JPH06231738A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH06231738A
JPH06231738A JP5020047A JP2004793A JPH06231738A JP H06231738 A JPH06231738 A JP H06231738A JP 5020047 A JP5020047 A JP 5020047A JP 2004793 A JP2004793 A JP 2004793A JP H06231738 A JPH06231738 A JP H06231738A
Authority
JP
Japan
Prior art keywords
battery
resin
negative electrode
poly
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5020047A
Other languages
Japanese (ja)
Inventor
Katsunori Komori
克典 児守
Hiromu Matsuda
宏夢 松田
Kazuhiro Ota
和宏 太田
Tadao Kimura
忠雄 木村
Sei Hayashi
聖 林
Yoshinori Toyoguchi
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5020047A priority Critical patent/JPH06231738A/en
Publication of JPH06231738A publication Critical patent/JPH06231738A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide an alkaline storage battery by which liquid leakage is hardly caused and weight of the whole battery can be reduced and weight energy density can be improved by using poly(4-methyl penten-1)resin as a battery jar material. CONSTITUTION:A negative electrode 2 and a positive electrode 3 are arranged in order through a polypropylene nonwoven fabric separator 1 on which sulfonation treatment is carried out so that the negative electrode comes outside, and a lead of the negative electrode is fixed to a nickel negative electrode terminal 4, and a lead of the positive electrode is fixed to a nickel positive electrode terminal, respectively by spot welding. These plate groups are housed in a battery jar case 5 which is composed of poly(4-methyl penten-1)resin having a thickness of 3mm and has a height of 108mm, a length of 69mm and a width of 18mm, and potassium hydroxide aqueous solution is added as electrolyte. A sealing plate 7 on which a safety valve 6 is installed and which is composed of the poly(4-methyl penten-1)resin is adhered to the case by epoxy resin, and the positive electrode terminal and the negative electrode terminal are brought into pressure contact with/fixed to the sealing plate through an O ring, and a sealed battery is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ蓄電池の電槽に
関するものである。さらに詳しくは特定の樹脂製の電槽
を用いたアルカリ蓄電池に関する。
FIELD OF THE INVENTION The present invention relates to a battery case for an alkaline storage battery. More specifically, it relates to an alkaline storage battery using a battery case made of a specific resin.

【0002】[0002]

【従来の技術】従来から汎用されているポータブル機器
用のアルカリ蓄電池の電槽には主として金属缶が用いら
れてきた。これらの電池は体積エネルギー密度が重要
で、重量はそれほど重視されてなかった。しかし、近年
大型の機器へアルカリ蓄電池が使用されるようになり、
蓄電池全体の重量が無視できなくなってきた。そのた
め、プラスチック製の電槽も使用されるようになった。
2. Description of the Related Art Conventionally, a metal can has been mainly used as a battery case of an alkaline storage battery for portable equipment which is widely used. For these batteries, volume energy density was important and weight was not so important. However, in recent years, alkaline storage batteries have come to be used in large equipment,
The weight of the entire storage battery cannot be ignored. As a result, plastic battery cases have come into use.

【0003】最近電気自動車が注目されているが、電気
自動車は大型の電池を大量に積載する。そのため、電気
自動車用電池は体積エネルギー密度に併せて、重量エネ
ルギー密度が重要である。そこで電気自動車用電池の電
槽にはポリプロピレン、アクリロニトリル−スチレン樹
脂等の樹脂電槽が多く使われている(特開昭64−65
771号公報、同57−19965号公報など)。ポリ
プロピレン樹脂の接着には、好ましい接着剤がないた
め、密閉電池を構成するためにこれまではポリプロピレ
ン製封口板とポリプロピレン製ケースとを溶着する手段
などが用いられてきた。
Recently, electric vehicles have been drawing attention, but electric vehicles carry a large number of large batteries. Therefore, the weight energy density is important in addition to the volume energy density in the electric vehicle battery. Therefore, a resin battery case made of polypropylene, acrylonitrile-styrene resin or the like is often used as a battery case for electric vehicle batteries (Japanese Patent Laid-Open No. 64-65).
771 and 57-19965. Since there is no preferable adhesive for adhering polypropylene resin, means for welding a polypropylene sealing plate and a polypropylene case have been used so far in order to form a sealed battery.

【0004】[0004]

【発明が解決しようとする課題】しかしながら充放電を
繰り返す場合、とくに高温での充放電を繰り返す場合、
溶着部分より液漏れが発生しやすかった。したがって液
漏れのしにくい樹脂製の電槽を用いたアルカリ蓄電池が
求められていた。
However, when charging and discharging are repeated, especially when charging and discharging at high temperature are repeated,
Liquid leakage was likely to occur from the welded part. Accordingly, there has been a demand for an alkaline storage battery that uses a resin battery case that is resistant to liquid leakage.

【0005】また、電池の重量エネルギー密度を高くす
るには、発電要素の改良により容量を大きくする方法
や、部品、電槽を軽量化する方法がある。特に電気自動
車の一充電走行距離、出力性能等は電池のエネルギー密
度次第である。したがって、より重量エネルギー密度の
高い電池とするために軽量な樹脂製の電槽が求められて
いた。
Further, in order to increase the weight energy density of the battery, there are a method of increasing the capacity by improving the power generating element and a method of reducing the weight of the parts and the battery case. In particular, the electric vehicle's one-mileage, output performance, etc. depend on the energy density of the battery. Therefore, in order to obtain a battery having a higher weight energy density, a lightweight resin battery case has been demanded.

【0006】本発明は、前記従来の問題を解決するた
め、さらに比重の小さく溶着しやすい樹脂製電槽を用い
ることにより、電池の漏液性を防止し、重量エネルギー
密度が高いアルカリ蓄電池を提供することを目的とす
る。
In order to solve the above-mentioned conventional problems, the present invention provides a alkaline storage battery having a high specific gravity and a high weight energy density by using a resin battery case having a small specific gravity and easy to be welded. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
本発明のアルカリ蓄電池は、電槽内に発電要素を収納し
たアルカリ蓄電池であって、前記電槽がポリ(4−メチ
ルペンテン−1)樹脂製であることを特徴とする。本発
明でいう電槽とは、封口板とケースを含むものである。
To achieve the above object, the alkaline storage battery of the present invention is an alkaline storage battery in which a power generating element is housed in a battery case, and the battery case is made of poly (4-methylpentene-1). It is characterized by being made of resin. The battery case referred to in the present invention includes a sealing plate and a case.

【0008】[0008]

【作用】前記した本発明の構成によれば、電槽材料とし
てポリ(4−メチルペンテン−1)樹脂を用いたことに
より、電池全体の重量を軽減し、重量エネルギー密度の
向上したアルカリ蓄電池を実現できる。これは、ポリ
(4−メチルペンテン−1)樹脂は密度が0.83g/
cm3 で熱可塑性樹脂の中で軽く、また電槽としての強
度など物理的特性に優れることに起因する。
According to the above-mentioned constitution of the present invention, by using poly (4-methylpentene-1) resin as the battery case material, it is possible to reduce the weight of the entire battery and to improve the weight energy density of the alkaline storage battery. realizable. This is because poly (4-methylpentene-1) resin has a density of 0.83 g /
It is due to the fact that it is light in the thermoplastic resin in cm 3 , and has excellent physical properties such as strength as a battery case.

【0009】さらに、アルカリ蓄電池では充電放電によ
り、正極の膨脹収縮が起こり、電槽も膨脹収縮する。と
くに高温で膨脹収縮が顕著になる。この結果、ポリプロ
ピレン樹脂では高温での引張強度が小さいため、溶着部
分より液漏れが発生しやすくなる。一方本発明で使用す
るポリ(4−メチルペンテン−1)樹脂は、たとえば6
0℃における引張強度が約170kg/cm2 であり、
ポリプロピレン樹脂の同温度における約140kg/c
2 に比べて大きい。これによって高温における液漏れ
を少なくすることができる。
Further, in an alkaline storage battery, the positive electrode expands and contracts due to charging and discharging, and the battery case also expands and contracts. In particular, expansion and contraction become remarkable at high temperatures. As a result, the polypropylene resin has a low tensile strength at high temperatures, so that liquid leakage is more likely to occur from the welded portion. On the other hand, the poly (4-methylpentene-1) resin used in the present invention is, for example, 6
The tensile strength at 0 ° C. is about 170 kg / cm 2 ,
About 140 kg / c of polypropylene resin at the same temperature
Larger than m 2 . As a result, liquid leakage at high temperatures can be reduced.

【0010】以上の説明の通り、ポリ(4−メチルペン
テン−1)樹脂製電槽は、低比重であり、かつ高温にお
けるにおける引張強度が高いという相乗作用によって、
電池の漏液性を防止し、重量エネルギー密度が高いアル
カリ蓄電池を実現できる。
As described above, the poly (4-methylpentene-1) resin battery cell has a low specific gravity and a high tensile strength at high temperature, which results in a synergistic effect.
It is possible to prevent the battery from leaking and realize an alkaline storage battery having a high weight energy density.

【0011】[0011]

【実施例】以下一実施例を用いて本発明をさらに具体的
に説明する。本発明においては、下記一般式(化1)で
示されるポリ(4−メチルペンテン−1)樹脂を電槽材
料として用いるものである。
EXAMPLES The present invention will be described in more detail with reference to the following examples. In the present invention, a poly (4-methylpentene-1) resin represented by the following general formula (Formula 1) is used as a battery case material.

【0012】[0012]

【化1】 [Chemical 1]

【0013】前記一般式(化1)において、nは平均重
合度を示し、好ましい数平均重合度nの範囲は2000
〜20000である。このポリ(4−メチルペンテン−
1)は密度が0.83g/cm3 で熱可塑性樹脂の中で
最も軽い樹脂である。ポリプロピレンは密度が約0.9
1g/cm3 である。したがって、ポリメチルペンテン
で電槽を作製すると電池重量を軽減することができる。
その結果、電池の重量エネルギー密度が向上する。さら
にこのポリ(4−メチルペンテン−1)樹脂は、引張り
強さが250〜280(kgf/cm2 )、伸びが10
〜50(%)、引張り弾性率が1.1〜2.0(×10
4 /cm2 )、圧縮強さが350〜460(kgf/c
2 )、曲げ強さが280〜480(kgf/c
2 )、融点240℃であり、かつ電気的特性と耐久薬
品性に優れたものである。そしてこのポリ(4−メチル
ペンテン−1)樹脂を電槽に成形する方法は、射出成形
など任意の成形法を採用できる。
In the above general formula (Formula 1), n represents the average degree of polymerization, and the preferable range of the number average degree of polymerization n is 2000.
~ 20,000. This poly (4-methylpentene-
1) has the density of 0.83 g / cm 3 and is the lightest resin among thermoplastic resins. Polypropylene has a density of about 0.9
It is 1 g / cm 3 . Therefore, when the battery case is made of polymethylpentene, the battery weight can be reduced.
As a result, the weight energy density of the battery is improved. Furthermore, this poly (4-methylpentene-1) resin has a tensile strength of 250 to 280 (kgf / cm 2 ) and an elongation of 10
~ 50 (%), the tensile elastic modulus is 1.1 to 2.0 (x10
4 / cm 2 ), compressive strength 350-460 (kgf / c
m 2 ), bending strength of 280 to 480 (kgf / c
m 2 ), melting point 240 ° C., and excellent electrical characteristics and durable chemical resistance. As a method for molding the poly (4-methylpentene-1) resin into a battery case, any molding method such as injection molding can be adopted.

【0014】次に、水酸化ニッケルと金属コバルトと水
酸化コバルトと水酸化カルシウムを重量比で100:
7:5:2.5に秤量した粉末を良く混合した後、混合
粉末20gに水を25wt%添加しペースト状にした。横
60mm縦81mm重量3.1gの発泡ニッケル中に、
このペーストを充填し乾燥後、厚み1.74mmに圧縮
し正極板とした。正極板の角にリードとしてのニッケル
板をスポット溶接した。金属コバルトは放電リザーブの
確保に寄与し、水酸化コバルトは20℃での充電効率の
改良に寄与する。この時正極板1枚の理論容量は5.0
5Ahである。試験用電池にはこの正極板を5枚用い
た。
Next, the weight ratio of nickel hydroxide, metallic cobalt, cobalt hydroxide and calcium hydroxide is 100:
The powders weighed out at 7: 5: 2.5 were thoroughly mixed, and then 25 wt% of water was added to 20 g of the mixed powder to form a paste. Width 60mm length 81mm weight 3.1g in nickel foam,
This paste was filled, dried and then compressed to a thickness of 1.74 mm to obtain a positive electrode plate. A nickel plate as a lead was spot-welded to the corner of the positive electrode plate. Metallic cobalt contributes to ensuring the discharge reserve, and cobalt hydroxide contributes to improving the charging efficiency at 20 ° C. At this time, the theoretical capacity of one positive electrode plate is 5.0.
It is 5 Ah. Five positive electrode plates were used for the test battery.

【0015】負極として水素吸蔵合金を用いた。水素吸
蔵合金としてランタン含量10wt%のミッシュメタル
(Mm)を用いたMmNi3.55Mn0.4 Al0.3 Co0.75
を用い、この合金19.4gに同様に水を加えてペース
トとした。横60mm縦81mm重量3.1gの発泡ニ
ッケル中に、このペーストを充填し乾燥後、厚み1.2
0mmに圧縮し負極板とした。負極板の角にリードとし
てのニッケル板をスポット溶接した。この時負極板1枚
の理論容量は5.63Ahである。試験用電池にはこの
負極板を6枚用いた。
A hydrogen storage alloy was used as the negative electrode. MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 using misch metal (Mm) with a lanthanum content of 10 wt% as a hydrogen storage alloy
Was added in the same manner to 19.4 g of this alloy to form a paste. Width 60 mm, length 81 mm, weight 3.1 g, nickel foam was filled with this paste and dried to a thickness of 1.2.
It was compressed to 0 mm to obtain a negative electrode plate. A nickel plate as a lead was spot-welded to the corner of the negative electrode plate. At this time, the theoretical capacity of one negative electrode plate is 5.63 Ah. Six sheets of this negative electrode plate were used for the test battery.

【0016】図1のようにスルフォン化処理を行ったポ
リプロピレン不織布セパレータ1を介して、負極2、正
極3の順に外側に負極がくるように配置した。負極のリ
ードをニッケル製負極端子4に、正極のリードをニッケ
ル製正極端子にスポット溶接した。これらの極板郡を厚
み3mmのポリ(4−メチルペンテン−1)樹脂からな
る縦108mm,横69mm,幅18mmの電槽ケース
5に入れた。比重1.3の水酸化カリウム水溶液を電解
質として54cc加えた。
As shown in FIG. 1, the negative electrode 2 and the positive electrode 3 were arranged in this order with the negative electrode on the outside through the sulfonation-treated polypropylene nonwoven fabric separator 1. The negative electrode lead was spot-welded to the nickel negative electrode terminal 4, and the positive electrode lead was spot-welded to the nickel positive electrode terminal. These electrode plates were placed in a battery case 5 made of poly (4-methylpentene-1) resin having a thickness of 3 mm and having a length of 108 mm, a width of 69 mm, and a width of 18 mm. 54 cc of an aqueous potassium hydroxide solution having a specific gravity of 1.3 was added as an electrolyte.

【0017】2気圧で作動する安全弁6を取り付けたポ
リ(4−メチルペンテン−1)樹脂からなる封口板7を
ケースにエポキシ樹脂で接着した。その後正極端子、負
極端子を封口板にOリングを介して圧接固定し、密閉電
池とした。本実施例の電池をAとする。
A sealing plate 7 made of poly (4-methylpentene-1) resin with a safety valve 6 operating at 2 atm attached was adhered to the case with an epoxy resin. After that, the positive electrode terminal and the negative electrode terminal were pressed and fixed to the sealing plate via an O-ring to obtain a sealed battery. The battery of this example is designated as A.

【0018】従来例として、同様の手順で電池を組み立
て、ポリプロピレン製のケース5と封口板7を用いた電
池を電池Bとする。したがって、AとBの電池は同じ正
極理論充填容量を持つ。
As a conventional example, a battery is assembled by the same procedure, and a battery using the polypropylene case 5 and the sealing plate 7 is referred to as a battery B. Therefore, the batteries A and B have the same positive electrode theoretical filling capacity.

【0019】AとBの電池を20℃で10時間率つまり
2.53Aで15時間充電し、5時間率5.06Aで端
子間電圧が1Vになるまで放電する充放電サイクルを繰
り返した。その結果、10サイクル後の放電容量はAと
Bの電池とも22.4Ahで、電池の電圧も同一であっ
た。したがって、電槽の素材を変えても発電要素の性能
自体には影響しないことが分かった。
The batteries A and B were repeatedly charged and discharged at 20 ° C. for 10 hours, that is, at 2.53 A for 15 hours and then discharged at a 5-hour rate of 5.06 A until the terminal voltage became 1 V. As a result, the discharge capacities after 10 cycles were 22.4 Ah for both the A and B batteries, and the battery voltage was the same. Therefore, it was found that changing the material of the battery case does not affect the performance of the power generation element itself.

【0020】(表1)に、AとBの電池の重量と、放電
容量から計算した重量エネルギー密度を示す。
Table 1 shows the weights of the batteries A and B and the weight energy density calculated from the discharge capacity.

【0021】[0021]

【表1】 [Table 1]

【0022】(表1)から明らかな通り、ポリメチルペ
ンテンを電槽に用いた電池Aは重量が軽く、大きな重量
エネルギー密度を持つことが分かる。次にこれらの電池
を各々サンプル数n=10で、加速試験の意味で温度6
0℃で同様に10サイクル充電−放電を繰り返した。そ
の後、液漏れしている電池の数を測定した。(表2)に
液漏れした電池の数を示す。
As is clear from (Table 1), the battery A using polymethylpentene as a battery case has a light weight and a large weight energy density. Next, each of these batteries was tested at a temperature of 6 in the sense of accelerated testing with a sample number n = 10.
Charging-discharging was repeated 10 cycles at 0 ° C. Then, the number of batteries leaking was measured. (Table 2) shows the number of batteries that leaked.

【0023】[0023]

【表2】 [Table 2]

【0024】(表2)から明らかな通り、ポリメチルペ
ンテンを電槽に用いた電池Aは、液漏れしにくいことが
確認できた。また、ポリ(4−メチルペンテン−1)は
耐アルカリなどの耐薬品性にも優れ、引張強度もポロプ
ロピレン樹脂に比べて遜色がないので、エネルギー密度
以外の性能も電槽材料として適している。
As is clear from (Table 2), it was confirmed that the battery A using polymethylpentene in the battery case was unlikely to leak liquid. In addition, poly (4-methylpentene-1) has excellent chemical resistance such as alkali resistance, and has tensile strength comparable to that of polypropylene resin, so performance other than energy density is also suitable as a battery case material. .

【0025】[0025]

【発明の効果】以上のように、本発明によれば、アルカ
リ蓄電池の電槽素材にポリ(4−メチルペンテン−1)
を用いることにより、液漏れが少なく、電池全体の重量
が軽く、かつ重量エネルギー密度の向上したアルカリ蓄
電池を得ることができる。すなわち、ポリ(4−メチル
ペンテン−1)樹脂製電槽は低比重であり、かつ高温に
おけるにおける引張強度が高いという相乗効果によっ
て、電池の漏液性を防止し、重量エネルギー密度が高い
アルカリ蓄電池を実現できる。
As described above, according to the present invention, poly (4-methylpentene-1) is used as a battery material for alkaline storage batteries.
By using, it is possible to obtain an alkaline storage battery with little liquid leakage, a light weight of the entire battery, and an improved weight energy density. That is, the poly (4-methylpentene-1) resin battery cell has a low specific gravity and has a high tensile strength at high temperature, which prevents the battery from leaking and has a high weight energy density. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の電池の縦断面図である。FIG. 1 is a vertical sectional view of a battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 負極 3 正極 4 負極端子 5 ケース 6 安全弁 7 封口板 A 電槽素材としてポリメチルペンテン樹脂を用いた電
池 B 電槽素材としてポリプロピレン樹脂を用いた電池
1 Separator 2 Negative electrode 3 Positive electrode 4 Negative electrode terminal 5 Case 6 Safety valve 7 Sealing plate A Battery using polymethylpentene resin as the battery case B Battery using polypropylene resin as the battery case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 忠雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 林 聖 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadao Kimura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 72) Inventor Yoshinori Toyoguchi, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電槽内に発電要素を収納したアルカリ蓄
電池であって、前記電槽がポリ(4−メチルペンテン−
1)樹脂製であることを特徴とするアルカリ蓄電池。
1. An alkaline storage battery in which a power generating element is housed in a battery case, wherein the battery case is poly (4-methylpentene-).
1) An alkaline storage battery, which is made of resin.
JP5020047A 1993-02-08 1993-02-08 Alkaline storage battery Pending JPH06231738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5020047A JPH06231738A (en) 1993-02-08 1993-02-08 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5020047A JPH06231738A (en) 1993-02-08 1993-02-08 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH06231738A true JPH06231738A (en) 1994-08-19

Family

ID=12016153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5020047A Pending JPH06231738A (en) 1993-02-08 1993-02-08 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH06231738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861006A (en) * 1986-09-16 1989-08-29 Bridgestone Corporation Anti-vibration apparatus
CN106025391A (en) * 2015-03-27 2016-10-12 朴力美电动车辆活力株式会社 Nickel-metal hydride battery
CN107871902A (en) * 2016-09-26 2018-04-03 朴力美电动车辆活力株式会社 Nickel-hydrogen accumulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861006A (en) * 1986-09-16 1989-08-29 Bridgestone Corporation Anti-vibration apparatus
CN106025391A (en) * 2015-03-27 2016-10-12 朴力美电动车辆活力株式会社 Nickel-metal hydride battery
JP2016186844A (en) * 2015-03-27 2016-10-27 プライムアースEvエナジー株式会社 Nickel-hydrogen storage cell
CN107871902A (en) * 2016-09-26 2018-04-03 朴力美电动车辆活力株式会社 Nickel-hydrogen accumulator
CN107871902B (en) * 2016-09-26 2020-05-08 朴力美电动车辆活力株式会社 Nickel-hydrogen storage battery
US10658660B2 (en) 2016-09-26 2020-05-19 Primearth Ev Energy Co., Ltd. Nickel-metal hydride battery

Similar Documents

Publication Publication Date Title
EP0657952A1 (en) Rectangular sealed alkaline storage battery and module battery thereof
KR100224464B1 (en) Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
US6440607B1 (en) Nickel-hydrogen secondary cell
JPH06231738A (en) Alkaline storage battery
US5773163A (en) Sealed alkaline storage battery
EP0336102A2 (en) Secondary battery
JPH08329937A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery
JP3045265B2 (en) Nickel-hydrogen battery
JP3030893B2 (en) Manufacturing method of metal oxide-hydrogen storage battery
JP3816653B2 (en) Nickel metal hydride secondary battery
JPH0737609A (en) Alkaline storage battery
JP3221040B2 (en) Alkaline storage battery
JP3412161B2 (en) Sealed nickel-metal hydride storage battery
JPH02250260A (en) Hydrogen storage electrode and manufacture thereof
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP2006120647A (en) Nickel hydrogen secondary battery
JPH11329372A (en) Rectangular sealed alkaline storage battery
JP2926288B2 (en) Nickel-cadmium battery
JP3412162B2 (en) Alkaline storage battery
JP3343413B2 (en) Alkaline secondary battery
JPH05283056A (en) Sealed alkaline storage battery
KR20220124519A (en) Pouch type secondary battery
JPH05290829A (en) Sealed alkaline storage battery
KR100467426B1 (en) Sealing Container for Lithium Polymer Series Battery
JPH05211069A (en) Square type sealed alkaline battery using hydrogen storage alloy negative electrode