However, it is very difficult to form the alloy as a thin film. This is because when FeRh is formed by a thin film process, it contains many defects.
A large stress is applied when the regular lattice is assembled. This large stress has two disadvantages. One is that when the film thickness is increased above a certain level, it peels off.

【0004】図8は、Fe-Rhをそれぞれ高周波(R
F)および直流(DC)スパッタ法で成膜したときの応
力を2.5インチサイズ、250μm厚のSiウエハー
を用いSiウエハーの反り量を測定したものである。こ
のFe-Rh薄膜の応力は約3.8×109dyn/cm2巨大な
引っ張り応力であり、Fe-Rh膜厚の増加とともにS
iウエハーの反り量が増加する。反り量が60μmを越
える4000Åの膜厚ではFe-Rh膜の剥離が生じ
た。
FIG. 8 shows that Fe-Rh is high frequency (R
F) is the stress when the film is formed by the direct current (DC) sputtering method, and the amount of warp of the Si wafer is measured using a 2.5 inch size and 250 μm thick Si wafer. The stress of this Fe-Rh thin film is a huge tensile stress of about 3.8 × 10 9 dyn / cm 2 , and as the Fe-Rh film thickness increases, S
The warp amount of the i-wafer increases. At a film thickness of 4000 Å in which the warp amount exceeds 60 μm, peeling of the Fe—Rh film occurs.

【0005】もう一つは、応力により磁気特性が劣化す
ることである。薄膜に形成したFe-Rhは図9のよう
に、図10のバルクの磁気特性に対して、昇温時と降温
過程では磁化の挙動が大きく異なる。
The other is that the magnetic characteristics are deteriorated by stress. As shown in FIG. 9, the behavior of magnetization of Fe-Rh formed in the thin film is largely different from that of the bulk magnetic characteristics of FIG.

【0006】このように、Fe-Rh膜をセンサー、ア
クチュエータに応用するには、膜に加わる応力を制御し
て膜厚を形成できる製法ならびにバルクと同等の磁化の
温度特性の劣化を防止する作製技術が新たに必要になっ
ている。
As described above, in order to apply the Fe-Rh film to a sensor or an actuator, a manufacturing method capable of controlling the stress applied to the film to form the film thickness and a manufacturing method for preventing deterioration of the temperature characteristic of magnetization equivalent to that of the bulk. New technology is needed.

【0007】本発明は、前記問題点を解決するためにな
されたものであり、本発明の目的は、厚い薄膜において
も剥離やクラックの発生しない緻密な膜質とバルクと同
等な反強磁性一強磁性遷移の特性を得ることが可能な技
術を提供することにある。
The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a dense film quality that does not cause peeling or cracks even in a thick thin film, and an antiferromagnetic material which is equivalent to bulk and has a strong antiferromagnetic property. It is to provide a technique capable of obtaining the characteristics of magnetic transition.

【0008】本発明の他の目的は、薄膜中の応力を緩和
して、4000Å以上の厚さの膜形成を可能とし、バル
ク特性とほぼ同等の急峻な磁化遷移を示すFe-Rh規
則磁性薄膜の作製を可能にする技術を提供することにあ
る。
Another object of the present invention is to relax the stress in the thin film to enable the formation of a film having a thickness of 4000 Å or more, and to exhibit a steep magnetization transition almost equivalent to the bulk property. To provide a technology that enables the production of

【0009】[0009]

【課題を解決するための手段】本発明において開示され
る発明のうち代表的なものの概要を簡単に説明すると、
以下のとおりである。
The outline of typical ones of the inventions disclosed in the present invention will be briefly described as follows.
It is as follows.

【0010】(1) 基板上にFexRh(1-x)なる組成
の磁性薄膜層と、圧縮応力を発生する融点が1000℃
以上の非磁性薄膜層を交互に少なくとも4層以上を積層
することを特徴とする。ただし、0.45≦X≦0.55
である。
(1) A magnetic thin film layer having a composition of Fe x Rh (1-x) on a substrate and a melting point of 1000 ° C. for generating compressive stress.
At least four layers or more of the above non-magnetic thin film layers are alternately laminated. However, 0.45 ≦ X ≦ 0.55
Is.

【0011】(2)前記磁性薄膜層に、Ir,Pt,P
d,Ru,Osから選ばれた元素を少なくとも1種以
上、5atm%以下の割合で添加することを特徴とする。
(2) Ir, Pt, P is added to the magnetic thin film layer.
It is characterized in that at least one element selected from d, Ru, and Os is added at a ratio of 5 atm% or less.

【0012】(3)前記非磁性膜層がSiO2,Si
N,SiC,BaTiO3などの非金属あるいはW,M
o,Ta,Nb,Zr,Tiから選ばれた1種以上の金
属からなることを特徴とする。
(3) The non-magnetic film layer is SiO 2 , Si
Non-metal such as N, SiC, BaTiO 3 or W, M
It is characterized by being composed of one or more metals selected from o, Ta, Nb, Zr and Ti.

【0013】(4)前記磁性薄膜層の厚さが100Å以
上で4000Å以下であることを特徴とする。
(4) The thickness of the magnetic thin film layer is 100 Å or more and 4000 Å or less.

【0014】(5)10Å以上の厚さを有するFe層と
10Å以上の厚さを有するRh層を交互に積層した薄膜
に、該薄膜の有する応力に対向する応力を有する非磁性
層を交互に少なくとも4層以上を積層したことを特徴と
する。
(5) On a thin film in which an Fe layer having a thickness of 10 Å or more and an Rh layer having a thickness of 10 Å or more are alternately laminated, a nonmagnetic layer having a stress opposite to the stress of the thin film is alternately provided. It is characterized in that at least four layers are laminated.

【0015】(6)基板上に基板温度が100℃以上1
000℃以下の温度領域でFexRh(1-x)(0.45≦X
≦0.55)なる組成の磁性薄膜層と、圧縮応力を発生す
る融点が1000℃以上の非磁性薄膜層を交互に少なく
とも4層以上を積層して、Fe-Rh磁性薄膜を形成す
ることを特徴とするFe-Rh磁性薄膜の作製方法。
(6) The substrate temperature is 100 ° C. or higher on the substrate 1
Fe x Rh (1-x) (0.45 ≦ X
A magnetic thin film layer having a composition of ≦ 0.55) and a non-magnetic thin film layer having a melting point of 1000 ° C. or more that generates compressive stress are alternately laminated at least four layers to form a Fe—Rh magnetic thin film. A method for producing a Fe-Rh magnetic thin film, which is characterized.

【0016】(7)前記積層した膜の作製後、熱処理ア
ニールを行うことを特徴とする。
(7) A heat treatment anneal is performed after the formation of the laminated film.

【0017】[0017]

【作用】前述の手段によれば、Fe-Rh成膜条件を変
えず、Fe-Rh膜と反対の応力を有する非磁性層を重
ねることにより、応力を相殺させて薄膜中の応力を緩和
するので、4000Å以上の厚さの膜形成を可能とし、
バルク特性とほぼ同等の急峻な磁化遷移を示すFe-R
h規則磁性薄膜を作製することができる。
According to the above-mentioned means, the stress in the thin film is relaxed by offsetting the stress by stacking the non-magnetic layer having the stress opposite to that of the Fe-Rh film without changing the Fe-Rh film forming conditions. Therefore, it is possible to form a film with a thickness of 4000 Å or more,
Fe-R showing sharp magnetic transition almost equivalent to bulk characteristics
An h-ordered magnetic thin film can be produced.

【0018】これにより、厚い薄膜においても剥離やク
ラックの発生しない緻密な膜質とバルクと同等な反強磁
性一強磁性遷移の特性を得ることができる。
As a result, it is possible to obtain a dense film quality in which delamination and cracks do not occur even in a thick thin film and an antiferromagnetic-ferromagnetic transition characteristic equivalent to that of a bulk.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0020】なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、繰り返し
の説明は省略する。
In all the drawings for explaining the embodiments, those having the same function are designated by the same reference numerals, and the repeated description will be omitted.

【0021】(実施例1)図1は本発明による実施例1
の薄膜の構成を示す断面図である。
Example 1 FIG. 1 shows Example 1 according to the present invention.
3 is a cross-sectional view showing the configuration of the thin film of FIG.

【0022】本実施例1のFe-Rh磁性薄膜は、図1
に示すように、基板1上に引っ張り応力を有する第一層
の膜である磁性膜2を設け、その上に第二層の膜である
圧縮応力を有する非磁性膜3を設け、その上に引っ張り
応力を有する第三層の膜である磁性膜4を設け、その上
に圧縮応力を有する第四層の膜である非磁性膜5を積層
したものである。
The Fe-Rh magnetic thin film of Example 1 is shown in FIG.
As shown in, a magnetic film 2 which is a first layer film having a tensile stress is provided on a substrate 1, a non-magnetic film 3 having a compressive stress which is a second layer film is provided on the magnetic film 2. A magnetic film 4 which is a third layer film having a tensile stress is provided, and a non-magnetic film 5 which is a fourth layer film having a compressive stress is laminated thereon.

【0023】前記基板1としては、例えば、ガラス基
板,石英基板等が用いられる。
As the substrate 1, for example, a glass substrate, a quartz substrate or the like is used.

【0024】前記磁性膜2,4としては、Fe-Rh膜
が用いられ、非磁性膜3,5としてはSiO2,Si
N,SiC,BaTiO3などの非金属膜あるいはW,
Mo,Ta,Nb,Zr,Ti等の金属膜が用いられ、
例えば、SiO2を用いる。
Fe-Rh films are used as the magnetic films 2 and 4 , and SiO 2 and Si are used as the non-magnetic films 3 and 5.
Non-metal film such as N, SiC, BaTiO 3 or W,
A metal film such as Mo, Ta, Nb, Zr, or Ti is used,
For example, SiO 2 is used.

【0025】一般に、膜の応力を減少させる手法とし
て、蒸着やスパッタにおける成膜速度を遅くする。ま
た、基板温度を上げることがある程度有効であるが、当
該Fe-Rh薄膜では、109dyn/cm2程度の巨大な応力
が生じるため、これらの条件では十分対応できない。そ
して、圧縮および引っ張り応力膜を単独で形成すると、
薄い膜厚ではガラス基板1との密着力で連続膜状態を保
っているが、基板1との密着力より膜の内部応力が勝る
とクラックあるいは剥離を生じる。
Generally, as a method of reducing the stress of the film, the film forming rate in vapor deposition or sputtering is slowed. Further, it is effective to raise the substrate temperature to some extent, but the Fe—Rh thin film causes a huge stress of about 10 9 dyn / cm 2, and therefore these conditions cannot be sufficiently dealt with. And when the compression and tensile stress films are formed independently,
When the film thickness is thin, a continuous film state is maintained by the adhesive force with the glass substrate 1, but cracks or peeling occur when the internal stress of the film exceeds the adhesive force with the substrate 1.

【0026】そこで、本実施例1では、図1に示すよう
に、圧縮および引っ張り応力膜を交互に積層すると成膜
の応力が相殺されて、基板1側に与える応力をゼロある
いは微小にするので、膜質を低下させることなく厚い膜
厚の積層膜を容易に作製することができる。
Therefore, in the first embodiment, as shown in FIG. 1, when the compressive and tensile stress films are alternately laminated, the stress of the film formation is canceled and the stress applied to the substrate 1 side becomes zero or minute. Therefore, a laminated film having a large film thickness can be easily manufactured without deteriorating the film quality.

【0027】なお、前記磁性体は、Fe-50at%Rh
近傍組成では非磁性のfcc(face-centered-curbic)
構造(面心立方格子構造)を有する薄膜が得られやす
い。このため、熱処理によってbcc構造の磁性体に変
態させなければならない。薄膜堆積時にfcc構造が残
留している場合、熱処理過程でfccからbccに変態
させる際に、薄膜に圧縮応力を加えると体積変化を助長
し、変態が容易に行われるという特徴がある。
The magnetic substance is Fe-50 at% Rh.
Non-magnetic fcc (face-centered-curbic) in the vicinity composition
A thin film having a structure (face-centered cubic lattice structure) is easily obtained. Therefore, it is necessary to transform into a magnetic material having a bcc structure by heat treatment. When the fcc structure remains when the thin film is deposited, when the fcc is transformed to bcc in the heat treatment process, if a compressive stress is applied to the thin film, the volume change is promoted to facilitate the transformation.

【0028】次に、本実施例1の積層構造の設計指針を
実験例を用いて説明する。
Next, the design guideline for the laminated structure of the first embodiment will be described with reference to experimental examples.

【0029】本実施例1の積層構造の設計指針は、実験
例の基板1として3インチ,厚さ0.24mmのSiウエ
ハーを用い、そのSiウエハー上に、本実施例1のFe
-Rh磁性薄膜を形成したものである。本実験例で得ら
れたFe-Rh薄膜の応力は-3.8×109dyn/cm2(引
っ張り)であり、3インチ,厚さ0.24mmのSiウエ
ハーの反り量は、1000Å当り-8.8μm(引っ張
り)となる。
The design guideline for the laminated structure of the first embodiment is that a Si wafer of 3 inches and a thickness of 0.24 mm is used as the substrate 1 of the experimental example, and the Fe of the first embodiment is placed on the Si wafer.
-Rh magnetic thin film is formed. The stress of the Fe-Rh thin film obtained in this experimental example is -3.8 × 10 9 dyn / cm 2 (tensile), and the warp amount of a 3 inch, 0.24 mm thick Si wafer is per 1000Å- It becomes 8.8 μm (tensile).

【0030】一方、非磁性膜3としてSiO2を用いる
場合は、以下のようになる。SiO2の応力値は、スパ
ッタガス圧0.3Paで成膜すると+1.6×109dyn/c
m2(圧縮)であり、前記Siウエハーの反り量は100
0Å当り+3.8μm(圧縮)となる。0.6Paでは
0.78×109dyn/cm2であり、前記Siウエハーの反
り量は1000Å当り+1.8μm(圧縮)となる。
On the other hand, when SiO 2 is used as the non-magnetic film 3, it is as follows. The stress value of SiO 2 is + 1.6 × 10 9 dyn / c when a film is formed at a sputtering gas pressure of 0.3 Pa.
m 2 (compression), the warp amount of the Si wafer is 100
It becomes +3.8 μm (compressed) per 0Å. At 0.6 Pa, it is 0.78 × 10 9 dyn / cm 2 , and the amount of warpage of the Si wafer is +1.8 μm (compression) per 1000 Å.

【0031】応力フリーのFe-Rh/SiO2積層膜に
するには、反り量を相殺する膜厚ずつに設定すればよ
い。例えば、Fe-Rh層を2000Å形成すると、S
iウエハーの反り量は-17.6μmになるので、非磁性
層としては逆の応力を有するSiO2をSiウエハーの
反り量が+17.6μmになる膜厚に調整する。
In order to form a stress-free Fe-Rh / SiO 2 laminated film, the amount of warpage may be set so as to cancel each other. For example, if the Fe-Rh layer is formed to 2000 liters, S
Since the warp amount of the i-wafer is -17.6 μm, SiO 2 having reverse stress as the non-magnetic layer is adjusted to a film thickness such that the warp amount of the Si wafer is +17.6 μm.

【0032】Siウエハーの反り量が+17.6μmに
なるSiO2膜厚は、スパッタガス圧0.3Paの場合は
約4750Åになり、一方、応力が小さくなるスパッタ
ガス圧0.6Paでは約10000Åの膜厚が必要とな
る。非磁性膜が厚いとトータルの磁化が低下するので、
非磁性膜は極力、薄くするのが望ましい。
The SiO 2 film thickness at which the warp amount of the Si wafer becomes +17.6 μm is about 4750 Å when the sputtering gas pressure is 0.3 Pa, while it is about 10000 Å when the stress is small and the sputtering gas pressure is 0.6 Pa. A film thickness is required. If the non-magnetic film is thick, the total magnetization will decrease, so
It is desirable to make the nonmagnetic film as thin as possible.

【0033】非磁性膜3にSiO2を用いる場合、高い
応力値(大きな反り量)が得られるスパッタガス圧0.
3Paを成膜条件とする。非磁性膜にSiO2以外の材
料を用いる場合も同じく非磁性膜3を薄く設計できる高
応力が得られるよう成膜条件を選ぶことが基本となる。
When SiO 2 is used for the non-magnetic film 3, a high stress value (a large amount of warp) is obtained and the sputtering gas pressure is 0.1.
The film forming condition is 3 Pa. When a material other than SiO 2 is used for the non-magnetic film, it is basically necessary to select the film-forming conditions so that high stress can be obtained so that the non-magnetic film 3 can be designed thin.

【0034】(実施例2)図2は本発明による実施例2
の薄膜の構成を示す断面図である。
(Second Embodiment) FIG. 2 shows a second embodiment according to the present invention.
3 is a cross-sectional view showing the configuration of the thin film of FIG.

【0035】本実施例2のFe-Rh磁性薄膜は、図2
に示すように、基板11上に、Fe-50at%Rh膜1
2をArガス圧0.3Pa、スパッタ電力200Wの条
件でスパッタリングを行い、2000Å成膜した後、そ
の上にSiO2膜13を同じくArガス圧0.3Pa、ス
パッタ電力500Wの条件で4750Å形成した。この
SiO2膜13の応力は約1.6×109dyn/cm2の圧縮で
あった。第1層としてFe-50at%Rh膜12、第2
層としてSiO2膜13を形成した。この成膜を交互に
繰り返してFe-50at%Rh/SiO2積層膜を形成し
た。層数は各5層でトータル膜厚は3.38μmであ
る。
The Fe-Rh magnetic thin film of Example 2 is shown in FIG.
As shown in, Fe-50at% Rh film 1 is formed on the substrate 11.
2 was sputtered under the conditions of Ar gas pressure of 0.3 Pa and sputtering power of 200 W to form 2000 Å film, and then SiO 2 film 13 was formed on the film of 4750 Å under the same conditions of Ar gas pressure of 0.3 Pa and sputtering power of 500 W. . The stress of this SiO 2 film 13 was a compression of about 1.6 × 10 9 dyn / cm 2 . Fe-50at% Rh film 12 as first layer, second layer
A SiO 2 film 13 was formed as a layer. This film formation was alternately repeated to form a Fe-50 at% Rh / SiO 2 laminated film. The number of layers is 5, and the total film thickness is 3.38 μm.

【0036】Fe-50at%Rh膜12をArガス圧0.
3Pa、スパッタ電力200Wの条件で連続してスパッ
タリングした場合、4000Å以上の膜厚になると応力
によりガラス基板11から剥離した。しかし、前記のF
e-50at%Rh膜12とSiO2膜13の積層構造膜に
構成した場合は、膜の剥離は認められず、かつ、積層膜
のトータル応力は、同時に形成した前記実験例のSiウ
エハーの反りはほとんど認められないことから見かけ
上、ゼロとなっていることが確かめられた。同積層薄膜
を600℃で10時間アニールを行った。1kGの印加
磁場で磁化の温度変化を測定した結果、図10に示すバ
ルクとほぼ同等な急峻な磁化遷移を示す特性が得られ
た。
The Fe-50 at% Rh film 12 is formed on the Fe gas at an Ar gas pressure of 0.1.
When continuously sputtered under the conditions of 3 Pa and a sputtering power of 200 W, the film was peeled off from the glass substrate 11 due to stress when the film thickness reached 4000 Å or more. However, the above F
When the laminated structure film of the e-50 at% Rh film 12 and the SiO 2 film 13 is formed, peeling of the film is not observed, and the total stress of the laminated film is the warp of the Si wafer of the above-mentioned experimental example formed at the same time. It was confirmed that it was zero apparently because it was hardly recognized. The laminated thin film was annealed at 600 ° C. for 10 hours. As a result of measuring the temperature change of the magnetization with an applied magnetic field of 1 kG, a characteristic showing a sharp magnetization transition almost equivalent to the bulk shown in FIG. 10 was obtained.

【0037】(実施例3)図3は本発明による実施例3
の薄膜の構成を示す断面図である。
(Third Embodiment) FIG. 3 shows a third embodiment according to the present invention.
3 is a cross-sectional view showing the configuration of the thin film of FIG.

【0038】本実施例3のFe-Rh磁性薄膜は、図3
に示すように、基板11上に、Fe-50at%Rh膜1
2をArガス圧0.3Pa、スパッタ電力200Wの条
件でスパッタリングを行い、2000Å成膜した後、そ
の上にSiN膜23をArガス圧0.3Pa、スパッタ
電力500Wの条件で3040Å形成した。このSiN
膜23の応力は約2.5×109dyn/cm2の圧縮であっ
た。第1層としてFe-50at%Rh膜12、第2層と
してSiN膜23を形成した。この成膜を交互に繰り返
してFe-50at%Rh/SiN積層膜を形成した。層
数は各5層でトータル膜厚は2.52μmである。
The Fe-Rh magnetic thin film of Example 3 is as shown in FIG.
As shown in, Fe-50at% Rh film 1 is formed on the substrate 11.
No. 2 was sputtered under the conditions of Ar gas pressure of 0.3 Pa and sputtering power of 200 W to form a film of 2000 Å, and then SiN film 23 was formed on the film of 3040 Å under the conditions of Ar gas pressure of 0.3 Pa and sputtering power of 500 W. This SiN
The stress of the membrane 23 was about 2.5 × 10 9 dyn / cm 2 compression. The Fe-50 at% Rh film 12 was formed as the first layer, and the SiN film 23 was formed as the second layer. This film formation was alternately repeated to form a Fe-50 at% Rh / SiN laminated film. The number of layers is 5, and the total film thickness is 2.52 μm.

【0039】Fe-50at%Rh膜12をArガス圧0.
3Pa、スパッタ電力200Wの条件で連続してスパッ
タリングした場合、4000Å以上の膜厚になると応力
により基板11から剥離した。しかし、前記のFe-5
0at%Rh膜12とSiN膜23の積層構造膜に構成し
た場合は膜の剥離は認められず、かつ、積層膜のトータ
ル応力は、同時に形成した前記実験例のSiウエハーの
反りはほとんど認められないことから見かけ上、ゼロと
なっていることが確かめられた。同積層薄膜を600℃
で10時間アニールを行った。1kGの印加磁場で磁化
の温度変化を測定した結果、図10に示すバルクとほぼ
同等な急峻な磁化遷移を示す特性が得られた。
The Fe-50at% Rh film 12 was formed at an Ar gas pressure of 0.1.
When continuously sputtered under the conditions of 3 Pa and a sputtering power of 200 W, the film was peeled off from the substrate 11 due to stress when the film thickness reached 4000 Å or more. However, the above Fe-5
When the laminated structure film of the 0 at% Rh film 12 and the SiN film 23 was formed, no peeling of the film was observed, and the total stress of the laminated film was almost the same as the warp of the Si wafer of the experimental example formed at the same time. It was confirmed that it was zero apparently because it was not there. The laminated thin film is 600 ℃
Annealing was performed for 10 hours. As a result of measuring the temperature change of the magnetization with an applied magnetic field of 1 kG, a characteristic showing a sharp magnetization transition almost equivalent to the bulk shown in FIG. 10 was obtained.

【0040】(実施例4)図4は本発明による実施例4
の薄膜の構成を示す断面図である。
(Fourth Embodiment) FIG. 4 shows a fourth embodiment according to the present invention.
3 is a cross-sectional view showing the configuration of the thin film of FIG.

【0041】本実施例4のFe-Rh磁性薄膜は、図4
に示すように、基板11上に、Fe-50at%Rh膜1
2をArガス圧0.3Pa、スパッタ電力200Wの条
件でスパッタリングを行い、2000Å成膜した後、そ
の上にW膜33をArガス圧0.3Pa、スパッタ電力
500Wの条件で3080Å形成した。このW膜33の
応力は約2×109dyn/cm2の圧縮であった。第1層とし
てFe-50at%Rh膜12、第2層としW膜33を形
成した。この成膜を交互に繰り返してFe-50at%R
h/W積層膜を形成した。層数は各5層でトータル膜厚
は2.9μmである。
The Fe-Rh magnetic thin film of Example 4 is shown in FIG.
As shown in, Fe-50at% Rh film 1 is formed on the substrate 11.
No. 2 was sputtered under the conditions of Ar gas pressure of 0.3 Pa and sputtering power of 200 W to form 2000 Å film, and then W film 33 was formed on the film of 3080 Å under Ar gas pressure of 0.3 Pa and sputtering power of 500 W. The stress of the W film 33 was a compression of about 2 × 10 9 dyn / cm 2 . The Fe-50 at% Rh film 12 was formed as the first layer, and the W film 33 was formed as the second layer. By repeating this film formation alternately, Fe-50at% R
An h / W laminated film was formed. The number of layers is 5, and the total film thickness is 2.9 μm.

【0042】Fe-50at%Rh膜12をArガス圧
0.3Pa、スパッタ電力200Wの条件で連続してス
パッタリングした場合、4000Å以上の膜厚になると
応力により基板11から剥離した。しかし、前記のFe
-50at%Rh膜12とW膜33の積層構造膜の構成し
た場合は膜の剥離は認められず、かつ、積層膜のトータ
ル応力は、同時に形成した前記実験例のSiウエハーの
反りはほとんど認められないことから見かけ上、ゼロと
なっていることが確かめられた。同積層薄膜を600℃
で10時間アニールを行った。1kGの印加磁場で磁化
の温度変化を測定した結果、図10に示すバルクとほぼ
同等な急峻な磁化遷移を示す特性が得られた。
When the Fe-50 at% Rh film 12 was continuously sputtered under the conditions of Ar gas pressure of 0.3 Pa and sputtering power of 200 W, the film was peeled from the substrate 11 due to stress when the film thickness was 4000 Å or more. However, the above Fe
When a laminated structure film of -50 at% Rh film 12 and W film 33 is formed, no peeling of the film is observed, and the total stress of the laminated film is almost the same as the warp of the Si wafer of the experimental example formed at the same time. Since it was not possible, it was confirmed that it was zero apparently. The laminated thin film is 600 ℃
Annealing was performed for 10 hours. As a result of measuring the temperature change of the magnetization with an applied magnetic field of 1 kG, a characteristic showing a sharp magnetization transition almost equivalent to the bulk shown in FIG. 10 was obtained.

【0043】(実施例5)図5は本発明による実施例5
の薄膜の構成を示す断面図である。
(Fifth Embodiment) FIG. 5 shows a fifth embodiment according to the present invention.
3 is a cross-sectional view showing the configuration of the thin film of FIG.

【0044】本実施例5のFe-Rh磁性薄膜は、図5
に示すように、基板11上にArガス圧0.3Pa、第
1層にRh41を直流(DC)スパッタ電力62Wの条
件でスパッタし100Å形成後、その上に第2層にFe
42をスパッタ電力rf;132Wで100Å形成し
た。層厚はそれぞれ100Åずつとし、層数は各5層で
Fe-Rhトータル膜厚は1000Åある。さらにSi
2層を同Arガス圧0.3Pa、スパッタ電力500W
で2280Å形成した。この積層を各10回繰り返して
Fe-Rhトータル膜厚1μmを形成した。この積層構
造でも実施例2と同じく、同時に形成した前記実験例の
Siウエハーの反りに変化は見られず、Fe-Rh/S
iO2積層膜のトータル応力はほぼゼロとなった。
The Fe-Rh magnetic thin film of Example 5 is shown in FIG.
As shown in Fig. 1, Ar gas pressure is 0.3 Pa on the substrate 11, Rh41 is sputtered on the first layer under the condition of direct current (DC) sputtering power 62 W to form 100 Å, and then Fe is formed on the second layer on the second layer.
42 was formed at 100 Å with a sputtering power rf of 132W. The layer thickness is 100 Å each, the number of layers is 5 layers each, and the total Fe-Rh film thickness is 1000 Å. Furthermore Si
The O 2 layer has the same Ar gas pressure of 0.3 Pa and sputtering power of 500 W.
2280Å formed. This lamination was repeated 10 times to form a Fe-Rh total film thickness of 1 μm. In this laminated structure as well as in Example 2, no change was observed in the warp of the Si wafer of the above-described experimental example formed at the same time, and Fe-Rh / S
The total stress of the iO 2 laminated film became almost zero.

【0045】なお、同じ条件でRh膜41とFe膜42
を100Åずつ同じ回数繰り返して形成したFe-Rh
の組成分析結果は丁度Fe-Rh(50/50)となっ
ていた。
Under the same conditions, the Rh film 41 and the Fe film 42 are
Fe-Rh formed by repeating 100 Å for the same number of times
The composition analysis result of was just Fe-Rh (50/50).

【0046】前記のRhFeSiO2積層膜を600℃
で50時間アニールした試料に剥離やクラックは認めら
れず、バルクと同様の急峻な磁化遷移を示す温度特性が
得られた。
The above RhFeSiO 2 laminated film was formed at 600 ° C.
No peeling or cracks were observed in the sample annealed at 50 ° C. for 50 hours, and the temperature characteristic showing a sharp magnetization transition similar to that of the bulk was obtained.

【0047】(実施例6)図6は本発明による実施例6
の薄膜の構成を示す断面図である。
(Sixth Embodiment) FIG. 6 shows a sixth embodiment according to the present invention.
3 is a cross-sectional view showing the configuration of the thin film of FIG.

【0048】本実施例6のFe-Rh磁性薄膜は、図6
に示すように、基板11上に、Arガス圧0.3Pa、
Fe-50at%Rhの組成にIrを3atm%添加したター
ゲットを用い、Arガス圧0.3Pa、高周波(RF)
スパッタ電力200Wの条件でスパッタリングを行い、
2000Åの膜51を成膜した後、その上にスパッタリ
ングによってSiO2膜を4750Å形成した。第1層
として3atm%Ir添加Fe-50at%Rh膜51、第2
層としてSiO2膜13を形成した。この成膜を交互に
繰り返して3atm%Ir添加Fe-50at%Rh/SiO
2積層膜形成した。
The Fe-Rh magnetic thin film of Example 6 is shown in FIG.
As shown in, the Ar gas pressure on the substrate 11 is 0.3 Pa,
Using a target in which 3 atm% of Ir was added to the composition of Fe-50 at% Rh, Ar gas pressure was 0.3 Pa and high frequency (RF)
Sputtering is performed under the condition of a sputtering power of 200 W,
After forming a 2000 Å film 51, a 4750 Å SiO 2 film was formed thereon by sputtering. Fe-50 at% Rh film 51 with 3 atm% Ir added as the first layer, second layer
A SiO 2 film 13 was formed as a layer. This film formation is alternately repeated to add Fe-50 at% Rh / SiO containing 3 atm% Ir.
Two laminated films were formed.

【0049】層数は各5層で3atm%Ir添加Fe-50
at%Rh組成膜厚1μmであり、トータル膜厚は2.5
2μmである。Fe-50at%Rh薄膜をArガス圧0.
3Pa、高周波スパッタ電力200Wの条件で連続して
スパッタリングした場合、4000Å以上の膜厚になる
と応力により基板11から剥離した。しかし、前記3at
m%Ir添加Fe-50at%Rh膜51とSiO2膜13
の積層構造膜に構成した場合は膜の剥離は認められず、
かつ、積層膜のトータル応力は、同時に形成した実験例
のSiウエハーの反りはほとんど認められないことから
見かけ上、ゼロとなっていることが確かめられた。同積
層薄膜を600℃で10時間アニールを行った。
The number of layers is 5 layers each, Fe-50 with 3 atm% Ir added.
At% Rh composition film thickness is 1 μm, total film thickness is 2.5
2 μm. Fe-50at% Rh thin film Ar gas pressure of 0.
When continuously sputtered under the conditions of 3 Pa and high-frequency sputtering power of 200 W, the film was peeled off from the substrate 11 due to stress when the film thickness became 4000 Å or more. However, 3at
Fe-50at% Rh film 51 with m% Ir added and SiO 2 film 13
No peeling of the film was observed in the case of the laminated structure film of
Moreover, it was confirmed that the total stress of the laminated film was apparently zero, because the warp of the Si wafer of the experimental example formed at the same time was hardly recognized. The laminated thin film was annealed at 600 ° C. for 10 hours.

【0050】1kGの印加磁場で磁化の温度変化を測定
した結果、図10に示すバルクとほぼ同等な急峻な磁化
遷移を示す特性が得られた。Irが3atm%添加された
ため、磁化遷移温度は約200℃と無添加に比べ、約1
50℃高温側へシフトした。
As a result of measuring the temperature change of the magnetization with an applied magnetic field of 1 kG, a characteristic showing a steep magnetization transition almost equal to that of the bulk shown in FIG. 10 was obtained. Since 3 atm% of Ir is added, the magnetization transition temperature is about 200 ° C, which is about 1% compared to that without addition.
Shifted to the high temperature side of 50 ° C.

【0051】前記と同様にFe-50at%Rh組成に3a
tm%Pt,Pd,Ru,Osをそれぞれ添加したFe-
50at%Rh膜とSiO2層を積層した構造の積層膜を
同じスパッタ条件で作製したが応力による剥離やクラッ
クは生じなった。また、600℃で10時間の熱処理で
バルクと同等の急峻な磁化遷移を示す反強磁性-強磁性
をもつ温度特性が得られた。
The Fe-50 at% Rh composition was 3a as described above.
Fe- with tm% Pt, Pd, Ru and Os added respectively
A laminated film having a structure in which a 50 at% Rh film and a SiO 2 layer were laminated was produced under the same sputtering conditions, but no peeling or cracking due to stress occurred. Further, a temperature characteristic having antiferromagnetism-ferromagnetism showing a steep magnetization transition equivalent to that of bulk was obtained by heat treatment at 600 ° C. for 10 hours.

【0052】しかし、3atm%Pt添加Fe-50at%R
h膜の磁化遷移温度は、約125℃と約75℃高温側へ
シフトし、3atm%Ru添加Fe-50at%Rh膜の磁化
遷移温度は約170℃と約120℃高温側へシフトし
た。一方、3atm%Pd添加Fe-50at%Rh膜の磁化
遷移温度は−50℃と約100℃低温側へシフトした。
Pt,Pd,Ru,OsがIrと同様に反強磁性-強磁
性に変化する磁化遷移温度を変化させる効果が見られ
た。
However, Fe-50 at% R with 3 atm% Pt added
The magnetization transition temperature of the h film was shifted to about 125 ° C. and about 75 ° C. high temperature side, and the magnetization transition temperature of the 3 atm% Ru added Fe-50 at% Rh film was shifted to about 170 ° C. and about 120 ° C. high temperature side. On the other hand, the magnetization transition temperature of the Fe-50 at% Rh film with 3 atm% Pd added was −50 ° C., which was shifted to a low temperature side of about 100 ° C.
Similar to Ir, Pt, Pd, Ru, and Os showed the effect of changing the magnetization transition temperature, which changes to antiferromagnetic-ferromagnetic.

【0053】(実施例7)図7は本発明による実施例7
の薄膜の構成を示す断面図である。
(Embodiment 7) FIG. 7 shows an embodiment 7 according to the present invention.
3 is a cross-sectional view showing the configuration of the thin film of FIG.

【0054】本実施例7のFe-Rh磁性薄膜は、図7
に示すように、基板11上に、Arガス圧0.3Paと
し、第1層を1.5atm%Ir添加Rhターゲットを用
い、直流(DC)スパッタ電力62Wでスパッタリング
した100Åの膜61を形成した後、その上に第2層を
1.5atm%添加Feターゲットを用い、1.5atm%Ir
添加Fe膜を高周波スパッタ電力132Wで100Åの
膜62を形成した。この条件で1.5atm%Ir添加Rh
膜61と1.5atm%添加Fe膜62を交互に形成した。
The Fe-Rh magnetic thin film of Example 7 is as shown in FIG.
As shown in FIG. 3, a 100 Å film 61 was formed on the substrate 11 by using Ar gas pressure of 0.3 Pa and using a Rh target of 1.5 atm% Ir added as the first layer with a direct current (DC) sputtering power of 62 W. After that, the second layer was formed on top of it by using 1.5 atm% added Fe target and 1.5 atm% Ir.
A 100 Å film 62 was formed from the added Fe film with a high frequency sputtering power of 132 W. Under this condition, 1.5 atm% Ir added Rh
The film 61 and the 1.5 atm% -added Fe film 62 were alternately formed.

【0055】層数は各5層であり、1.5atm%Ir添加
Fe-1.5atm%Ir添加Rhトータル膜厚は1000
Åである。この1.5atm%Ir添加Fe-1.5atm%I
r添加RhR層を各5層形成した後、SiO2膜13を
同Arガス圧0.3Pa、高周波スパッタ電力500W
で2280Åの膜形成した。この1.5atm%Ir添加F
e-1.5atm%Ir添加Rh膜5層とSiO2膜1層の積
層を各10回繰り返して、1.5atm%Ir添加Fe-1.
5atm%Ir添加Rhトータル積層膜を1μm形成し
た。
The number of layers is 5 layers each, and the total film thickness is 1.5 atm% Ir-added Fe-1.5 atm% Ir-added Rh.
It is Å. This 1.5 atm% Ir-added Fe-1.5 atm% I
After forming each 5 layers of r-added RhR layers, the SiO 2 film 13 was formed with the same Ar gas pressure of 0.3 Pa and high frequency sputtering power of 500 W.
A film of 2280Å was formed. This 1.5 atm% Ir added F
e-1.5 atm% Ir-added Rh film 5 layers and SiO 2 film 1-layer were repeated 10 times each, and 1.5 atm% Ir-added Fe-1.
A 5 μm-thick Ir-added Rh total laminated film having a thickness of 1 μm was formed.

【0056】この積層構造でも前記実施例1と同じく、
同時に形成した実験例のSiウエハーの反りに変化は見
られず、1.5atm%添加IrFe-1.5atm%Ir添加
Rh/SiO2積層膜のトータル応力はほぼゼロとなっ
た。なお、1.5atm%Ir添加Feと1.5atm%Ir添
加Rhを前記と同じ条件で積層した薄膜を組成分析する
とFe/Rhは丁度50/50となっており、Irが3
atm%含まれていた。
Also in this laminated structure, as in the first embodiment,
No change was observed in the warp of the Si wafer of the experimental example formed at the same time, and the total stress of the 1.5 atm% added IrFe-1.5 atm% Ir added Rh / SiO 2 laminated film was almost zero. The composition of a thin film obtained by stacking Fe containing 1.5 atm% Ir and Rh containing 1.5 atm% Ir under the same conditions as above was Fe / Rh of exactly 50/50 and Ir of 3
It was included atm%.

【0057】前記の積層膜[1.5atm%添加IrFe/
1.5atm%添加IrRh/SiO2]を600℃で10
時間アニールした試料に剥離やクラックは認められず、
バルクと同様の急峻な磁化遷移を示す温度特性が得られ
た。また、3atm%Ir添加したRh-Fe膜は反強磁性
から強磁性へ変わる磁化遷移温度が前記実施例4と同様
に約200℃へ高温側へシフトしており、Irが磁化遷
移温度を高める効果が見られた。
The laminated film described above [IrFe / 1.5 atm% added]
IrRh / SiO 2 with 1.5 atm% added at 600 ° C.
No peeling or cracks were observed in the sample annealed for a while,
A temperature characteristic showing a sharp magnetic transition similar to that of the bulk was obtained. Further, in the Rh-Fe film with 3 atm% Ir added, the magnetization transition temperature at which antiferromagnetism changes to ferromagnetism shifts to a high temperature side to about 200 ° C. as in Example 4, and Ir increases the magnetization transition temperature. The effect was seen.

【0058】前記と同様にFeおよびRhターゲットに
Pt,Pd,Ru,Osをそれぞれ1.5atm%置換した
ターゲットを用い、前記と同じ積層構造の膜を作製し
た。Ir添加の場合と同様、応力による剥離やクラック
は認められず、また、600℃で10時間の熱処理でバ
ルクと同等の急峻な磁化遷移を示す反強磁性-強磁性を
もつ温度特性が得られた。
In the same manner as described above, a target in which Pt, Pd, Ru, and Os were replaced by 1.5 atm% for the Fe and Rh targets was used to form a film having the same laminated structure as described above. Similar to the case of adding Ir, no peeling or cracking due to stress was observed, and a temperature characteristic with antiferromagnetic-ferromagnetic property showing steep magnetization transition equivalent to that of bulk was obtained by heat treatment at 600 ° C. for 10 hours. It was

【0059】また、前記実施例4のように、磁化遷移温
度が次のよう変化した。3atm%Pt添加Fe-50at%
Rh膜の磁化遷移温度は約125℃と約75℃高温側へ
シフトし、3atm%Ru添加Fe-50at%Rh膜の磁化
遷移温度は約170℃と約120℃高温側へシフトし
た。一方、3atm%Pt添加Fe-50at%Rh膜の磁化
遷移温度は−50℃と約100℃低温側へシフトした。
Further, as in Example 4, the magnetization transition temperature changed as follows. 3 atm% Pt-added Fe-50 at%
The magnetization transition temperature of the Rh film shifted to about 125 ° C. and about 75 ° C. high temperature side, and the magnetization transition temperature of the 3 atm% Ru-added Fe-50 at% Rh film shifted to about 170 ° C. and about 120 ° C. high temperature side. On the other hand, the magnetization transition temperature of the Fe-50 at% Rh film with 3 atm% Pt added was −50 ° C., which was shifted to the low temperature side of about 100 ° C.

【0060】以上、本発明を実施例に基ずいて具体的に
説明したが、本発明は、前記実施例に限定されるもので
はなく、その要旨を逸脱しない範囲において、種々変更
し得ることはいうまでもない。
Although the present invention has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.

【0061】[0061]

【発明の効果】以上、説明したように、本発明によれ
ば、4000Å以上の厚さの膜形成を可能とし、バルク
特性とほぼ同等の急峻な磁化遷移を示すFe-Rh規則
磁性薄膜を作製することができる。
As described above, according to the present invention, an Fe-Rh ordered magnetic thin film capable of forming a film having a thickness of 4000 Å or more and exhibiting a steep magnetization transition almost equivalent to the bulk property is produced. can do.

【0062】これにより、厚い薄膜においても剥離やク
ラックの発生しない緻密な膜質とバルクと同等な反強磁
性一強磁性遷移の特性を得ることができる。
As a result, even in a thick thin film, it is possible to obtain a dense film quality in which peeling or cracking does not occur and characteristics of antiferromagnetic-ferromagnetic transition equivalent to those of bulk.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例1のFe-Rh磁性薄膜の
構成を示す断面図である。
FIG. 1 is a sectional view showing the structure of a Fe—Rh magnetic thin film of Example 1 according to the present invention.

【図2】本発明による実施例2のFe-Rh磁性薄膜の
構成を示す断面図である。
FIG. 2 is a sectional view showing a structure of a Fe—Rh magnetic thin film of Example 2 according to the present invention.

【図3】本発明による実施例3のFe-Rh磁性薄膜の
構成を示す断面図である。
FIG. 3 is a cross-sectional view showing the structure of a Fe—Rh magnetic thin film of Example 3 according to the present invention.

【図4】本発明による実施例4のFe-Rh磁性薄膜の
構成を示す断面図である。
FIG. 4 is a sectional view showing the structure of a Fe—Rh magnetic thin film of Example 4 according to the present invention.

【図5】本発明による実施例5のFe-Rh磁性薄膜の
構成を示す断面図である。
FIG. 5 is a sectional view showing the structure of a Fe—Rh magnetic thin film of Example 5 according to the present invention.

【図6】本発明による実施例6のFe-Rh磁性薄膜の
構成を示す断面図である。
FIG. 6 is a sectional view showing the structure of a Fe—Rh magnetic thin film of Example 6 according to the present invention.

【図7】本発明による実施例7のFe-Rh磁性薄膜の
構成を示す断面図である。
FIG. 7 is a sectional view showing the structure of a Fe—Rh magnetic thin film of Example 7 according to the present invention.

【図8】従来のFe-Rh膜厚とSiウエハーの反り量
を示す図である。
FIG. 8 is a diagram showing a conventional Fe—Rh film thickness and a warp amount of a Si wafer.

【図9】Fe-Rh膜厚の磁化の温度特性を示す図であ
る。
FIG. 9 is a diagram showing temperature characteristics of magnetization of a Fe—Rh film thickness.

【図10】Fe-Rhバルクの磁化の温度特性を示す図
である。
FIG. 10 is a diagram showing temperature characteristics of magnetization of Fe—Rh bulk.

【符号の説明】[Explanation of symbols]

1…基板、2…第1層目の磁性膜、3…第2層目の非磁
性膜、4…第3層目の磁性膜、5…第4層目の非磁性
膜、12…Fe-50at%Rh膜、13…SiO2膜、2
3…SiN膜、33…W膜、41…Rh膜、42…Fe
膜、51…3atm%Ir添加Fe-50at%Rh膜、61
…1.5atm%Ir添加Rh膜、62…1.5atm%添加F
e膜。
1 ... Substrate, 2 ... First layer magnetic film, 3 ... Second layer non-magnetic film, 4 ... Third layer magnetic film, 5 ... Fourth layer non-magnetic film, 12 ... Fe- 50 at% Rh film, 13 ... SiO 2 film, 2
3 ... SiN film, 33 ... W film, 41 ... Rh film, 42 ... Fe
Film, 51 ... 3 atm% Ir-added Fe-50 at% Rh film, 61
… 1.5 atm% Ir added Rh film, 62… 1.5 atm% added F
e-membrane.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上にFexRh(1-x)(0.45≦X≦
0.55)なる組成の磁性薄膜層と、圧縮応力を発生する
融点が1000℃以上の非磁性薄膜層を交互に少なくと
も4層以上を積層したことを特徴とするFe-Rh磁性
薄膜。
1. A Fe x Rh (1-x) (0.45 ≦ X ≦ is formed on a substrate.
A Fe-Rh magnetic thin film, characterized in that at least four or more magnetic thin film layers having a composition of 0.55) and non-magnetic thin film layers having a melting point of 1000 ° C. or more that generate compressive stress are alternately laminated.
【請求項2】 前記磁性薄膜層に、Ir,Pt,Pd,
Ru,Osから選ばれた元素を少なくとも1種以上、5
atm%以下の割合で添加することを特徴とする請求項1
に記載のFe-Rh磁性薄膜。
2. The magnetic thin film layer comprises Ir, Pt, Pd,
At least one element selected from Ru and Os, 5
The additive is added at a ratio of atm% or less.
Fe-Rh magnetic thin film described in 1.
【請求項3】 前記非磁性膜層がSiO2,SiN,S
iC,BaTiO3などの非金属あるいはW,Mo,T
a,Nb,Zr,Tiから選ばれた1種以上の金属から
なることを特徴とする請求項1乃至3のうちいずれか1
項に記載のFe-Rh磁性薄膜。
3. The non-magnetic film layer is SiO 2 , SiN, S
Non-metal such as iC, BaTiO 3 or W, Mo, T
4. The method according to claim 1, comprising at least one metal selected from a, Nb, Zr and Ti.
2. An Fe-Rh magnetic thin film as described in the above item.
【請求項4】 前記磁性薄膜層の厚さが100Å以上で
4000Å以下であることを特徴とする請求項1乃至3
のうちいずれか1項に記載のFe-Rh磁性薄膜。
4. The magnetic thin film layer has a thickness of 100 Å or more and 4000 Å or less.
The Fe-Rh magnetic thin film according to any one of the above.
【請求項5】 10Å以上の厚さを有するFe層と10
Å以上の厚さを有するRh層を交互に積層した薄膜に、
該薄膜の有する応力に対向する応力を有する非磁性層を
交互に少なくとも4層以上を積層したことを特徴とする
Fe-Rh磁性薄膜。
5. An Fe layer having a thickness of 10 Å or more and 10
Å A thin film in which Rh layers with a thickness of more than
A Fe-Rh magnetic thin film, characterized in that at least four or more non-magnetic layers having a stress opposite to that of the thin film are alternately laminated.
【請求項6】 基板上に基板温度が100℃以上100
0℃以下の温度領域でFexRh(1-x)(0.45≦X≦
0.55)なる組成の磁性薄膜層と、圧縮応力を発生する
融点が1000℃以上の非磁性薄膜層を交互に少なくと
も4層以上を積層して、Fe-Rh磁性薄膜を形成する
ことを特徴とする請求項1乃至5のうちいずれか1項に
記載のFe-Rh磁性薄膜の作製方法。
6. A substrate temperature of 100 ° C. or higher and 100 or higher on the substrate.
Fe x Rh (1-x) (0.45 ≦ X ≦ in the temperature range of 0 ° C. or lower )
A Fe-Rh magnetic thin film is formed by alternately laminating at least four layers of a magnetic thin film having a composition of 0.55) and a non-magnetic thin film having a melting point of 1000 ° C. or more that generates compressive stress. The method for producing the Fe-Rh magnetic thin film according to claim 1, wherein
【請求項7】 前記積層した膜の作製後、熱処理アニー
ルを行うことを特徴とする請求項6に記載のFe-Rh
磁性薄膜の作製方法。
7. The Fe—Rh according to claim 6, wherein heat treatment annealing is performed after the laminated films are formed.
Method for producing magnetic thin film.
JP2410194A 1994-02-22 1994-02-22 Fe-rh magnetic thin film and manufacture thereof Pending JPH07235420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410194A JPH07235420A (en) 1994-02-22 1994-02-22 Fe-rh magnetic thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410194A JPH07235420A (en) 1994-02-22 1994-02-22 Fe-rh magnetic thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07235420A true JPH07235420A (en) 1995-09-05

Family

ID=12128978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410194A Pending JPH07235420A (en) 1994-02-22 1994-02-22 Fe-rh magnetic thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07235420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516729A (en) * 2008-04-03 2011-05-26 ケイアイザャイマックス カンパニー リミテッド Method for producing thick film by magnetron sputtering
JPWO2015151425A1 (en) * 2014-04-03 2017-04-13 富士電機株式会社 Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516729A (en) * 2008-04-03 2011-05-26 ケイアイザャイマックス カンパニー リミテッド Method for producing thick film by magnetron sputtering
JPWO2015151425A1 (en) * 2014-04-03 2017-04-13 富士電機株式会社 Magnetic recording medium

Similar Documents

Publication Publication Date Title
JP4328853B2 (en) Piezoelectric element and manufacturing method thereof
JP5471612B2 (en) Method for manufacturing piezoelectric thin film element and method for manufacturing piezoelectric thin film device
JP3981732B2 (en) FePt magnetic thin film having perpendicular magnetic anisotropy and method for producing the same
JP2002208127A (en) Magnetic recording medium and manufacturing method therefor
JP3318204B2 (en) Perpendicular magnetic film, method of manufacturing the same, and perpendicular magnetic recording medium
JPH07235420A (en) Fe-rh magnetic thin film and manufacture thereof
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
WO2006030961A1 (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and magnetic recording/ reproducing apparatus
WO2004066406A2 (en) A piezoelectric element and method for manufacturing
CN110832654A (en) Piezoelectric thin film element
JP5981564B2 (en) Magnetic recording medium and method for manufacturing the same
JP4673735B2 (en) Magnetic recording medium and method for manufacturing the same
JPS61194635A (en) Production of thin film permanent magnet
JP2003282992A (en) Ferromagnetic supermagnetostriction film and its thermal treatment method
JP3210736B2 (en) Manufacturing method of magnetic recording medium
JPH06231989A (en) Manufacture of magnetic thin film
JPS61233409A (en) Production of laminated magnetic core for high frequency and magnetic head core
RU2233350C2 (en) Method for making laminate magnetic films
Sato et al. Magnetic Properties of Fe-Co-Ti Thin Films
JPH07320933A (en) Fe-si-al alloy soft magnetic film and manufacture thereof
JPS59117729A (en) Production of magnetic head core
JP2004079169A (en) Laminated magnetic head
JPH097874A (en) Manufacture of soft magnetic film and magnetic head formed thereof
JPH08162355A (en) Manufacture of soft magnetic film and magnetic head
JPH06215939A (en) Thin film magnetic material