JPH06229708A - Noncontact linear displacement sensor - Google Patents

Noncontact linear displacement sensor

Info

Publication number
JPH06229708A
JPH06229708A JP4187093A JP4187093A JPH06229708A JP H06229708 A JPH06229708 A JP H06229708A JP 4187093 A JP4187093 A JP 4187093A JP 4187093 A JP4187093 A JP 4187093A JP H06229708 A JPH06229708 A JP H06229708A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic sensor
permanent magnet
sensor
advancing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4187093A
Other languages
Japanese (ja)
Other versions
JP3296871B2 (en
Inventor
Shinsuke Mochizuki
信助 望月
Yoshihiko Okawara
好彦 大川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohden Co Ltd
Original Assignee
Kohden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohden Co Ltd filed Critical Kohden Co Ltd
Priority to JP04187093A priority Critical patent/JP3296871B2/en
Publication of JPH06229708A publication Critical patent/JPH06229708A/en
Application granted granted Critical
Publication of JP3296871B2 publication Critical patent/JP3296871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a noncontact linear displacement sensor for detecting the displacement in terms of the resistance ratio of a magnetic sensor by disposing a sensing permanent magnet while inclining in the lateral direction of the magnetic sensor with respect to the linear moving direction thereof in which a ferromagnetic thin film can be used as the magnetic sensor and an inexpensive ferrite magnet can be used as the sensing permanent magnet while enhancing the linearity of output. CONSTITUTION:In a magnetic sensor 1, two magnetic detecting elements 1L, 1R, each comprising multiple ferromagnetic thin film stripes 11 having longitudinal advancing/retreating direction and coupled in series, are arranged perpendicularly to the advancing/retreating direction through an interval and connected electrically in series. Bias magnets 10 applying magnetic bias uniformly in the advancing/retreating direction to the elements 1L, 1R are disposed oppositely to the elements 1L, 1R and a sensing permanent magnet 2 is disposed with N and S poles thereof being set in the lateral direction of the magnetic sensor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変位を検出すべき物体
とともに移動する磁気センサを設け、この磁気センサの
直線的な移動方向に対して磁気センサの幅方向に傾斜さ
せてセンシング用永久磁石を配置することにより、物体
の位置(変位)を磁気センサの抵抗比として検出する直
線変位センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided with a magnetic sensor which moves together with an object whose displacement is to be detected, and is inclined in the width direction of the magnetic sensor with respect to the linear moving direction of the magnetic sensor. The present invention relates to a linear displacement sensor that detects the position (displacement) of an object as a resistance ratio of a magnetic sensor by arranging.

【0002】[0002]

【従来の技術】従来、磁気センサ(1)とセンシング用
永久磁石(2)を利用した直線変位センサは、図9に示
すように、ケース(5)の上側にレール(6)を介し
て、進退自在なスライダー(9)を設け、このスライダ
ー(9)の下面にヨーク(13)を介して磁気センサ
(1)を取り付け、ケース(5)の下側に、上下にN極
とS極を持つセンシング用永久磁石(2)を、図10に
示すように、磁気センサ(1)の全移動量に対して磁気
センサ(1)の幅の分だけ傾斜して配置していた。
2. Description of the Related Art Conventionally, a linear displacement sensor using a magnetic sensor (1) and a sensing permanent magnet (2) has a rail (6) on the upper side of a case (5), as shown in FIG. A slider (9) that can move back and forth is provided, and the magnetic sensor (1) is attached to the lower surface of the slider (9) via a yoke (13), and an N pole and an S pole are vertically arranged below the case (5). As shown in FIG. 10, the sensing permanent magnet (2) has been arranged so as to be inclined by the width of the magnetic sensor (1) with respect to the total movement amount of the magnetic sensor (1).

【0003】センシング用永久磁石(2)が発生する磁
界のうち、なるべく高い磁界を磁気センサ(1)に与え
るために、センシング用永久磁石(2)と磁気センサ
(1)を僅かなクリアランス(0.5mm程度)で接近
させて対向させていた。
In order to give the magnetic sensor (1) a magnetic field as high as possible among the magnetic fields generated by the sensing permanent magnet (2), the sensing permanent magnet (2) and the magnetic sensor (1) have a slight clearance (0). They were close to each other by about 0.5 mm) and faced each other.

【0004】前記磁気センサ(1)は、2個の半導体磁
気抵抗素子(1A)(1A)で構成され、それぞれの半
導体磁気抵抗素子(1A)は、進退方向が長手方向とな
る多数の短冊状のインジウムアンチモンなどによる半導
体膜(12)が直列に連結されて構成されていた。これ
ら磁気検出素子(1A)(1A)は直列に結合され、そ
の両端子(a)(c)に入力電圧が与えられ、結合点か
ら出力端子(b)が取り出してブリッジ回路が構成され
ていた。
The magnetic sensor (1) is composed of two semiconductor magnetoresistive elements (1A) (1A), and each semiconductor magnetoresistive element (1A) is in the form of a number of strips whose advancing / retreating direction is the longitudinal direction. The semiconductor films (12) made of indium antimony or the like were connected in series. These magnetic detection elements (1A) and (1A) are connected in series, an input voltage is applied to both terminals (a) and (c), and an output terminal (b) is taken out from the connection point to form a bridge circuit. .

【0005】前記センシング用永久磁石(2)は希土類
を用いた非常に強い磁力を持つSm−Co磁石などを用
いていた。なお、図9において、(3)は信号処理回路
基盤、(4)は波形成形回路である。
As the sensing permanent magnet (2), an Sm-Co magnet using a rare earth element and having a very strong magnetic force has been used. In FIG. 9, (3) is a signal processing circuit board and (4) is a waveform shaping circuit.

【0006】[0006]

【発明が解決しようとする課題】以上のような従来の直
線変位センサは、センシング用永久磁石(2)が希土類
磁石であり、磁気センサ(1)が半導体磁気抵抗素子で
あるため、センシング用永久磁石(2)の磁束分布によ
って、磁気センサ(1)の性能に多少の変動があり、図
8に示すように、出力変化が直線的な正比例から外れて
不規則な曲線を描くという問題点があった。
In the conventional linear displacement sensor as described above, the sensing permanent magnet (2) is a rare earth magnet and the magnetic sensor (1) is a semiconductor magnetoresistive element. The magnetic flux distribution of the magnet (2) causes some fluctuations in the performance of the magnetic sensor (1), and as shown in FIG. 8, the output change deviates from the linear direct proportion and draws an irregular curve. there were.

【0007】また、センシング用永久磁石(2)が希土
類磁石であるため値段が高く、磁界強度が強いため取扱
が困難であり、高磁界での出力変化を検出するために磁
気センサ(1)とセンシング用永久磁石(2)とを近接
させなければならない。そして、その僅かなクリアラン
スを一定に保つためにレールや取り付け構造にも工夫を
要するという問題点があった。
Further, since the sensing permanent magnet (2) is a rare earth magnet, it is expensive, and it is difficult to handle because of strong magnetic field strength. The magnetic sensor (1) is used to detect an output change in a high magnetic field. It must be close to the sensing permanent magnet (2). Then, in order to keep the slight clearance constant, it is necessary to devise a rail and a mounting structure.

【0008】また、磁気センサ(1)に強磁性体薄膜を
用い、センシング用永久磁石(2)に安価なフェライト
磁石を用いることも考えられるが、磁気応答のヒステリ
シスにより同じ位置でも移動方向やスライダ(9)の反
転位置によって出力に差が出るだけでなく、出力の直線
性が悪く、抵抗比の不連続変化を起こすという問題点が
あった。本発明は、磁気センサに強磁性体薄膜を用い、
センシング用永久磁石に安価なフェライト磁石を用い
て、出力の直線性のよい直線変位センサを得ることを目
的とする。
It is also conceivable to use a ferromagnetic thin film for the magnetic sensor (1) and an inexpensive ferrite magnet for the sensing permanent magnet (2). However, due to the hysteresis of the magnetic response, the moving direction and the slider can be changed even at the same position. Not only does the output differ depending on the reversal position in (9), but the linearity of the output is poor, which causes a discontinuous change in the resistance ratio. The present invention uses a ferromagnetic thin film for a magnetic sensor,
The purpose is to obtain a linear displacement sensor with good output linearity by using an inexpensive ferrite magnet as a sensing permanent magnet.

【0009】[0009]

【課題を解決するための手段】本発明は以上のような問
題点を解決するためになされたもので、変位を検出すべ
き物体とともに移動する磁気センサを設け、この磁気セ
ンサの直線的な移動方向に対してセンシング用永久磁石
を磁気センサの幅方向に傾斜させて配置することによ
り、物体の変位を磁気センサの出力として検出する無接
触式直線変位センサにおいて、磁気センサは、進退方向
が長手方向となる多数の短冊状の強磁性体薄膜を直列に
連結した2個の磁気検出素子を進退方向に対して直角方
向に並べて間隔をもって配置するとともに電気的には直
列に接続し、これらの磁気検出素子に進退方向の磁気バ
イアスを均等に印加する磁気バイアス磁石を磁気検出素
子に臨設し、センシング用永久磁石は、前記磁気センサ
の幅方向にN極とS極を有するように配置したものであ
る。また、センシング用永久磁石にフェライト磁石を用
いてなるものである。
The present invention has been made to solve the above problems, and a magnetic sensor that moves together with an object whose displacement is to be detected is provided, and the magnetic sensor moves linearly. In the contactless linear displacement sensor that detects the displacement of the object as the output of the magnetic sensor by arranging the sensing permanent magnets in the width direction of the magnetic sensor with respect to the direction, the magnetic sensor is The two magnetic detection elements in which a large number of strip-shaped ferromagnetic thin films are connected in series at right angles to the advancing / retreating direction and are electrically connected in series. A magnetic bias magnet for evenly applying a magnetic bias in the advancing / retreating direction to the detection element is provided in the magnetic detection element, and the sensing permanent magnet has an N pole and an S pole in the width direction of the magnetic sensor. It is obtained by arranged to have. Further, a ferrite magnet is used as the sensing permanent magnet.

【0010】[0010]

【作用】磁気検出素子として強磁性体薄膜を用い、この
強磁性体薄膜の磁化容易軸方向に磁気バイアスを印加す
ることによって、抵抗比の不連続変化や磁界応答のヒス
テリシスによる出力の変動を緩和する。
[Function] A ferromagnetic thin film is used as a magnetic sensing element, and a magnetic bias is applied in the direction of the easy axis of magnetization of this ferromagnetic thin film to mitigate the discontinuity change in the resistance ratio and the output fluctuation due to the hysteresis of the magnetic field response To do.

【0011】[0011]

【実施例】つぎに、本発明の一実施例を図1ないし図5
に基づいて説明する。図2において、ケース(5)の上
側にはレール(6)によってスライダー(9)が進退自
在に取付けられており、このスライダー(9)の下面に
は基板(8)を介して磁気センサ(1)が取付けられ、
さらに、信号処理基盤(3)、波形成形回路(4)が搭
載されている。このスライダー(9)は、ケース(5)
の外の変位を検出すべき物体(図示せず)に連結するた
めの軸棒(7)が結合されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, one embodiment of the present invention will be described with reference to FIGS.
It will be described based on. In FIG. 2, a slider (9) is attached to an upper side of a case (5) by a rail (6) so as to be able to move forward and backward, and a magnetic sensor (1) is attached to a lower surface of the slider (9) via a substrate (8). ) Is installed,
Further, a signal processing board (3) and a waveform shaping circuit (4) are mounted. This slider (9) is the case (5)
A shaft rod (7) is connected for coupling the displacement outside the object to an object (not shown) to be detected.

【0012】ケース(5)の下側にはフェライト磁石を
用いたセンシング用永久磁石(2)が、前記磁気センサ
(1)と約2mmのクリアランスをもって対向して固定
されている。このセンシング用永久磁石(2)は、図1
(a)(b)(c)に示すように、スライダー(9)の
全移動量に対して略磁気センサ(1)の幅(W)の分だ
け傾斜して固定されている。
On the lower side of the case (5), a sensing permanent magnet (2) using a ferrite magnet is fixed so as to face the magnetic sensor (1) with a clearance of about 2 mm. This sensing permanent magnet (2) is shown in FIG.
As shown in (a), (b) and (c), the slider (9) is fixed so as to be inclined with respect to the total movement amount of the slider (9) by the width (W) of the magnetic sensor (1).

【0013】前記磁気センサ(1)は、図5に示すよう
に、2個の磁気検出素子(1L)(1R)と磁気バイア
ス磁石(10)で構成されている。それぞれの磁気検出
素子(1L)(1R)はスライダー(9)の進退方向が
長手方向となる多数の短冊状の強磁性体薄膜(11)が
直列に連結されて構成されており、この強磁性体薄膜
(11)は、厚さが約1000Å、幅が約20μm程度
で形成され、形状異方性により長手方向が磁化容易軸と
なっている。
As shown in FIG. 5, the magnetic sensor (1) is composed of two magnetic detection elements (1L) (1R) and a magnetic bias magnet (10). Each of the magnetic detection elements (1L) (1R) is composed of a large number of strip-shaped ferromagnetic thin films (11) in which the slider (9) advances and retreats in the longitudinal direction are connected in series. The body thin film (11) is formed with a thickness of about 1000 Å and a width of about 20 μm, and the longitudinal direction is the easy axis of magnetization due to the shape anisotropy.

【0014】これらの磁気検出素子(1L)(1R)は
直列に結合され、その両端子(a)(c)に入力電圧が
与えられ、結合点から出力端子(b)が取り出されて図
6に示すブリッジ回路を構成されている。磁気検出素子
(1L)(1R)の前部には、磁気バイアス磁石(1
0)が進退方向にS極とN極を有するように臨設されて
いる。この磁気バイアス磁石(10)は、鎖線で示すよ
うに進退方向の反対側に設けても良いし、また、図4に
示すように背面に設けても良い。
The magnetic detection elements (1L) and (1R) are coupled in series, an input voltage is applied to both terminals (a) and (c), and an output terminal (b) is taken out from the coupling point. The bridge circuit shown in is constructed. A magnetic bias magnet (1L) is attached to the front of the magnetic detection element (1L) (1R).
0) is provided so as to have an S pole and an N pole in the forward / backward direction. The magnetic bias magnet (10) may be provided on the opposite side of the advancing / retreating direction as shown by the chain line, or may be provided on the back surface as shown in FIG.

【0015】つぎに、以上の構成による直線変位センサ
の作用を説明する。スライダ(9)が、図1(a)に示
すように、中心より手前側、すなわちセンシング用永久
磁石(2)の中心が磁気センサ(1)の中心から左側
(−側)にある場合、磁化容易軸方向に対して直角方向
に通過する磁束が、磁気抵抗素子(1R)より、磁気抵
抗素子(1L)の方が多くなり、抵抗値は磁気抵抗素子
(1L)の方が低く、磁気抵抗素子(1R)の方が高く
なり、図6のブリッジのバランスが崩れて、出力は図7
に示すように−(マイナス)となる。
Next, the operation of the linear displacement sensor having the above structure will be described. As shown in FIG. 1A, when the slider (9) is on the front side of the center, that is, the center of the sensing permanent magnet (2) is on the left side (− side) from the center of the magnetic sensor (1), The magnetic flux passing in the direction perpendicular to the easy axis direction is larger in the magnetoresistive element (1L) than in the magnetoresistive element (1R), and the resistance value is lower in the magnetoresistive element (1L). The element (1R) becomes higher, the balance of the bridge in FIG. 6 is lost, and the output is as shown in FIG.
It becomes- (minus) as shown in.

【0016】スライダ(9)が移動して、図1(b)に
示すように、センシング用永久磁石(2)の中心が磁気
センサの中心に一致(±0)した場合、磁化容易軸方向
に対して直角方向に通過する磁束が、磁気抵抗素子(1
R)と磁気抵抗素子(1L)で等しくなり、抵抗値も等
しくなり、図6のブリッジのバランスが保たれて、出力
は図7に示すように0となる。
When the center of the sensing permanent magnet (2) coincides with the center of the magnetic sensor (± 0) as shown in FIG. The magnetic flux passing in the direction perpendicular to the magnetic resistance element (1
R) and the magnetoresistive element (1L) are equal, the resistance values are also equal, the balance of the bridge in FIG. 6 is maintained, and the output becomes 0 as shown in FIG.

【0017】さらにスライダ(9)が移動して、図1
(c)に示すように、中心より先側、すなわちセンシン
グ用永久磁石(2)の中心が磁気センサ(1)の中心か
ら右側(+側)にある場合、磁化容易軸方向に対して直
角方向に通過する磁束が、磁気抵抗素子(1L)より、
磁気抵抗素子(1R)の方が多くなり、抵抗値は磁気抵
抗素子(1L)の方が高く、磁気抵抗素子(1R)の方
が低くなり、図6のブリッジのバランスが崩れて、出力
は図7に示すように+(プラス)となる。そして、−側
から+側に向かって直線的な出力となる。
When the slider (9) is further moved, as shown in FIG.
As shown in (c), when the front side of the center, that is, the center of the sensing permanent magnet (2) is on the right side (+ side) from the center of the magnetic sensor (1), a direction perpendicular to the easy axis of magnetization. The magnetic flux passing through is from the magnetoresistive element (1L)
The magnetoresistive element (1R) has a larger resistance value, the magnetoresistive element (1L) has a higher resistance value, and the magnetoresistive element (1R) has a lower resistance value. As shown in FIG. 7, it becomes + (plus). Then, the output becomes linear from the − side to the + side.

【0018】以上のスライダー(9)の移動中、磁気検
出素子(1L)(1R)には、常に磁気バイアス磁石
(10)が発生する磁界により、磁化容易軸方向に磁気
バイアスが印加され、抵抗比の不連続変化や磁界応答の
ヒステリシスによる検出出力の変動を緩和する。
While the slider (9) is moving as described above, a magnetic bias is constantly applied to the magnetic detection elements (1L) (1R) in the direction of the easy axis of magnetization by the magnetic field generated by the magnetic bias magnet (10). It mitigates fluctuations in detection output due to discontinuous changes in ratio and hysteresis in magnetic field response.

【0019】[0019]

【発明の効果】本発明は、磁気バイアス磁石により、常
に磁気検出素子に磁化容易軸方向の磁気バイアスを印加
するように構成したので、ヒステリシスなどによる検出
出力の変動が緩和され、出力を直線的な正比例として得
ることができ、従来のものよりも分解能が向上する。ま
た、磁気検出素子に強磁性体薄膜を用いたので、センシ
ング用永久磁石に安価なフェライト磁石を用いることが
でき、さらに、磁気検出素子とセンシング用永久磁石と
のクリアランスを広く取ることができるので、その公差
に余裕ができ、取り付け構造が簡単になり、組立が容易
になる。
According to the present invention, since the magnetic bias magnet always applies a magnetic bias in the direction of the easy axis of magnetization to the magnetic detection element, variations in the detection output due to hysteresis and the like are alleviated, and the output is linear. Can be obtained in direct proportion, and the resolution is improved as compared with the conventional one. Further, since a ferromagnetic thin film is used for the magnetic detection element, an inexpensive ferrite magnet can be used for the sensing permanent magnet, and a wide clearance can be secured between the magnetic detection element and the sensing permanent magnet. The tolerance can be afforded, the mounting structure is simple, and the assembly is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における磁気センサとセンシング用永久
磁石の位置関係を示す説明図であり、(a)(b)
(c)はそれぞれ磁気センサの位置が異なるものであ
る。
FIG. 1 is an explanatory view showing a positional relationship between a magnetic sensor and a sensing permanent magnet according to the present invention, and FIGS.
In (c), the positions of the magnetic sensors are different from each other.

【図2】本発明の無接触式直線変位センサの断面図であ
る。
FIG. 2 is a sectional view of a non-contact type linear displacement sensor of the present invention.

【図3】本発明の磁気検出素子とバイアス磁石の配置の
一例を示す斜視図である。
FIG. 3 is a perspective view showing an example of arrangement of a magnetic detection element and a bias magnet of the present invention.

【図4】本発明の磁気検出素子とバイアス磁石の配置の
他の例を示す斜視図である。
FIG. 4 is a perspective view showing another example of the arrangement of the magnetic detection element and the bias magnet of the present invention.

【図5】本発明における磁気センサの底面図である。FIG. 5 is a bottom view of the magnetic sensor according to the present invention.

【図6】ホイートストーブリッジの回路図である。FIG. 6 is a circuit diagram of a Wheatstow bridge.

【図7】本発明の無接触式直線変位センサの特性図であ
る。
FIG. 7 is a characteristic diagram of the non-contact type linear displacement sensor of the present invention.

【図8】従来の無接触式直線変位センサの特性図であ
る。
FIG. 8 is a characteristic diagram of a conventional non-contact type linear displacement sensor.

【図9】従来の無接触式直線変位センサの断面図であ
る。
FIG. 9 is a sectional view of a conventional non-contact type linear displacement sensor.

【図10】従来の無接触式直線変位センサの磁気センサ
とセンシング用永久磁石の位置関係を示す説明図であ
る。
FIG. 10 is an explanatory diagram showing a positional relationship between a magnetic sensor of a conventional non-contact type linear displacement sensor and a sensing permanent magnet.

【図11】従来の無接触式直線変位センサの磁気センサ
の底面図である。
FIG. 11 is a bottom view of a magnetic sensor of a conventional non-contact type linear displacement sensor.

【符号の説明】 (1)…磁気センサ、(1L)(1R)…磁気検出素
子、(2)…センシング用永久磁石、(3)…信号処理
回路基盤、(4)…波形成形回路、(5)…ケース、
(6)…レール、(7)…軸棒、(8)…基板、(9)
…スライダー、(10)…磁気バイアス磁石、(11)
…強磁性体薄膜。
[Description of Reference Signs] (1) ... Magnetic sensor, (1L) (1R) ... Magnetic detection element, (2) ... Sensing permanent magnet, (3) ... Signal processing circuit board, (4) ... Waveform shaping circuit, ( 5) ... case,
(6) ... Rail, (7) ... Shaft, (8) ... Substrate, (9)
… Slider, (10)… Magnetic bias magnet, (11)
… Ferromagnetic thin film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】変位を検出すべき物体とともに移動する磁
気センサを設け、この磁気センサの直線的な移動方向に
対してセンシング用永久磁石を磁気センサの幅方向に傾
斜させて配置することにより、物体の変位を磁気センサ
の出力として検出する無接触式直線変位センサにおい
て、 磁気センサは、進退方向が長手方向となる多数の短冊状
の強磁性体薄膜を直列に連結した2個の磁気検出素子を
進退方向に対して直角方向に並べて間隔をもって配置す
るとともに電気的には直列に接続し、これらの磁気検出
素子に進退方向の磁気バイアスを均等に印加する磁気バ
イアス磁石を磁気検出素子に臨設し、 センシング用永久磁石は、前記磁気センサの幅方向にN
極とS極を有するように配置したことを特徴とする無接
触式直線変位センサ。
1. A magnetic sensor that moves together with an object whose displacement is to be detected is provided, and a sensing permanent magnet is arranged so as to be inclined in a width direction of the magnetic sensor with respect to a linear movement direction of the magnetic sensor. In a non-contact type linear displacement sensor that detects the displacement of an object as the output of a magnetic sensor, the magnetic sensor consists of two magnetic detection elements in which a number of strip-shaped ferromagnetic thin films whose advancing and retreating directions are the longitudinal direction are connected in series. Are arranged in a direction perpendicular to the advancing / retreating direction with a space therebetween and are electrically connected in series, and a magnetic bias magnet that evenly applies a magnetic bias in the advancing / retreating direction to these magnetic detecting elements is provided in the magnetic detecting element. , The sensing permanent magnet is N in the width direction of the magnetic sensor.
A non-contact type linear displacement sensor, which is arranged so as to have a pole and an S pole.
【請求項2】センシング用永久磁石に、フェライト磁石
を用いてなることを特徴とする請求項1記載の無接触式
直線変位センサ。
2. The non-contact type linear displacement sensor according to claim 1, wherein a ferrite magnet is used as the sensing permanent magnet.
JP04187093A 1993-02-05 1993-02-05 Non-contact linear displacement sensor Expired - Fee Related JP3296871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04187093A JP3296871B2 (en) 1993-02-05 1993-02-05 Non-contact linear displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04187093A JP3296871B2 (en) 1993-02-05 1993-02-05 Non-contact linear displacement sensor

Publications (2)

Publication Number Publication Date
JPH06229708A true JPH06229708A (en) 1994-08-19
JP3296871B2 JP3296871B2 (en) 2002-07-02

Family

ID=12620301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04187093A Expired - Fee Related JP3296871B2 (en) 1993-02-05 1993-02-05 Non-contact linear displacement sensor

Country Status (1)

Country Link
JP (1) JP3296871B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676804U (en) * 1993-04-06 1994-10-28 ミクロン機器株式会社 Magnetic circuit
WO2007069680A1 (en) 2005-12-16 2007-06-21 Asahi Kasei Emd Corporation Position detector
WO2008053926A1 (en) * 2006-11-02 2008-05-08 Alps Electric Co., Ltd. Motion sensor
US9772200B2 (en) 2013-03-15 2017-09-26 Bourns, Inc. Position measurement using angled collectors
EP3273203A1 (en) * 2016-07-20 2018-01-24 Melexis Technologies SA Displacement detection device
CN111373276A (en) * 2017-12-01 2020-07-03 昭和电工株式会社 Magnetic sensor, measuring device, and method for manufacturing magnetic sensor
CN112781627A (en) * 2020-06-23 2021-05-11 北京可利尔福科技有限公司 Closed-loop feedback system and electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676804U (en) * 1993-04-06 1994-10-28 ミクロン機器株式会社 Magnetic circuit
WO2007069680A1 (en) 2005-12-16 2007-06-21 Asahi Kasei Emd Corporation Position detector
EP1962062A1 (en) * 2005-12-16 2008-08-27 Asahi Kasei EMD Corporation Position detector
EP1962062A4 (en) * 2005-12-16 2010-10-06 Asahi Kasei Emd Corp Position detector
US7843190B2 (en) 2005-12-16 2010-11-30 Asahi Kasei Emd Corporation Position detection apparatus
WO2008053926A1 (en) * 2006-11-02 2008-05-08 Alps Electric Co., Ltd. Motion sensor
US9772200B2 (en) 2013-03-15 2017-09-26 Bourns, Inc. Position measurement using angled collectors
EP3273203A1 (en) * 2016-07-20 2018-01-24 Melexis Technologies SA Displacement detection device
US10900811B2 (en) 2016-07-20 2021-01-26 Melexis Technologies Sa Displacement detection device
CN111373276A (en) * 2017-12-01 2020-07-03 昭和电工株式会社 Magnetic sensor, measuring device, and method for manufacturing magnetic sensor
CN112781627A (en) * 2020-06-23 2021-05-11 北京可利尔福科技有限公司 Closed-loop feedback system and electronic device

Also Published As

Publication number Publication date
JP3296871B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US6900713B2 (en) Magnetic switch capable of instantaneous switching of an output signal and magnetic sensor
CN1022142C (en) Magnetoresistive sensor based on spin valve effect
US5493216A (en) Magnetic position detector
CA1126818A (en) Apparatus for sensing an external magnetic field
US20020030487A1 (en) Magnetic detection device
CN101088019A (en) Bridge type magnetic sensor with tunable characteristic
JP3487452B2 (en) Magnetic detector
JPH06229708A (en) Noncontact linear displacement sensor
JPS61173101A (en) Positional sensor
JP3321852B2 (en) Magnetic sensor device
JP2003106866A (en) Magnetic sensor
US4371905A (en) High resolution hall effect read head
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JP2001174286A (en) Magnetic encoder
JP3013031B2 (en) Magnetoresistance effect element and magnetoresistance sensor
JPH0710245Y2 (en) Magnetic sensor
JPH08316548A (en) Magnetoresistive element
JPH069306Y2 (en) Position detector
JP2514338B2 (en) Current detector
JP3186258B2 (en) Non-contact potentiometer
JP4773066B2 (en) Gear sensor
JPS6051153B2 (en) magnetic card reader
US3764952A (en) Galvanomagnetic resistance device
JP2000249573A (en) Magnetic detector
JP2546233B2 (en) Origin detection unit of magnetic head for magnetic encoder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees