JPH06231453A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH06231453A
JPH06231453A JP31056393A JP31056393A JPH06231453A JP H06231453 A JPH06231453 A JP H06231453A JP 31056393 A JP31056393 A JP 31056393A JP 31056393 A JP31056393 A JP 31056393A JP H06231453 A JPH06231453 A JP H06231453A
Authority
JP
Japan
Prior art keywords
substrate
magnetic
recording medium
magnetic recording
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31056393A
Other languages
Japanese (ja)
Inventor
Tomoo Shigeru
智雄 茂
Masataka Yokoyama
正孝 横山
Yasushi Makabe
保志 真壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP31056393A priority Critical patent/JPH06231453A/en
Publication of JPH06231453A publication Critical patent/JPH06231453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve surface characteristics and to obtain a magnetic recording medium excellent in floating characteristic, lubricant property, and wear resistance by treating the surface of the substrate in a short time. CONSTITUTION:A nonmagnetic substrate is subjected to texturing, and a base coating layer and a magentic layer are successively formed on the surface of the substrate. The surface of the substrate after textured is subjected to electrolysis under conditions of <=25mA/cm<2> current density and DC voltage in an acid soln. Then the base coating layer and the magnetic layer are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体の製造方法
に関するものである。詳しくは、基板上の表面加工処理
を短時間で行なうことで表面特性を改善し、浮上特性、
潤滑性、及び耐摩耗性に優れた磁気記録媒体を製造する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium. Specifically, the surface characteristics are improved by performing surface processing on the substrate in a short time.
The present invention relates to a method of manufacturing a magnetic recording medium having excellent lubricity and wear resistance.

【0002】[0002]

【従来の技術】近年、コンピュータ等の情報処理技術の
発達に伴い、その外部記憶装置として磁気ディスク等の
磁気記録媒体が用いられている。従来、磁気記録媒体と
してはアルミニウム合金基板にアルマイト処理やNi−
Pメッキ等の非磁性メッキ処理を施した後に、Cr等の
下地層を被覆し、次いでCo系合金の磁性薄膜層を被覆
し、更に炭素質の保護膜が被覆されたものが使用されて
いる。
2. Description of the Related Art In recent years, with the development of information processing technology for computers and the like, magnetic recording media such as magnetic disks have been used as external storage devices. Conventionally, as a magnetic recording medium, an aluminum alloy substrate is subjected to alumite treatment or Ni-
A non-magnetic plating treatment such as P plating is applied, followed by coating an underlayer such as Cr, then a magnetic thin film layer of a Co-based alloy, and a carbonaceous protective film. .

【0003】上記磁気記録媒体(磁気ディスク)の高密
度化に伴ない、磁気ディスクと磁気ヘッドとの間隔、即
ち浮上量は益々小さくなっており、最近では0.15μ
m以下程度になっている。このように磁気ヘッドの浮上
量が著しく小さいため、磁気ディスク面に突起があると
ヘッドクラッシュを招き、ディスク表面を傷つけること
がある。また、ヘッドクラッシュに至らないような微小
な突起でも情報の読み書きの際の種々のエラーの原因と
なりやすい。
With the increase in density of the magnetic recording medium (magnetic disk), the distance between the magnetic disk and the magnetic head, that is, the flying height, has become smaller and smaller.
It is about m or less. As described above, since the flying height of the magnetic head is extremely small, a protrusion on the magnetic disk surface may cause a head crash, which may damage the disk surface. Further, even minute protrusions that do not lead to head crashes are likely to cause various errors when reading and writing information.

【0004】一方、磁気ディスクは大容量化、高密度化
と並行して小型化も進められており、スピンドル回転用
のモーター等も益々小さくなっている。このため、モー
ターのトルクが不足し、磁気ヘッドが磁気ディスク面に
固着したまま浮上しないという現象が生じやすい。この
磁気ヘッドの固着を、磁気ヘッドと磁気ディスク表面と
の接触を小さくすることにより防止する手段として、磁
気ディスクの基板表面に微細な溝を形成するテクスチャ
加工と称する表面加工を施す処理が行なわれている。ま
た、特開平4−95221号には、テクスチャ加工を行
い、洗浄後、ケミカルエッチングを施すことが提案され
ている。
On the other hand, magnetic disks are being miniaturized in parallel with the increase in capacity and density, and motors for spindle rotation are becoming smaller and smaller. For this reason, the torque of the motor is insufficient, and the phenomenon that the magnetic head does not fly while being fixed to the magnetic disk surface is likely to occur. As a means for preventing the sticking of the magnetic head by reducing the contact between the magnetic head and the surface of the magnetic disk, a surface processing called texture processing for forming fine grooves on the substrate surface of the magnetic disk is performed. ing. Further, Japanese Patent Laid-Open No. 4-95221 proposes that texture processing is performed, cleaning is performed, and then chemical etching is performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記テ
クスチャ加工処理のみを用いた場合には、磁気ディスク
の浮上特性の改善は見られるものの、十分であるとは言
いがたい。また、特開平4−95221号に記載されて
いるケミカルエッチングによる方法では、エッチング条
件の選択による加工表面状態の制御がしにくく、また、
エッチング状態が不均一になりやすく、局部的な腐食が
発生しやすいことから、未だ満足できる表面状態のもの
が得られておらず、さらに磁気ディスクの浮上特性を改
善することが望まれている。
However, when only the above-mentioned texture processing is used, although the floating characteristics of the magnetic disk are improved, it cannot be said to be sufficient. Further, in the method by chemical etching described in JP-A-4-95221, it is difficult to control the processed surface state by selecting the etching conditions, and
Since the etching state is likely to be non-uniform and local corrosion is likely to occur, a satisfactory surface state has not yet been obtained, and it is desired to improve the floating characteristics of the magnetic disk.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記した
磁気ディスクにおける浮上特性をさらに改善すべく鋭意
検討した結果、基板上にテクスチャ加工を施した後、該
基板表面を酸性の電解液中で特定の条件下で電解処理す
ることにより、基板表面特性が改善され、上記目的が達
成されることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made earnest studies to further improve the levitation characteristics of the above-mentioned magnetic disk, and as a result, after texturing the substrate, the substrate surface is treated with an acidic electrolytic solution. Among them, it was found that the substrate surface characteristics are improved and the above-mentioned object is achieved by performing the electrolytic treatment under specific conditions, and the present invention has been completed.

【0007】即ち、本発明の要旨は、非磁性基板にテク
スチャ加工を施こし、この表面上に下地層及び磁性層を
順次形成する磁気記録媒体の製造方法において、テクス
チャ加工を施こした基板表面を酸性溶液の電解液中で、
電流密度25mA/cm2 の条件下で該基板に電圧を印加
して電解処理した後に、下地層及び磁性層を形成するこ
とを特徴とする磁気記録媒体の製造方法に存する。
That is, the gist of the present invention is to provide a method for manufacturing a magnetic recording medium in which a non-magnetic substrate is textured, and an underlayer and a magnetic layer are sequentially formed on the surface of the non-magnetic substrate. In the electrolyte of acidic solution,
A method for producing a magnetic recording medium is characterized in that a voltage is applied to the substrate under the condition of a current density of 25 mA / cm 2 to perform an electrolytic treatment, and then an underlayer and a magnetic layer are formed.

【0008】以下、本発明につき更に詳細に説明する。
本発明における磁気記録媒体の非磁性基板としては、一
般にアルミニウム合金からなるディスク状基板を所定の
厚さに加工した後、その表面を鏡面加工してから、非磁
性金属、例えばNi−P合金、又はNi−Cu−P合金
等を無電解メッキ処理等により約5〜20μmの膜厚の
表面層として形成させたものが用いられる。
The present invention will be described in more detail below.
As the non-magnetic substrate of the magnetic recording medium in the present invention, a disk-shaped substrate generally made of an aluminum alloy is processed to a predetermined thickness, and then the surface is mirror-finished, and then a non-magnetic metal such as Ni-P alloy, Alternatively, a Ni-Cu-P alloy or the like formed as a surface layer having a thickness of about 5 to 20 μm by electroless plating is used.

【0009】上記基板の表面層上にポリッシュ加工を施
したものにテクスチャ加工を施すのが一般的である。ポ
リッシュ加工は例えば、表面に遊離砥粒を付着してしみ
込ませたポリッシュパッドの間に基板をはさみこみ、界
面活性剤水溶液等の研磨液を補給しながらポリッシュ加
工を行ない、通常2〜5μm程度ポリッシュしてその表
面を平均表面粗さRaが50Å以下、望ましくは30Å
以下に鏡面仕上げする。遊離砥粒としては、代表的に
は、アルミナ系スラリーのポリプラ700やポリプラ1
03(共に(株)フジミインコーポレーテッドの登録商
標)、ダイヤモンド系スラリー、SiC系スラリー等が
用いられる。ポリッシュパッドとしては、代表的には、
Surfin100やSurfinXXX−5(共に
(株)フジミインコーポレーテッドの登録商標)等の発
泡ウレタン等が用いられる。
It is general that the surface layer of the above-mentioned substrate is subjected to polishing and then textured. The polishing process is performed, for example, by sandwiching the substrate between polishing pads that are impregnated with free abrasive grains on the surface and polishing the liquid while supplying a polishing solution such as a surfactant aqueous solution. Average surface roughness Ra is 50 Å or less, preferably 30 Å
The mirror finish is given below. As the loose abrasive grains, typically, alumina-based slurry polyplastics 700 and polyplastics 1 are used.
03 (both are registered trademarks of Fujimi Inc.), diamond-based slurry, SiC-based slurry and the like. As a polish pad, typically,
Urethane foams such as Surfin 100 and SurfinXXX-5 (both are registered trademarks of Fujimi Incorporated) are used.

【0010】また、テクスチャ加工としては例えば、2
500〜6000#程度のアルミナ砥粒を担持した研磨
テープを加工ローラで上記ポリッシュ加工を施した基板
面に押圧して、該基板の円周方向に平均表面粗さRaが
20Å以上、望ましくは30〜300Å、さらに望まし
くは30〜150Åの範囲の微細な溝もしくは凹凸を精
度よく加工するものであり、このテクスチャ加工によ
り、磁気ヘッドと磁気記録媒体の吸着が防止でき、且つ
CSS特性が改善され、さらに磁気異方性が良好とな
る。
The texture processing is, for example, 2
A polishing tape carrying alumina abrasive grains of about 500 to 6000 # is pressed against the surface of the polished substrate by a processing roller so that the average surface roughness Ra in the circumferential direction of the substrate is 20 Å or more, preferably 30. ~ 300 Å, more preferably 30 ~ 150 Å fine grooves or irregularities are processed with high accuracy, this texturing can prevent the magnetic head and the magnetic recording medium from adsorbing, CSS characteristics are improved, Further, the magnetic anisotropy becomes good.

【0011】本発明においては、テクスチャ加工を施し
た基板表面を酸性溶液の電解液中で、電流密度25mA
/cm2 以下、好ましくは0.1〜25mA/cm2 、さら
に好ましくは0.1〜10mA/cm2 の範囲内で該基板
に電圧を印加して電解処理する。電解時間としては1〜
400秒、望ましくは2〜200秒の範囲が用いられ、
電気量、すなわち電流密度と電解時間の積としては10
〜1000mA・秒/cm2 以下、望ましくは50〜60
0mA・秒/cm2 の範囲が用いられる。本発明の電解処
理は直流電解で実施され、また電解液中の温度としては
特に制限はないが、通常10〜70℃の範囲で実施され
る。
In the present invention, the textured substrate surface is subjected to a current density of 25 mA in an electrolytic solution of an acidic solution.
/ Cm 2 or less, preferably 0.1 to 25 mA / cm 2 , and more preferably 0.1 to 10 mA / cm 2 within the range of applying a voltage to the substrate for electrolytic treatment. The electrolysis time is 1 to
A range of 400 seconds, preferably 2 to 200 seconds is used,
The quantity of electricity, that is, the product of current density and electrolysis time is 10
~ 1000mA · sec / cm 2 or less, preferably 50-60
A range of 0 mA · sec / cm 2 is used. The electrolytic treatment of the present invention is carried out by direct current electrolysis, and the temperature in the electrolytic solution is not particularly limited, but is usually carried out in the range of 10 to 70 ° C.

【0012】上記電解液としては例えば硫酸、硝酸、塩
酸、クロム酸、リン酸、シュウ酸、酢酸等の一種又は二
種以上を組合せたものが用いられ、その濃度としては
0.5〜40重量%、望ましくは1〜30重量%の範囲
の水溶液として使用される。該電解液としてはリン酸が
好適である。電解液としてリン酸を使用する場合には、
リン酸濃度は0.5〜40wt%、好ましくは1〜20wt
%の範囲である。電解処理条件としては、液温10〜7
0℃の上記リン酸水溶液の電解液中で電流密度が0.1
〜25mA/cm2 、好ましくは0.1〜10mA/c
m2 、さらに好ましくは1〜5mA/cm2 の範囲で、電
解時間10〜400秒、好ましくは10〜200秒の範
囲である。
As the above-mentioned electrolytic solution, for example, one or a combination of two or more of sulfuric acid, nitric acid, hydrochloric acid, chromic acid, phosphoric acid, oxalic acid, acetic acid and the like is used, and its concentration is 0.5 to 40 weight. %, Preferably 1 to 30% by weight as an aqueous solution. Phosphoric acid is suitable as the electrolytic solution. When using phosphoric acid as the electrolyte,
Phosphoric acid concentration is 0.5-40wt%, preferably 1-20wt%
% Range. The electrolytic treatment conditions include a liquid temperature of 10 to 7
The current density is 0.1 in the electrolyte solution of the phosphoric acid aqueous solution at 0 ° C.
-25 mA / cm 2 , preferably 0.1-10 mA / c
The electrolysis time is in the range of 10 to 400 seconds, preferably 10 to 200 seconds, in the range of m 2 , more preferably 1 to 5 mA / cm 2 .

【0013】本発明においては上記電解処理における電
流密度が上記範囲より高いと、基板表面の突起やバリ等
の除去が不十分となり、ヘッドの浮上特性やCSS特性
の改善が不十分となるので好ましくない。上記電解処理
によって、テクスチャ加工後の基板表面の突起やバリ等
がエッチングにより除去され、基板表面がなめらかな表
面状態となり、浮上特性やCSS特性が大幅に改善され
る。
In the present invention, when the current density in the electrolytic treatment is higher than the above range, the protrusions, burrs and the like on the substrate surface are insufficiently removed and the flying characteristics and CSS characteristics of the head are insufficiently improved, which is preferable. Absent. By the above electrolytic treatment, protrusions, burrs, and the like on the substrate surface after texture processing are removed by etching, the substrate surface becomes a smooth surface state, and the floating characteristics and CSS characteristics are greatly improved.

【0014】また、電解エッチング処理終了後、必要に
応じて下地層及び磁性層積層に先立って、遊離砥粒をセ
ルロース製不織布等の基材表面に付着してしみ込ませた
もの、あるいはアルミナ等の砥粒の比較的細かいものを
担持したテープ等を基板面に押圧して再度テクスチャ処
理を施す仕上げ処理を行ってもよい。上記電解処理を施
した基板表面上に第2次下地層としてクロムをスパッタ
リングにより形成する。該クロム下地層の膜厚としては
通常50〜2000Åの範囲である。
After completion of the electrolytic etching treatment, if necessary, prior to laminating the underlayer and the magnetic layer, loose abrasive grains are adhered and impregnated on the surface of a base material such as a cellulose nonwoven fabric, or alumina or the like. A finishing process may be performed in which a tape or the like carrying relatively fine abrasive grains is pressed against the substrate surface and the texture process is performed again. Chromium is formed as a secondary underlayer by sputtering on the surface of the substrate that has been subjected to the electrolytic treatment. The thickness of the chromium underlayer is usually in the range of 50 to 2000 Å.

【0015】このような基板のCr下地層上に形成され
る金属磁性薄膜層としては、Co−Cr,Co−Ni,
Co−Cr−X,Co−Ni−X,Co−W−X等で表
わされるCo系合金の磁性薄膜層が好適である。ここで
XとしてはLi,Si,Ca,Ti,V,Cr,Ni,
As,Y,Zr,Nb,Mo,Ru,Rh,Ag,S
b,Hf,Ta,W,Re,Os,Ir,Pt,Au,
La,Ce,Pr,Nd,Pm,Sm、及び、Euより
なる群から選ばれた1種又は2種以上の元素が挙げられ
る。
As the metal magnetic thin film layer formed on the Cr underlayer of such a substrate, Co--Cr, Co--Ni,
A magnetic thin film layer of a Co-based alloy represented by Co-Cr-X, Co-Ni-X, Co-W-X or the like is suitable. Here, X is Li, Si, Ca, Ti, V, Cr, Ni,
As, Y, Zr, Nb, Mo, Ru, Rh, Ag, S
b, Hf, Ta, W, Re, Os, Ir, Pt, Au,
Examples include one or more elements selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, and Eu.

【0016】このようなCo系合金からなる金属磁性薄
膜層は、通常スパッタリング等の手段によって基板の下
地層上に被着形成される。該金属磁性薄膜層の膜厚とし
ては、通常100〜1000Åの範囲とされる。上記金
属磁性薄膜層上に形成される保護薄膜層としては炭素質
膜が好ましく、炭素質保護薄膜層は、通常、アルゴン、
He等の希ガスの雰囲気下、又は少量の水素の存在下
で、カーボンをターゲットとしてスパッタリングにより
アモルファス状カーボン膜や水素化カーボン膜等が被着
形成される。該保護薄膜層の膜厚は、通常50〜500
Åの範囲とされる。また、保護薄膜層上に、摩擦係数を
小さくするために、更に潤滑膜を形成させてもよい。
The metal magnetic thin film layer made of such a Co-based alloy is usually deposited and formed on the underlayer of the substrate by means such as sputtering. The film thickness of the metal magnetic thin film layer is usually in the range of 100 to 1000Å. The protective thin film layer formed on the metal magnetic thin film layer is preferably a carbonaceous film, and the carbonaceous protective thin film layer is usually argon,
In a rare gas atmosphere such as He or in the presence of a small amount of hydrogen, an amorphous carbon film, a hydrogenated carbon film or the like is deposited by sputtering with carbon as a target. The thickness of the protective thin film layer is usually 50 to 500.
It is set in the range of Å. Further, a lubricating film may be further formed on the protective thin film layer in order to reduce the coefficient of friction.

【0017】[0017]

【実施例】次に、実施例により本発明を更に具体的に説
明するが、本発明はその要旨を超えない限り以下の実施
例によって限定されるものではない。 実施例1〜8 無電解メッキ法によりNi−Pメッキを15μm程度の
厚みで施したアルミニウム合金ディスク状基板の表面
を、ポリッシュ加工により表面平均粗さ(Ra)が約2
0〜30Åの膜面とし、次いで研磨テープを用いたテク
スチャ加工により微細な溝を、表面平均粗さ(Ra)1
00Å程度(実施例1〜5)又は70Å程度(実施例6
〜8)の大きさで形成させた。次に該ディスク基板を酸
性水溶液中で、液温35℃、表1に示した条件下で直流
電解処理を行った。更にそのディスクに遊離砥粒を用い
たテクスチャ加工を施す仕上げ処理を行った。得られた
ディスクの表面平均粗さは表1に示した通りであった。
次いで該基板の表面層上に一般的なCr下地膜、Co−
Cr−Ta合金からなる磁性層及びカーボン質から成る
保護膜を、順次スパッタリング被膜して、磁気ディスク
を製造した。得られた磁気ディスクについて表面平均粗
さ、グライド浮上特性、CSS特性、保磁力、及び表面
形状を下記方法で評価した。その結果を表1に示す。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. Examples 1 to 8 The surface average roughness (Ra) of the aluminum alloy disk-shaped substrate, which was Ni-P plated to a thickness of about 15 μm by electroless plating, was about 2 by polishing.
A film surface of 0 to 30 Å is formed, and then fine grooves are formed by texturing with a polishing tape to obtain an average surface roughness (Ra) of 1
About 00Å (Examples 1 to 5) or about 70Å (Example 6)
~ 8). Next, the disk substrate was subjected to direct current electrolytic treatment in an acidic aqueous solution at a liquid temperature of 35 ° C. under the conditions shown in Table 1. Further, the disc was subjected to a finishing treatment in which texturing using loose abrasive grains was performed. The surface average roughness of the obtained disk was as shown in Table 1.
Then, on the surface layer of the substrate, a general Cr underlayer, Co-
A magnetic layer made of a Cr—Ta alloy and a protective film made of a carbonaceous material were sequentially sputter coated to manufacture a magnetic disk. The surface average roughness, glide floating characteristics, CSS characteristics, coercive force, and surface shape of the obtained magnetic disk were evaluated by the following methods. The results are shown in Table 1.

【0018】比較例1 電解処理を行わなかったこと以外は、実施例6〜8と同
様にして磁気ディスクを製造し、各特性の評価を行なっ
た。結果を表1に示す。
Comparative Example 1 A magnetic disk was manufactured in the same manner as in Examples 6 to 8 except that the electrolytic treatment was not performed, and each characteristic was evaluated. The results are shown in Table 1.

【0019】評価方法(実施例1〜8及び比較例1) 表面平均粗さRa:先端が0.5μm円錐の触針を
有する表面粗さ計(小坂研究所製「ET−30HK」)
により、計測長250μmで測定した。測定方法として
は基板上の内周部任意の直線上の表面について半径方向
に測定し、表面平均粗さRaを求めた。
Evaluation Method (Examples 1 to 8 and Comparative Example 1) Surface Average Roughness Ra: Surface Roughness Gauge (“ET-30HK” manufactured by Kosaka Laboratory) having a stylus with a 0.5 μm conical tip.
Was measured with a measurement length of 250 μm. As a measuring method, a surface on an arbitrary straight line on the inner peripheral portion of the substrate was measured in the radial direction to obtain a surface average roughness Ra.

【0020】 グライド浮上特性:日立DECO製R
X−2000を用いてPZT素子によりヘッドとディス
クの突起の衝突を検出し、外界ヘッド浮上高さとして評
価した。 CSS(Contact Start and Stop)特性:ディスク
を実ドライブに組み込みスタート、ストップを繰り返し
行い、CSS20000回行った後のヘッドとディスク
との静止摩擦係数で評価した。
Glide levitation characteristics: Hitachi DECO R
The collision between the head and the protrusion of the disk was detected by the PZT element using X-2000 and evaluated as the flying height of the external head. CSS (Contact Start and Stop) characteristics: The disk was incorporated into an actual drive, and start and stop were repeated, and the static friction coefficient between the head and the disk after CSS 20,000 times was evaluated.

【0021】 保磁力の測定:B−Hメーター(グロ
ーリー工業製GMZ−2)を用いて、ディスク中心から
の距離33mmの位置の保磁力を測定した。 表面形状:表面形状は走査型電子顕微鏡SEM(日
本電子製JSM−5400)を使用し、拡大倍率500
0倍及び10000倍にて写真撮影し、目視観察した。
その際、エッチングによりバリが完全に除去されている
ものをA、バリの除去はされているが不完全であり毛羽
立ったような表面を呈しているものをB、バリが除去さ
れず多数存在しているものをCとして評価した。
Measurement of coercive force: Using a BH meter (GMZ-2 manufactured by Glory Industry Co., Ltd.), the coercive force at a position 33 mm from the center of the disk was measured. Surface shape: The surface shape uses a scanning electron microscope SEM (JSM-5400 manufactured by JEOL Ltd.) and a magnification of 500.
Photographs were taken at 0 and 10000 times and visually observed.
At that time, A indicates that the burr was completely removed by etching, B indicates that the burr was removed but was incomplete and had a fluffy surface, and a large number of burr was not removed. What was shown was evaluated as C.

【0022】実施例9,10及び比較例2 無電解メッキ法によりNi−Pメッキを15μm程度の
厚みで施したアルミニウム合金ディスク状基板の表面
を、ポリッシュ加工により表面平均粗さ(Ra)が約2
0〜30Åの膜面とし、次いで研磨テープを用いたテク
スチャ加工により微細な溝を形成し、更にそのディスク
に遊離砥粒を用いたテクスチャ加工を施す処理を行い、
表面平均粗さ(Ra)約60Å程度の大きさで仕上げ
た。次に該ディスク基板を10wt%りん酸水溶液中で、
液温20℃、表2に示した条件下で直流電解処理を行っ
た。得られたディスクの表面平均粗さは表2に示した通
りであった。次いで該基板の表面層上に一般的なCr下
地膜、Co−Cr−Ta合金から成る磁性層及びカーボ
ン膜から成る保護膜を、順次スパッタリング被膜して、
磁気ディスクを製造した。得られたディスクについて表
面形状、グライド浮上特性及び保磁力を下記方法で評価
した。その結果を表2に示す。
Examples 9 and 10 and Comparative Example 2 The surface of an aluminum alloy disk-shaped substrate plated with Ni—P to a thickness of about 15 μm by electroless plating has a surface average roughness (Ra) of about 10 μm by polishing. Two
A film surface of 0 to 30 Å is formed, then fine grooves are formed by texturing using a polishing tape, and the disk is subjected to texturing using loose abrasive grains.
The average surface roughness (Ra) was finished to about 60Å. Next, the disk substrate was placed in a 10 wt% phosphoric acid aqueous solution,
Direct current electrolysis was performed under the conditions shown in Table 2 at a liquid temperature of 20 ° C. The surface average roughness of the obtained disk was as shown in Table 2. Then, on the surface layer of the substrate, a general Cr underlayer film, a magnetic layer made of a Co—Cr—Ta alloy, and a protective film made of a carbon film were sequentially sputter-coated,
A magnetic disk was manufactured. The surface shape, glide floating characteristics and coercive force of the obtained disk were evaluated by the following methods. The results are shown in Table 2.

【0023】比較例3 直流電位の印加を行わなかったこと以外は、実施例9及
び10と同様にして、磁気ディスクを製造した。各特性
の評価結果を表2に示す。
Comparative Example 3 A magnetic disk was manufactured in the same manner as in Examples 9 and 10 except that no DC potential was applied. Table 2 shows the evaluation results of each characteristic.

【0024】評価方法(実施例9,10及び比較例2,
3) 表面形状(表面平均粗さRa、ピークカウントPc
及びSEM評価):表面平均粗さRa及びSEM評価
は、実施例1〜8及び比較例1の評価方法と同様にして
行った。また、粗さ曲線の中心線の上側200Åに中心
線に並行なカウントレベルを設け、計測長250μmで
のピークカウントを測定し、これをPc200とした。
Evaluation method (Examples 9 and 10 and Comparative Example 2,
3) Surface shape (average surface roughness Ra, peak count Pc
And SEM evaluation): Surface average roughness Ra and SEM evaluation were performed in the same manner as the evaluation methods of Examples 1 to 8 and Comparative Example 1. Further, a count level parallel to the center line was provided at 200 Å above the center line of the roughness curve, and the peak count at a measurement length of 250 μm was measured, which was designated as Pc200.

【0025】 グライド浮上特性:日立DECO製R
G550を用いてPZT素子によりヘッドとディスクの
突起の衝突を検出し、外界ヘッド浮上高さとして評価し
た。 保磁力の測定:実施例1〜8及び比較例1での測定
方法と同様にして行った。
Glide levitation characteristics: Hitachi DECO R
The collision between the head and the protrusion of the disk was detected by the PZT element using G550, and evaluated as the flying height of the external head. Measurement of coercive force: The coercive force was measured in the same manner as in Examples 1 to 8 and Comparative Example 1.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明の方法で基板の表面処理を行うこ
とにより、浮上特性、潤滑性及び耐摩耗性に優れた磁気
記録媒体を提供することができるため、工業的な利用価
値が高い。
Industrial Applicability Since the surface treatment of the substrate by the method of the present invention can provide a magnetic recording medium excellent in floating characteristics, lubricity and wear resistance, it has high industrial utility value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板にテクスチャ加工を施こし、
この表面上に下地層及び磁性層を順次形成する磁気記録
媒体の製造方法において、テクスチャ加工を施こした基
板表面を酸性溶液の電解液中で、電流密度25mA/cm
2 以下の条件下で該基板に電圧を印加して電解処理した
後に、下地層及び磁性層を形成することを特徴とする磁
気記録媒体の製造方法。
1. A non-magnetic substrate is textured,
In a method of manufacturing a magnetic recording medium in which an underlayer and a magnetic layer are sequentially formed on this surface, the textured substrate surface is subjected to a current density of 25 mA / cm 2 in an electrolytic solution of an acidic solution.
2. A method for producing a magnetic recording medium, comprising forming an underlayer and a magnetic layer after applying a voltage to the substrate for electrolytic treatment under the conditions of 2 or less.
JP31056393A 1992-12-11 1993-12-10 Production of magnetic recording medium Pending JPH06231453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31056393A JPH06231453A (en) 1992-12-11 1993-12-10 Production of magnetic recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33166592 1992-12-11
JP4-331665 1992-12-11
JP31056393A JPH06231453A (en) 1992-12-11 1993-12-10 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06231453A true JPH06231453A (en) 1994-08-19

Family

ID=26566372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31056393A Pending JPH06231453A (en) 1992-12-11 1993-12-10 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06231453A (en)

Similar Documents

Publication Publication Date Title
JP2004171756A (en) Texture machining of magnetic disk substrate
JP4665886B2 (en) Perpendicular magnetic recording medium, perpendicular magnetic recording medium substrate, and manufacturing method thereof
US6893702B2 (en) Magnetic recording medium substrate, method of producing the same, and method of evaluating magnetic recording medium
US5437779A (en) Method of making a magnetic record medium
JPH06231453A (en) Production of magnetic recording medium
JPH05166176A (en) Manufacture of magnetic disk
JP3506182B2 (en) Manufacturing method of magnetic recording medium
JPH07244845A (en) Manufacture of magnetic recording medium
JPH11296844A (en) Substrate for magnetic disk and its manufacture
JPH0823935B2 (en) Thin film magnetic recording medium
JPH07169050A (en) Manufacture of magnetic recording medium
JPH10134346A (en) Production of magnetic recording medium
JP2006099813A (en) Method for manufacturing magnetic recording medium substrate, and method for manufacturing magnetic recording medium using the same
JPH07220268A (en) Production of magnetic recording medium
JPH07225945A (en) Production of magnetic recording medium
JPH0997417A (en) Magnetic recording medium
JPH11259857A (en) Production of magnetic recording medium
JPH07272263A (en) Magnetic disk
JPH11232631A (en) Magnetic disk substrate
JPH07272265A (en) Production of magnetic recording medium
JPH07230620A (en) Substrate for magnetic disk and magnetic disk
JPH0714157A (en) Production of magnetic recording medium
JPH08161738A (en) Manufacture of magnetic recording medium
JPH05282668A (en) Substrate for perpendicular magnetic recording, magnetic disk and its production
JPH04214226A (en) Amorphous-carbon substrate for magnetic disk