JPH10134346A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH10134346A
JPH10134346A JP28233496A JP28233496A JPH10134346A JP H10134346 A JPH10134346 A JP H10134346A JP 28233496 A JP28233496 A JP 28233496A JP 28233496 A JP28233496 A JP 28233496A JP H10134346 A JPH10134346 A JP H10134346A
Authority
JP
Japan
Prior art keywords
coercive force
etching
substrate
etching rate
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28233496A
Other languages
Japanese (ja)
Inventor
Yoji Tokumitsu
洋司 徳満
Yoshiyuki Makino
義行 槙野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP28233496A priority Critical patent/JPH10134346A/en
Publication of JPH10134346A publication Critical patent/JPH10134346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high-characteristic magnetic disk which is useful for making a capacity higher and density higher and has high coercive force and small coercive force distribution by specifying an etching rate in electrolytic etching treatment to a ratio of a specific range with respect to a conductive substrate weight. SOLUTION: The electrolyte to be used for electrolytic etching includes aq. solns. of, for example, sulfuric acid, nitric acid, hydrochloric acid, etc. Electrolysis conditions are specified to a liquid temp. 10 to 70 deg.C, average current density 0.5 to 45mA, electrolysis time 2 to 200 seconds and quantity of electricity 50 to 800mA.sec/cm<2> . The electrolyte etching rate is so regulated as to attain 0.05 to 0.025% of the conductive substrate weight. If the etching rate is below 0.015%, the higher coercive force and the improvement in coercive force distribution are insufficient. When the etching rate exceeds 0.025%, the coercive force distribution improves but on the contrary, the coercive force degrades. The electrolyte etching is preferably executed by impressing AC voltages in an acidic soln in such a manner that the currents flowing in the substrate has specific waveforms, i.e., square waves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体の製造
方法に係り、特に、導電性基板の電解エッチング量の最
適化により磁気記録媒体の面内の保磁力分布を減少させ
る方法に関する。
The present invention relates to a method for manufacturing a magnetic recording medium, and more particularly to a method for reducing the in-plane coercive force distribution of a magnetic recording medium by optimizing the amount of electrolytic etching of a conductive substrate.

【0002】[0002]

【従来の技術】近年、コンピュータ等の情報処理技術の
発達に伴い、その外部記憶装置として磁気ディスク等の
磁気記録媒体が用いられている。従来、磁気記録媒体と
しては、アルミニウム合金基板にアルマイト処理やNi
−Pメッキ等の非磁性メッキ処理を施した非磁性基板
に、Cr等の下地層を被覆し、次いで、Co系合金の磁
性薄膜層を被覆し、更に炭素質の保護膜を被覆したもの
が使用されている。
2. Description of the Related Art In recent years, with the development of information processing technology such as computers, magnetic recording media such as magnetic disks have been used as external storage devices. Conventionally, as a magnetic recording medium, an alumite treatment or Ni
A non-magnetic substrate that has been subjected to a non-magnetic plating process such as -P plating is coated with a base layer such as Cr, then coated with a magnetic thin film layer of a Co-based alloy, and further coated with a carbonaceous protective film. in use.

【0003】上記磁気記録媒体(以下、磁気ディスクと
称す。)では、その高密度化に伴い磁気ディスクと磁気
ヘッドとの間隔、即ちヘッドの浮上量がますます小さく
なり、最近では0.15μm程度以下となっている。こ
のように小さな浮上量では、磁気ディスク面に突起が存
在すると、時にヘッドクラッシュを招いてディスク表面
を傷つけるおそれがある。また、ヘッドクラッシュに至
らない微小な突起の存在であっても、情報の読み書きの
際に種々のエラーを引き起こす原因となり得る。
In the above-mentioned magnetic recording medium (hereinafter referred to as a magnetic disk), the distance between the magnetic disk and the magnetic head, that is, the flying height of the head is becoming smaller and smaller with the increase in density, and recently, about 0.15 μm. It is as follows. With such a small flying height, if a protrusion exists on the surface of the magnetic disk, there is a possibility that a head crash may sometimes occur and the disk surface may be damaged. Also, the presence of minute projections that do not lead to a head crash can cause various errors when reading and writing information.

【0004】一方、磁気ディスクは、その大容量化及び
高密度化と並行して小型化も進められており、スピンド
ル回転用の駆動モータも益々小型化されている。このた
め、駆動モータのトルクが不足する場合があり、磁気ヘ
ッドが磁気ディスク面に固着したまま浮上しないという
現象も生じやすい。
On the other hand, magnetic disks are being miniaturized in parallel with their large capacity and high density, and drive motors for rotating spindles are becoming increasingly smaller. For this reason, the torque of the drive motor may be insufficient, and a phenomenon that the magnetic head does not fly while fixed to the magnetic disk surface is likely to occur.

【0005】このような磁気ヘッドのクラッシュや固着
を防止するために、従来、磁気ディスク用基板の表面を
研磨加工(ポリッシュ加工)した後、更に表面に微細な
溝を形成する表面加工処理(以下、テクスチャ加工と称
す。)が行われている。ただし、ヘッドの浮上量の低減
により、このテクスチャ加工についても加工後の基板の
平均表面粗さRaが低減されており(低Ra化)、Ra
≦20Åとされる場合もある。
Conventionally, in order to prevent such a magnetic head from crashing or sticking, a surface processing (hereinafter referred to as a polishing process) for forming a fine groove on the surface of a magnetic disk substrate after polishing (polishing) the surface of the magnetic disk substrate has been conventionally performed. , Texture processing). However, due to the reduction in the flying height of the head, the average surface roughness Ra of the processed substrate is also reduced in this texture processing (reduction of Ra).
≦ 20 ° in some cases.

【0006】テクスチャ加工は、磁気ヘッドと磁気ディ
スク表面との接触抵抗を小さくするのに特に有効であ
り、テクスチャ加工により、磁気ディスクにおけるヘッ
ドの浮上特性が改善されるものの、最近のヘッド浮上量
の小さい磁気ディスクに要請される性能には未だ不充分
である。
[0006] Texture processing is particularly effective in reducing the contact resistance between the magnetic head and the surface of the magnetic disk. Although the floating processing of the head on the magnetic disk is improved by the texturing, the recent flying height of the head has been reduced. The performance required for small magnetic disks is still insufficient.

【0007】なお、特開平4−95221号公報には、
上記要請に応えるべく、テクスチャ加工後の基板を洗浄
した後、更に電解エッチングを行って表面処理すること
が提案されている。
[0007] Japanese Patent Application Laid-Open No. 4-95221 discloses that
In order to meet the above demand, it has been proposed to wash the substrate after the texture processing and then perform electrolytic etching to perform surface treatment.

【0008】[0008]

【発明が解決しようとする課題】磁気ディスクの大容量
化及び高密度化の達成のためには、磁気ディスクの保磁
力(Hc)を高めると共に、ディスク面内のHc分布
(ディスク面の各点におけるHcの差)を最小にするこ
とが要求されるが、最近のヘッド浮上量の低減に伴うテ
クスチャ加工の低Ra化により、特に、磁気ディスクの
外周のHcが低下することでディスク面内のHc分布が
悪化するという問題が発生している。
In order to increase the capacity and density of the magnetic disk, the coercive force (Hc) of the magnetic disk must be increased and the Hc distribution in the disk surface (each point on the disk surface) must be increased. The difference in Hc of the magnetic disk is required to be minimized. However, the recent reduction in the flying height of the head has led to a reduction in the Ra of the texture processing, and in particular, the Hc on the outer periphery of the magnetic disk has been reduced, so that the in-plane of the disk has been reduced. There is a problem that the Hc distribution deteriorates.

【0009】本発明は上記従来の問題点を解決し、Hc
が高く、かつ、ディスク面内のHc分布の小さい高特性
磁気ディスクを製造する方法を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems and provides Hc
It is an object of the present invention to provide a method of manufacturing a high-performance magnetic disk having a high Hc distribution and a small Hc distribution in the disk surface.

【0010】[0010]

【課題を解決するための手段】本発明の磁気記録媒体の
製造方法は、導電性基板を電解エッチング処理する工程
を有する磁気記録媒体の製造方法において、該電解エッ
チング処理におけるエッチング量を該導電性基板重量に
対して0.015〜0.025%とすることを特徴とす
る。
According to a method of manufacturing a magnetic recording medium of the present invention, there is provided a method of manufacturing a magnetic recording medium having a step of electrolytically etching a conductive substrate. It is characterized by being 0.015 to 0.025% with respect to the substrate weight.

【0011】即ち、本発明者等は、上記従来の問題点を
解決するべく鋭意検討を行った結果、電解エッチング量
の最適化によりディスクのHc分布が激減することを見
出し本発明を完成するに到った。
That is, the present inventors have conducted intensive studies to solve the above-mentioned conventional problems, and as a result, have found that the Hc distribution of the disk is drastically reduced by optimizing the amount of electrolytic etching, and to complete the present invention. It has arrived.

【0012】本発明に従って、電解エッチング量を導電
性基板重量の0.015〜0.025%とすることによ
り、磁気ディスクのHcを高く維持した上でHc分布を
小さくすることができる。
According to the present invention, by setting the amount of electrolytic etching to 0.015 to 0.025% of the weight of the conductive substrate, the Hc distribution can be reduced while maintaining the Hc of the magnetic disk high.

【0013】なお、このエッチング処理工程は、研磨処
理又はテクスチャ加工の後に実施するのが好ましい。
It is preferable that this etching process is performed after polishing or texturing.

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0015】本発明における磁気ディスクの導電性基板
としては、一般にアルミニウム合金からなるディスク状
基板が用いられ、通常、該アルミニウム合金基板を所定
の厚さに加工した後に、その表面を鏡面加工してから、
非磁性金属、例えばNi−P合金又はNi−Cu−P合
金を無電解メッキ処理により被着し、約5〜20μmの
膜厚の表面層を形成する。次いで、この表面層上に表面
加工処理を行い、特定の面粗さに仕上げた表面加工層を
形成する。この表面加工処理としては、通常の場合、表
面層に研磨加工(ポリッシュ加工)を施し、次いでテク
スチャ加工を施した後に、本発明方法に従って、基板表
面を電解液中で電解エッチング処理する。なお、エッチ
ング処理は、研磨加工後に行っても良い。
As the conductive substrate of the magnetic disk in the present invention, a disk-shaped substrate made of an aluminum alloy is generally used. Usually, the aluminum alloy substrate is processed to a predetermined thickness, and the surface is mirror-finished. From
A nonmagnetic metal, for example, a Ni-P alloy or a Ni-Cu-P alloy is applied by electroless plating to form a surface layer having a thickness of about 5 to 20 m. Next, a surface processing is performed on this surface layer to form a surface processed layer finished to a specific surface roughness. As the surface processing, usually, the surface layer is polished (polished) and then subjected to texturing, and then the substrate surface is subjected to electrolytic etching in an electrolytic solution according to the method of the present invention. Note that the etching treatment may be performed after the polishing.

【0016】ポリッシュ加工は、例えば、表面に遊離砥
粒を付着させて染み込ませたポリッシュパッドの間に基
板を挟み込み、界面活性剤水溶液等の研磨液を補給しな
がら行う。通常の場合、基板表面を2〜5μm程度ポリ
ッシュ加工して、基板表面の平均表面粗さRaが30Å
以下、望ましくは20Å以下に鏡面仕上げする。ここ
で、遊離砥粒としては、代表的には、アルミナ系スラリ
ーのDL−3471やDL−4479(共に(株)フジ
ミインコーポレーテッドの登録商標)、ダイヤモンド系
スラリー、SiC系スラリー等が用いられる。ポリッシ
ュパッドとしては、代表的には、Surfin018や
SurfinXXX−5(共に(株)フジミインコーポ
レーテッドの登録商標)等の発泡ウレタン等が用いられ
る。
The polishing is carried out, for example, by sandwiching the substrate between polishing pads having free abrasive grains attached to and impregnated on the surface thereof, and supplying a polishing solution such as an aqueous solution of a surfactant. In a normal case, the substrate surface is polished by about 2 to 5 μm, and the average surface roughness Ra of the substrate surface is 30 °.
Hereafter, it is desirably mirror-finished to 20 ° or less. Here, as the free abrasive grains, typically, alumina-based slurries DL-3471 and DL-4479 (both are registered trademarks of Fujimi Incorporated), diamond-based slurries, SiC-based slurries, and the like are used. As the polish pad, urethane foam such as Surfin018 and SurfinXXX-5 (both are registered trademarks of Fujimi Incorporated) is typically used.

【0017】テクスチャ加工は、例えば、平均粒径0.
1〜3μmのダイヤモンドスラリーを担持したバフテー
プを用い、上記ポリッシュ加工を施した基板面に対して
このバフテープを加工ローラで押圧して、基板の円周方
向に平均表面粗さRaが5〜60Å、望ましくは5〜4
0Å、更に望ましくは5〜20Åの範囲の微細な溝若し
くは凹凸を精度良く形成するものであり、このテクスチ
ャ加工により、磁気ヘッドと磁気ディスクとの間での吸
着を防止でき、CSS特性が改善され、更に、磁気ディ
スクの磁気異方性が良好となる。
The texture processing is carried out, for example, in the case where the average particle size is 0.
Using a buff tape carrying 1 to 3 μm diamond slurry, pressing the buff tape against the polished substrate surface with a processing roller, the average surface roughness Ra in the circumferential direction of the substrate is 5 to 60 °, Preferably 5-4
Fine grooves or irregularities in the range of 0 °, more preferably in the range of 5 ° to 20 °, are formed with high precision. By this texture processing, adsorption between the magnetic head and the magnetic disk can be prevented, and the CSS characteristics can be improved. Furthermore, the magnetic anisotropy of the magnetic disk is improved.

【0018】テクスチャ加工後は、基板表面を電解エッ
チング処理しその後、薄膜形成工程により下地層及び磁
性層を形成する。
After texturing, the surface of the substrate is subjected to electrolytic etching, and then an underlayer and a magnetic layer are formed by a thin film forming process.

【0019】本発明方法において、電解エッチングに用
いる電解液としては、例えば、硫酸、硝酸、塩酸、クロ
ム酸、リン酸、シュウ酸、酢酸等の1種又は2種以上を
組み合わせた0.5〜40重量%、望ましくは1〜30
重量%の範囲の濃度の水溶液が挙げられ、特にリン酸水
溶液が好適である。電解処理の条件としては、液温が1
0〜70℃、平均電流密度が50mA/cm2 以下、好
ましくは0.1〜50mA/cm2 、更に好ましくは
0.5〜45mA/cm2 、電解時間が1〜400秒、
好ましくは2〜200秒、電気量(平均電流密度と電解
時間の積)が10〜1000mA・秒/cm2 、好まし
くは50〜800mA・秒/cm2 の範囲が選ばれ、こ
のような条件において電解エッチング量が加工直前の基
板重量の0.015〜0.025%となるように実施さ
れる。ここで、電解エッチング量が導電性基板重量の
0.015%未満では高Hc化及びHc分布の改善が十
分でなく、0.025%を超えるとHc分布は良好とな
る反面Hcが低下する傾向がある。
In the method of the present invention, the electrolytic solution used for electrolytic etching may be, for example, 0.5 to 1 or a combination of two or more of sulfuric acid, nitric acid, hydrochloric acid, chromic acid, phosphoric acid, oxalic acid and acetic acid. 40% by weight, preferably 1 to 30
An aqueous solution having a concentration in the range of% by weight is exemplified, and an aqueous phosphoric acid solution is particularly preferable. The conditions for the electrolytic treatment are as follows:
0 to 70 ° C., an average current density of 50 mA / cm 2 or less, preferably 0.1~50mA / cm 2, more preferably 0.5~45mA / cm 2, the electrolysis time is 1 to 400 seconds,
Preferably, a range of 2 to 200 seconds and a quantity of electricity (product of average current density and electrolysis time) of 10 to 1000 mA · sec / cm 2 , preferably 50 to 800 mA · sec / cm 2 are selected. The etching is performed so that the electrolytic etching amount is 0.015 to 0.025% of the substrate weight immediately before processing. Here, if the amount of electrolytic etching is less than 0.015% of the weight of the conductive substrate, the increase in Hc and the improvement in Hc distribution are not sufficient, and if it exceeds 0.025%, the Hc distribution becomes good, but Hc tends to decrease. There is.

【0020】なお、本発明において、電解エッチング
は、酸性溶液の電解液中において、基板に流れる電流が
特定の波形即ち、矩形波となるように交番電圧を印加し
て行うのが好ましい。
In the present invention, the electrolytic etching is preferably performed by applying an alternating voltage in an electrolytic solution of an acidic solution so that the current flowing through the substrate has a specific waveform, that is, a rectangular wave.

【0021】上記電解エッチング処理を施した基板表面
には、第2次下地層としてCrをスパッタリングにより
形成する。このCr下地層の膜厚は通常100〜100
0Åの範囲である。このような基板のCr下地層上に形
成される金属磁性薄膜層としては、Co−Cr、Co−
Ni、Co−Cr−X、Co−Ni−X、Co−W−X
等で表わされるCo系合金の磁性層が好適である。ここ
でXとしてはLi、Si、Ca、Ti、V、Cr、N
i、As、Y、Zr、Nb、Mo、Ru、Rh、Ag、
Sb、Hf、Ta、W、Re、Os、Ir、Pt、A
u、La、Ce、Pr、Nd、Pm、Sm及びEuより
なる群から選ばれる1種又は2種以上の元素が挙げられ
る。このようなCo系合金からなる磁性層は、通常、ス
パッタリング等の手段によって基板のCr下地層上に1
00〜1000Åの膜厚で形成される。
On the substrate surface subjected to the electrolytic etching treatment, Cr is formed as a second underlayer by sputtering. The thickness of the Cr underlayer is usually 100 to 100.
0 ° range. As the metal magnetic thin film layer formed on the Cr underlayer of such a substrate, Co—Cr, Co—
Ni, Co-Cr-X, Co-Ni-X, Co-W-X
A magnetic layer of a Co-based alloy represented by, for example, is preferable. Here, X is Li, Si, Ca, Ti, V, Cr, N
i, As, Y, Zr, Nb, Mo, Ru, Rh, Ag,
Sb, Hf, Ta, W, Re, Os, Ir, Pt, A
One, two or more elements selected from the group consisting of u, La, Ce, Pr, Nd, Pm, Sm and Eu. The magnetic layer made of such a Co-based alloy is usually formed on the Cr underlayer of the substrate by means such as sputtering.
It is formed with a thickness of 00 to 1000 °.

【0022】上記磁性層上には、好ましくは炭素質膜か
らなる保護層が形成される。炭素質保護層は、通常、A
r、He等の希ガス雰囲気下又はこれに加えて少量の水
素の存在下で、カーボンをターゲットとして行うスパッ
タリングにより形成され、アモルファス状カーボン膜や
水素化カーボン膜等として被着形成される。この保護層
の膜厚は、通常50〜500Åの範囲である。
On the magnetic layer, a protective layer preferably made of a carbonaceous film is formed. The carbonaceous protective layer is usually made of A
It is formed by sputtering using carbon as a target in a rare gas atmosphere such as r or He or in the presence of a small amount of hydrogen in addition thereto, and is formed as an amorphous carbon film or a hydrogenated carbon film. The thickness of this protective layer is usually in the range of 50 to 500 °.

【0023】なお、摩擦係数を更に小さくするために、
この保護層上に更に潤滑膜を形成しても良い。
In order to further reduce the coefficient of friction,
A lubricating film may be further formed on this protective layer.

【0024】[0024]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0025】実施例1 アルミニウム合金よりなるディスク状基板に常法に従っ
て、無電解メッキ処理により膜厚10μmのNiP表面
層を形成し、ポリッシュ加工を行って平均表面粗さRa
20Åに加工した後、テクスチャ加工を行って平均表面
粗さRa15Åに加工し、次いで、3重量%のリン酸水
溶液中にて、23℃,平均電流密度40mA/cm2
電解エッチング処理を行った。この電解エッチング処理
に当って、電解時間を調節することにより、電解エッチ
ング量を1.5mg,3.0mg又は5.0mgとし
た。比較のため、電解エッチングを行わないもの(電解
エッチング量0mg)も準備した。なお、電解エッチン
グ量1.5mgのものは、テクスチャ加工後の基板重量
に対する電解エッチング量の割合が0.010%、電解
エッチング量3.0mgのものは、基板重量に対する電
解エッチング量の割合が0.020%、電解エッチング
量5.0mgのものは、基板重量に対する電解エッチン
グ量の割合が0.034%である。
EXAMPLE 1 A 10 μm-thick NiP surface layer was formed on a disk-shaped substrate made of an aluminum alloy by electroless plating according to a conventional method, and polished to obtain an average surface roughness Ra.
After processing to 20 °, texture processing was performed to obtain an average surface roughness Ra of 15 °, and then electrolytic etching was performed in a 3% by weight phosphoric acid aqueous solution at 23 ° C. and an average current density of 40 mA / cm 2 . . In this electrolytic etching treatment, the amount of electrolytic etching was adjusted to 1.5 mg, 3.0 mg, or 5.0 mg by adjusting the electrolytic time. For comparison, one without electrolytic etching (electrolytic etching amount 0 mg) was also prepared. In the case of the electrolytic etching amount of 1.5 mg, the ratio of the electrolytic etching amount to the substrate weight after texture processing is 0.010%, and in the case of the electrolytic etching amount of 3.0 mg, the ratio of the electrolytic etching amount to the substrate weight is 0. In the case of 0.020% and the amount of electrolytic etching of 5.0 mg, the ratio of the amount of electrolytic etching to the substrate weight is 0.034%.

【0026】各々の基板について、膜厚700ÅのCr
下地層を形成した後、膜厚440ÅのCoCrTa合金
磁性層を形成し、更に、膜厚100Åの炭素質保護層を
形成して磁気ディスクを製造し、得られた磁気ディスク
のHcを測定した。
For each substrate, a 700 ° -thick Cr
After the formation of the underlayer, a CoCrTa alloy magnetic layer having a thickness of 440 ° was formed, and a carbonaceous protective layer having a thickness of 100 ° was further formed to manufacture a magnetic disk. The Hc of the obtained magnetic disk was measured.

【0027】Hcの測定点は中心から半径21mm,3
3mm及び45mmの位置で90°毎に片面12点、表
裏表面で24点とし、各々5枚のディスクのHcの平均
値(24×5=120点の平均値)を求め、結果を図1
に示した。また、Hcの標準偏差σを図2に、内周の測
定点(中心から半径21mmの位置のn=40の平均
値)のHcinと外周の測定点(中心から半径45mmの
位置のn=40の平均値)のHcout との差を図3に示
した。図1より、エッチング量3mgでHcが最大値を
示すことがわかる。
The measurement point of Hc is a radius 21 mm from the center, 3
At points of 3 mm and 45 mm, 12 points on one side and 24 points on the front and back surfaces at 90 ° intervals, the average value of Hc of each of the five disks (24 × 5 = average value of 120 points) was obtained.
It was shown to. The standard deviation σ of Hc is shown in FIG. 2 as Hc in of the inner circumference measurement point (average value of n = 40 at a position of a radius of 21 mm from the center) and Hc in of the outer circumference (n = 40 at a position of a radius of 45 mm from the center). The difference from Hc out of (average value of 40) is shown in FIG. FIG. 1 shows that Hc shows the maximum value when the etching amount is 3 mg.

【0028】また、図2,3より、低Raにおいて、外
周のHcの方が内周のHcより低く、エッチング量の増
加に伴ないσ及びHc差(Hcin−Hcout )が減少す
る傾向があり、図1〜3の結果から高Hc及びHc分布
の最小化のためには、本実施例の基板においてエッチン
グ量が3±0.5mgであることが好ましいことがわか
る。
2 and 3, at low Ra, Hc at the outer periphery is lower than Hc at the inner periphery, and the σ and Hc difference (Hc in -Hc out ) tend to decrease with an increase in the etching amount. From the results of FIGS. 1 to 3, it can be seen that in order to minimize the high Hc and the Hc distribution, it is preferable that the etching amount in the substrate of the present example is 3 ± 0.5 mg.

【0029】[0029]

【発明の効果】以上詳述した通り、本発明の磁気記録媒
体の製造方法によれば、高HcでしかもHc分布が小さ
く、従って、磁気ディスクの高容量化及び高密度化に有
用な高特性磁気ディスクを製造することができる。
As described in detail above, according to the method of manufacturing a magnetic recording medium of the present invention, the Hc is high and the Hc distribution is small, and therefore, the high characteristics which are useful for increasing the capacity and density of the magnetic disk. A magnetic disk can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における平均Hcとエッチング量との
関係を示すグラフである。
FIG. 1 is a graph showing a relationship between an average Hc and an etching amount in Example 1.

【図2】実施例1におけるHcの標準偏差σとエッチン
グ量との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a standard deviation σ of Hc and an etching amount in Example 1.

【図3】実施例1におけるHc差(Hcin−Hcout
とエッチング量との関係を示すグラフである。
FIG. 3 shows the difference in Hc (Hc in −Hc out ) in Example 1.
4 is a graph showing the relationship between the amount of etching and the amount of etching.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性基板を電解エッチング処理する工
程を有する磁気記録媒体の製造方法において、 該電解エッチング処理におけるエッチング量を該導電性
基板重量に対して0.015〜0.025%とすること
を特徴とする磁気記録媒体の製造方法。
1. A method for manufacturing a magnetic recording medium comprising a step of electrolytically etching a conductive substrate, wherein the amount of etching in the electrolytic etching is 0.015 to 0.025% based on the weight of the conductive substrate. A method for manufacturing a magnetic recording medium, comprising:
【請求項2】 前記エッチング処理工程が研磨処理又は
テクスチャ加工の後に行われることを特徴とする請求項
1に記載の磁気記録媒体の製造方法。
2. The method according to claim 1, wherein the etching process is performed after a polishing process or a texturing process.
JP28233496A 1996-10-24 1996-10-24 Production of magnetic recording medium Pending JPH10134346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28233496A JPH10134346A (en) 1996-10-24 1996-10-24 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28233496A JPH10134346A (en) 1996-10-24 1996-10-24 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH10134346A true JPH10134346A (en) 1998-05-22

Family

ID=17651068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28233496A Pending JPH10134346A (en) 1996-10-24 1996-10-24 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH10134346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283189A (en) * 2005-03-15 2006-10-19 Komag Inc Electrochemical etching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283189A (en) * 2005-03-15 2006-10-19 Komag Inc Electrochemical etching

Similar Documents

Publication Publication Date Title
US6893702B2 (en) Magnetic recording medium substrate, method of producing the same, and method of evaluating magnetic recording medium
JPH10134346A (en) Production of magnetic recording medium
JP5617387B2 (en) Method for manufacturing substrate for perpendicular magnetic recording medium, and substrate for perpendicular magnetic recording medium manufactured by the manufacturing method
US5437779A (en) Method of making a magnetic record medium
JP3506182B2 (en) Manufacturing method of magnetic recording medium
JPH11259857A (en) Production of magnetic recording medium
JP3206701B2 (en) Manufacturing method of magnetic recording medium
JPH0823935B2 (en) Thin film magnetic recording medium
JPH11296844A (en) Substrate for magnetic disk and its manufacture
JPH07244845A (en) Manufacture of magnetic recording medium
JPH06231453A (en) Production of magnetic recording medium
JP3386909B2 (en) Manufacturing method of magnetic recording medium
JPH07272263A (en) Magnetic disk
JPH11232631A (en) Magnetic disk substrate
JP2581225B2 (en) Magnetic recording medium and method of manufacturing the same
JPH11161946A (en) Texturing method of substrate for magnetic recording medium
JPH07230620A (en) Substrate for magnetic disk and magnetic disk
JPH07169050A (en) Manufacture of magnetic recording medium
JPH07225945A (en) Production of magnetic recording medium
JPH09231561A (en) Production of magnetic recording medium
JPH07220268A (en) Production of magnetic recording medium
JP2001034934A (en) Production of substrate for magnetic disc
JPS6035332A (en) Magnetic storage body
JP2001101653A (en) Surface working method for substrate for magnetic disk
JPH07272265A (en) Production of magnetic recording medium