WO2008053926A1 - Motion sensor - Google Patents

Motion sensor Download PDF

Info

Publication number
WO2008053926A1
WO2008053926A1 PCT/JP2007/071241 JP2007071241W WO2008053926A1 WO 2008053926 A1 WO2008053926 A1 WO 2008053926A1 JP 2007071241 W JP2007071241 W JP 2007071241W WO 2008053926 A1 WO2008053926 A1 WO 2008053926A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetoresistive effect
magnetic member
effect element
magnetoresistive
Prior art date
Application number
PCT/JP2007/071241
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Kurata
Ichiro Tokunaga
Masao Kasashima
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2008053926A1 publication Critical patent/WO2008053926A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention relates to a non-contact type movement sensor using a magnetoresistive effect element, and more particularly to a movement sensor that can improve the linearity of position detection.
  • MR elements using the magnetoresistive effect are used in a mobile sensor described in Patent Document 1 below.
  • the MR element can detect the change in the direction of the external magnetic field with high accuracy based on the change in electrical resistance that accompanies the change in direction. Higher performance and longer life can be expected compared to an element that reads changes in the magnetic field strength of an external magnetic field.
  • the magnetic detection element when the magnetic detection element is arranged near the magnetic pole of the permanent magnet, the magnetic detection element is opposed to the permanent magnet of the magnetic detection element from the permanent magnet.
  • an external magnetic field in a direction perpendicular to the surface penetrates and the magnetic detection element is between the magnetic poles as shown in FIG. 7 of Patent Document 1, the magnetic field is parallel to the opposite surface of the magnetic detection element. An external magnetic field enters.
  • Patent Document 1 since the direction of the external magnetic field that enters the magnetic detection element changes by moving the permanent magnet, the magnetic detection element uses an MR element that uses the magnetoresistive effect. If so, the electric resistance value of the magnetic sensing element changes due to the change in direction of the external magnetic field.
  • Patent Document 1 JP-A-5-280916
  • the permanent magnet has a rod shape, and the relative movement direction of the magnetic detection element and the width direction of the permanent magnet are It coincides with the direction of the center line passing through the center. For this reason, in the region between the magnetic poles of the permanent magnet shown in FIG. 7 of Patent Document 1, the vector component of the external magnetic field from almost one direction dominates into the magnetic detection element, and the magnetic field in the region between the magnetic poles is dominant. It is considered that the change in electrical resistance of the detection element (MR element) becomes small (or no change in electrical resistance), and therefore the linearity (linearity) of position detection cannot be improved appropriately.
  • the present invention is to solve the above-described conventional problems, and relates to a non-contact type movement sensor using a magnetoresistive effect element, and in particular, to improve the linearity (linearity) of position detection.
  • the purpose is to provide a movement sensor that can!
  • the movement sensor according to the present invention includes a magnetoresistive element having a laminated structure using a magnetoresistive effect in which an electric resistance changes with a change in direction of an external magnetic field, and a magnet for generating the external magnetic field.
  • One of the magnetoresistive effect element and the magnet is movably supported, and the magnetoresistive effect element and the magnet are spaced apart in a height direction, and when viewed from directly above the height direction, A center line passing through the center of the width dimension of the magnet and the relative movement path of the magnetoresistive element intersect in the middle, and from the intersection to the starting point of relative movement of the magnetoresistive element and the end point of relative movement.
  • the center line and the magnetoresistive effect element are arranged so as to face each other so that the distance between the relative movement paths of the magnetoresistive effect element gradually increases in the width direction.
  • the penetration direction of the external magnetic field from a plane direction parallel to the laminated interface entering the laminated structure is rotationally displaced, and the electric resistance value of the magnetoresistive effect element
  • the moving position is detected by changing.
  • the position detection linearity (linearity) can be improved in a non-contact type movement sensor using a magnetoresistive effect element as compared with the conventional case. That is, in the present invention, as described above, the center line of the magnet and the relative movement path of the magnetoresistive element intersect each other along the way, and the starting point of the relative movement of the magnetoresistive element from the intersection , And the magnetoresistive element and the magnet are opposed to each other so that the distance between the center line and the relative movement path of the magnetoresistive element gradually increases in the width direction toward the end point of the relative movement!
  • the magnetoresistive effect element since the center line of the magnet and the relative movement path of the magnetoresistive effect element do not coincide with each other, but intersect with each other from an oblique direction, if the magnetoresistive effect element is relatively moved, The magnetoresistive effect element is always in a position that is moved with respect to the center line of the magnet, and accordingly, with the relative movement of the magnetoresistive effect element, the magnetoresistive effect element is parallel to the laminated interface of the magnetoresistive effect element.
  • the direction of penetration of the external magnetic field from the surface direction can be gradually rotationally displaced.
  • the magnet has a center line length passing through the center in the width direction longer than a dimension in the width direction, and both side surfaces located on both sides of the center line are the center line. It is formed in a shape extending in a parallel direction so that the invasion direction of the external magnetic field from the plane direction parallel to the laminated interface of the magnetoresistive effect element is appropriately adjusted with the relative movement of the magnetoresistive effect element. It can be rotated and displaced, which is preferable.
  • the magnetoresistive element can be used as a linear movement sensor when it is relatively moved linearly.
  • the magnetoresistive effect element when supported so as to be movable and the magnet is fixedly arranged, it is possible to realize downsizing with a simple configuration.
  • the magnetoresistive effect element has a laminated interface of the laminated structure oriented in a direction perpendicular to a surface of the magnet facing the magnetoresistive effect element. It is preferable that the facing surface is a single magnetic pole surface. With such a configuration, the relative movement of the magnetoresistive element from the starting point of the relative movement of the magnetoresistive element to the intersection and the end point is parallel to the stacked interface of the magnetoresistive element. It is possible to rotate and displace the penetration direction of the external magnetic field from the proper plane direction more appropriately.
  • the first magnetic member and the second magnetic member are opposed to each other with a gap in the height direction, and the first magnetic member and the second magnetic member are A first center line passing through the center of the width dimension of the first magnetic member and a second center line passing through the center of the width dimension of the second magnetic member when viewed from directly above the vertical direction. And the first center line and the second center line are formed so as to be separated from each other in the width direction from the intersection to the one end direction and from the intersection to the other end direction. And at least one of the first magnetic member and the second magnetic member is formed of the magnet,
  • the directional force of the external magnetic field generated from the facing surface of one magnetic member toward the facing surface of the other magnetic member In the space between the first magnetic member and the second magnetic member, the directional force of the external magnetic field generated from the facing surface of one magnetic member toward the facing surface of the other magnetic member.
  • a rotating magnetic field region that gradually rotates is formed from one end side to the other end side of the magnetic member and the second magnetic member, and the magnetoresistive effect element has a laminated interface force of the laminated structure and the magnetic force.
  • the member is directed in a direction orthogonal to the surface of the member facing the magnetoresistive effect element, and is relatively moved so as to pass through the rotating magnetic field region from the one end side toward the other end side. preferable.
  • the magnetoresistive effect element by restricting the magnetoresistive effect element to move relatively between the magnetic members and within the rotating magnetic field region, the magnetoresistive effect is increased with the relative movement of the magnetoresistive effect element.
  • the electric resistance value of the element can be continuously changed, and the linearity (direct spring) of position detection can be improved more effectively.
  • the opposing surfaces of the first magnetic member and the second magnetic member are band-shaped.
  • the magnetoresistive element intersects the first magnetic member when viewed from directly above the height direction.
  • the force of moving the center in the width direction between the first center line and the second center line of the second magnetic member in a straight line more effectively improves the linearity of the position detection. It can also be used as a linear movement sensor.
  • the first magnetic member and the second magnetic member are both formed of magnets, and the facing surface of the first magnetic member and the facing surface of the second magnetic member are different. It is possible to form a rotating magnetic field region that is appropriately rotated and displaced with little disturbance of the external magnetic field between the magnetic members, and that the linearity (linearity) of position detection can be improved. Is possible.
  • the linearity (linearity) of position detection can be improved as compared with the conventional case.
  • FIG. 1 is a partial perspective view for showing the internal structure of the movement sensor in the present embodiment
  • FIG. 2 is a movement direction of the magnetoresistive effect element constituting the movement sensor shown in FIG. 1, and a magnet and a magnetoresistance effect
  • 3 (a) to 3 (e) are partial plan views for showing the positional relationship with the element.
  • Fig. 4 is a partial cross-sectional view of the resistive element and magnet cut in the height direction and viewed from the direction of the arrow.
  • Fig. 4 is a cross-sectional view of the laminated structure of the magneto-resistance element in the film thickness direction.
  • FIG. 4 is an enlarged cross-sectional view of FIG.
  • the movement sensor 1 in the present embodiment includes a housing 2, a magnetic detection unit 3 including a magnetoresistive element provided in the housing 2, a first magnet 4, and And a second magnet 5.
  • the illustrated X direction is the width direction
  • the illustrated Y direction is the length direction
  • the illustrated Z direction is the height direction.
  • Each direction is orthogonal to the other two directions.
  • the height direction indicates a direction in which the magnet and the magnetoresistive effect element face each other with a predetermined interval.
  • the side surface 2a of the housing 2 has a linear opening along the Y direction in the figure. Part 6 is formed.
  • the magnetic detection unit 3 is provided on the substrate 7, and the lever 8 connected to the substrate 7 is exposed to the outside through the opening 6.
  • the substrate 7 is supported by two rail portions 9 and 10 extending in parallel in the length direction (Y direction in the figure) with a predetermined interval in the width direction (X direction in the figure), and the lever By moving 8 in the Y direction in the figure, the substrate 7 moves in the Y direction in the figure along the rail portions 9 and 10. As a result, the magnetic detection unit 3 can be moved along the Y direction in the figure.
  • the magnetic detection unit 3 includes at least one magnetoresistive element 15.
  • the magnetic detection unit 3 is also provided with a fixed resistance element (not shown), and a series circuit is configured via the magnetoresistance effect element 15 and an output extraction unit.
  • the magnetoresistive effect element 15 and the fixed resistance element constitute a bridge circuit.
  • a detection circuit for detecting the movement position from the voltage change based on the electric resistance change of the magnetoresistive effect element 15 is provided inside or outside the housing 2.
  • the magnets 4 and 5 are disposed to face each other with a predetermined gap in the height direction (Z direction in the drawing).
  • the facing surface (lower surface) 4a of the first magnet 4 to the second magnet 5 is magnetized to the S pole, and the opposite surface (upper surface) of the first magnet 4 to the facing surface 4a is N.
  • the pole is magnetized.
  • the facing surface (upper surface) 5a of the second magnet 5 with respect to the first magnet 4 is magnetized in the N pole, and is opposite to the facing surface 5a of the second magnet 5 (lower surface). Is magnetized on the S pole.
  • the first magnet 4 has a width dimension T1, and a first center line Ol passing through the center of the width dimension T1 has a length L1 longer than the width dimension T1. It is formed with. Further, both side surfaces 4d and 4e located on both sides of the width dimension T1 are formed in parallel with the center line Ol, and the facing surface 4a of the first magnet 4 is formed in an elongated band shape.
  • the second magnet 5 has a width dimension T2 and a second center line 02 passing through the center of the width dimension T2 is formed with a dimension L2 longer than the width dimension T2.
  • both side surfaces 5d and 5e positioned on both sides of the width dimension T2 are formed in parallel with the center line 02, and the facing surface 5a of the second magnet 5 is formed in an elongated strip shape.
  • the width dimension T1 and the width dimension T2 have the same size, and the length dimension L1 and the length dimension L2 have the same length.
  • the first magnet 4 has a left end 4b (—end) at the right end 4c (the other end).
  • the second magnet 5 is inclined in the lower direction of the drawing (the opposite direction to the X direction in the drawing) than the right end portion 5c of the second magnet 5 in the upper direction (the X direction in the drawing).
  • the first center line Ol and the second center line 02 when viewed from directly above in the height direction (Z direction in the figure), have length dimensions LI and L2. It intersects at the center position. Therefore, the first center line Ol and the second center line 02 are gradually widened from the intersection 20 toward the left end 4b, 5b, and from the intersection 20 toward the right end 4c, 5c. It is separated in the direction (X direction in the figure).
  • the first magnet 4 and the second magnet 5 intersect in an X shape.
  • the facing surface (lower surface) 4a of the first magnet 4 is magnetized to the S pole
  • the facing surface (upper surface) 5a of the second magnet 5 is magnetized to the N pole.
  • An external magnetic field H is generated toward the facing surface 4a of the first magnet 4 from the force of the facing surface 5a of the second magnet 5.
  • Fig. 3 (a) is a cross-sectional view cut along line A shown in Fig. 2
  • Fig. 3 (b) is a cross-sectional view cut along line B shown in Fig. 2
  • Fig. 3 (c) is 2 is a cross-sectional view taken along line C shown in FIG. 2
  • FIG. 3 (d) is a cross-sectional view taken along line D shown in FIG. 2
  • FIG. 3 (e) is taken along line E shown in FIG. A cross-sectional view is shown.
  • FIG. 3 (a) The cross-sectional portion of Fig. 3 (a) is a place where the first magnet 5 and the second magnet 5 are relatively displaced in the width direction (X direction in the drawing).
  • the first magnet 4 is displaced from the second magnet 5 in the direction opposite to the X direction shown in the figure. Therefore, the direction of the external magnetic field HI from the facing surface 5a of the second magnet 5 to the facing surface 4a of the first magnet 4 is greatly inclined from the Z direction shown in the drawing to the opposite direction to the X direction shown in the drawing.
  • the cross section of FIG. 3 (b) shows that the first magnet 4 and the second magnet 5 are opposed to the second magnet 5 in which the amount of displacement in the X direction is small compared to FIG. 3 (a).
  • the direction of the external magnetic field H2 from the surface 5a toward the opposing surface 4a of the first magnet 4 has a smaller inclination angle from the Z direction in the figure than in FIG. 3 (a).
  • the first magnet 4 and the second magnet 5 coincide with the height direction (Z direction in the drawing). Therefore, the direction of the external magnetic field H3 from the facing surface 5a of the second magnet 5 to the facing surface 4a of the first magnet 4 coincides with the Z direction shown in the figure.
  • the cross-section of Fig. 3 (d) is the same as Fig. 3 (b), but the amount of displacement of the first magnet 4 and the second magnet 5 in the X direction is small, but is different from Fig. 3 (b).
  • the first magnet 4 is displaced from the second magnet 5 in the X direction. Therefore, as shown in FIG. 3 (d), the opposing surface 5 of the second magnet 5
  • the direction of the external magnetic field H4 from the a toward the facing surface 4a of the first magnet 4 is slightly inclined from the Z direction in the figure to the X direction in the figure.
  • the cross-sectional part of Fig. 3 (e) is the same as Fig. 3 (a), but the displacement of the first magnet 4 and the second magnet 5 in the X direction is large, but is different from Fig. 3 (a).
  • the first magnet 4 is displaced in the X direction in the drawing with respect to the second magnet 5. Therefore, as shown in FIG.
  • the external magnetic field H generated between the first magnet 4 and the second magnet 5 is directed from the left end 4b, 5b toward the right end 4c, 5c, as shown in FIG.
  • the rotational displacement is gradually made.
  • a magnetic detection unit 3 is provided between the first magnet 4 and the second magnet 5, but in FIG. 2 and FIG. 3, the magnetic detection unit 3 is configured.
  • the magnetoresistive effect element 15 is illustrated. As shown in FIG. 3, the magnetoresistive element 15 is not in contact with the first magnet 4 and the second magnet 5 at a predetermined interval in the height direction (Z direction in the drawing). . As shown in FIG. 3, the center of the magnetoresistive effect element 15 in the height direction is located at the center of the height direction (Z direction in the drawing) between the first magnet 4 and the second magnet 5.
  • the magnetoresistive element 15 moves between the first magnet 4 and the second magnet 5 along the Y direction shown in the figure.
  • the moving path 21 of the magnetoresistive element 15 is defined as a moving path at the center position of the magnetoresistive element 15 in the width direction (X direction in the drawing).
  • the movement path 21 of the magnetoresistive effect element 15 is connected to the first center line Ol of the first magnet 4 and the first center line Ol. It intersects at the intersection 20 of the second centerline 02 of the magnet 2 of 2.
  • the center lines Ol, 02 and the magnetoresistive effect element 15 gradually move from the intersection 20 toward the movement start point 22 and the movement end point 23 of the magnetoresistive effect element 15.
  • the distance between the paths 21 widens in the width direction (X direction in the figure)!
  • the magnetoresistive effect element 15 includes the magnets 4 and 4 as shown in FIG. Appropriately move in the rotating magnetic field region where the direction of the external magnetic field H between 5 is rotationally displaced.
  • the magnetoresistive element 15 is a GMR element using the giant magnetoresistive effect (GMR effect). is there.
  • the magnetoresistive effect element 15 includes an insulating layer 30, an underlayer 31, an antiferromagnetic layer 32, a fixed magnetic layer 33, a nonmagnetic intermediate layer 34, a free layer on a substrate 7 from below.
  • the magnetic layer 35 and the protective layer 36 are formed in this order using a thin film process such as sputtering.
  • the antiferromagnetic layer 32 / pinned magnetic layer 33 / nonmagnetic intermediate layer 34 / free magnetic layer 35 may be reversely stacked.
  • the antiferromagnetic layer 32 is formed of an antiferromagnetic material such as IrMn or PtMn.
  • the pinned magnetic layer 33 is made of a magnetic material such as CoFe or NiFe.
  • the nonmagnetic intermediate layer 34 is formed of a nonmagnetic conductive material such as Cu.
  • the protective layer 36 is made of Ta or the like.
  • the fixed magnetic layer 33 or the free magnetic layer 35 may have, for example, a laminated ferrimagnetic structure.
  • the magnetization direction 35a of the free magnetic layer 35 receives a bias magnetic field from the pinned magnetic layer 33 in the absence of a magnetic field, and is parallel or antiparallel. Unlike the pinned magnetic layer 33, the free magnetic layer 35 is not pinned in the magnetization direction, and changes in magnetization due to a change in the penetration direction of an external magnetic field. Further, for example, as shown in FIG. 4, it is necessary to provide a hard bias layer (not shown) in order to make the magnetization direction 35a of the free magnetic layer 35 perpendicular to the magnetization direction 33a of the pinned magnetic layer 33. . However, such a hard bias layer is not provided, and the magnetization direction 35a of the free magnetic layer 35 may not be controlled.
  • the magnetoresistive effect element 15 is formed of a laminated structure having a pinned magnetic layer 33 / a nonmagnetic intermediate layer 34 / a free magnetic layer 35, and a laminated interface 37 of each layer is shown in FIG. It is formed in a direction parallel to the Z plane.
  • FIG. 5 is a partially enlarged cross-sectional view showing an enlarged view of FIG. 3 (c).
  • the magnetoresistive effect element 15 is cut from the film thickness center of the free magnetic layer 35.
  • the cut surface of the free magnetic layer 35 shown in FIG. 5 is not the laminated interface 37 shown in FIG. 4, but the cut surface of the free magnetic layer 35 and the laminated interface 37 are in a parallel relationship.
  • FIG. 5 is a partially enlarged cross-sectional view showing an enlarged view of FIG. 3 (c).
  • the laminated interface 37 is oriented in a direction perpendicular to the facing surfaces 4a, 5a of the first magnet 4 and the second magnet 5.
  • the facing surfaces 15a and 15b of the magnetoresistive element 15 facing the magnets 4 and 5 are oriented in parallel to the facing surfaces 4a and 5a of the magnets 4 and 5, respectively. Therefore, the magnetoresistive effect element 15 has an external magnetic field H1 to H5 that rotates and displaces between the first magnet 4 and the second magnet 5 in a plane direction parallel to the laminated interface 37 (X-Z plane direction in the figure). It becomes the positional relationship that can enter.
  • the magnetoresistive effect element 15 is excellent in the ability to read the external magnetic field H from a direction parallel to the laminated interface 37 entering the free magnetic layer 35. Since the external magnetic fields H1 to H5 described with reference to FIG. 3 are rotationally displaced in the X-Z plane shown in FIG. 3, the magnetoresistive effect element 15 is obtained by matching the laminated interface 37 with the rotationally displaced surface of the external magnetic field H. The external magnetic field HI to H5, which is rotationally displaced from the plane direction parallel to the laminated interface, appropriately enters.
  • the free magnetic layer 35 is illustrated in the Z direction.
  • An external magnetic field inclined in the X direction or in the direction opposite to the X direction shown in the figure enters, and the magnetization direction 35a of the free magnetic layer 35 changes as shown by the dotted line in FIG.
  • the electric resistance value changes depending on the relationship between the variable magnetization direction 35 a of the free magnetic layer 35 and the fixed magnetization direction 33 a of the fixed magnetic layer 33.
  • a magnetoresistive effect element 15 is provided between the first magnet 4 and the second magnet 5, and the laminated interface of the laminated structure of the magnetoresistive effect element 15 37 is directed in a direction orthogonal to the facing surfaces 4a and 5a of the first magnet 4 and the second magnet 5.
  • the first magnet 4 and the second magnet 5 are arranged in the space between the magnets 4 and 5 from the left end portions 4b and 5b of the magnets 4 and 5 toward the right end portions 4c and 5c.
  • the shape and arrangement are determined so that an external magnetic field region that rotates and displaces in a plane parallel to the laminated interface 37 is formed.
  • the magnetoresistive effect element 15 is the center in the width direction between the center lines Ol and 02 of the magnets 4 and 5 so as to move linearly in the rotating magnetic field region, and is in the height direction between the magnets 4 and 5. It is moved and supported at the center.
  • the magnetoresistive effect element 15 linearly moves in the Y direction shown in the figure from the starting point 22 to the end point 23 shown in FIG. 2, the magnetoresistive effect element 15 enters the free magnetic layer 35 constituting the magnetoresistive effect element 15.
  • the electric resistance value changes gradually, and the moving position is detected by the output change based on the change in the electric resistance value.
  • the electric resistance value can be gradually changed, and the position detection linearity (Naozumi) Property) can be improved.
  • one of the first magnet 4 and the second magnet 5 may be a yoke. However, if one of them is a yoke, a disturbance magnetic field extending from the outside to the inside of the movement sensor 1 affects the external magnetic field H that is rotationally displaced between the magnets 4 and 5, and the direction of the external magnetic field H is disturbed. It is preferable to use magnets 4 and 5 for both because the position detection linearity is easily reduced.
  • the movement sensor can also be configured using only one magnet.
  • FIG. 6 is a partial plan view showing the positional relationship between the magnetoresistive element and the magnet constituting the movement sensor of the second embodiment, and FIG. 7 shows the magnetoresistive effect along the F line, G line, and H line shown in FIG. It is the fragmentary sectional view which cut
  • the magnet 40 is formed with a width dimension of T3, and the length dimension L3 of the center line 03 passing through the center of the width dimension T3 is longer than the width dimension T3. Yes. Further, both side surfaces 40b and 40c located on both sides of the width dimension T3 extend in parallel to the center line 03, and the opposing surface 40a of the magnet 40 to the magnetoresistive element 41 is formed in a rectangular shape.
  • the surface (opposing surface) 40a of the magnet 40 is magnetized to the N pole and the back surface is magnetized to the S pole.
  • the magnetoresistive effect element 41 shown in FIGS. 6 and 7 is formed with the same laminated structure as the magnetoresistive effect element 15 shown in FIG.
  • the laminated interface 42 of the laminated structure is in a direction (height direction) orthogonal to the facing surface 40a of the magnet 40 facing the magnetoresistive effect element 41.
  • it is oriented in the width direction (X direction in the figure).
  • the external magnetic field H from the magnet 40 enters the magnetoresistive element 41 from a plane direction (X-Z plane direction in the drawing) parallel to the laminated interface 42.
  • the center line 03 of the magnet 40 is formed along the Y direction in the figure.
  • the moving path 43 of the magnetoresistive effect element 41 is a linear path diagonally extending in the lower left direction from the force on the upper left direction of the paper with respect to the center line 03.
  • the moving path 43 of the effect element 41 and the center line 03 of the magnet 40 intersect at the center of the magnet 40 in the length direction (Y direction in the drawing).
  • the width direction between the center line 03 and the moving path 43 of the magnetoresistive effect element 41 (illustrated)
  • the magnetoresistive effect element 41 and the magnet 40 are arranged so that the interval in the (X direction) is widened.
  • FIG. 7 (a) shows a magnetoresistive element and a magnet cut in the height direction from the line FF in FIG.
  • Fig. 7 (b) is a partial cross-sectional view of the magnetoresistive effect element 40 and the magnet 40 cut from the G-G line in Fig. 6 in the height direction.
  • Fig. 7 (c) is a H- A partial sectional view of the magnetoresistive element and the magnet 40 cut in the height direction from the H line is shown.
  • the magnetoresistive element 41 moves from the position of the intersection 44 toward the end point 46.
  • the external magnetic field from the magnet 40 entering from the plane direction parallel to the laminated interface 42 begins to increase in vector components gradually moving from the Z direction shown in the figure to the direction opposite to the X direction shown in FIG. )
  • the film thickness center of the free magnetic layer of the magnetoresistive effect element 41 is located on the rightmost magnet 40 in the figure, the free magnetic layer has an external magnetic field H8 in a direction almost opposite to the X direction in the figure. Invades dominantly.
  • the number of magnets 40 is less than one, and two magnets 4 and 5 are prepared and rotated between magnets 4 and 5 as in the embodiment shown in FIGS.
  • Artificial creation of magnetic field area The external magnetic field can be rotated and displaced gradually and in a linear direction from 1S, and the position detection linearity (linearity) can be further improved. It is.
  • two sets of magnets 50 and 51 are prepared in the orthogonal direction so that the magnetoresistance supported by the X-axis 60 and the Y-axis 61 is obtained. It is also possible to detect the movement of the effect element 53 in two directions, the X direction and the Y direction.
  • the magnetoresistive element is moved and supported, and the magnet is fixedly supported.
  • the magnetoresistive effect element is fixedly supported and the magnet is moved, for example, in order to secure the relative movement distance from the start point 22 to the end point 23 of the magnetoresistive effect element 15 in FIG. Therefore, it is necessary to move and support the magnetoresistive effect element and to fix and support the magnet in a simple configuration. This is suitable because it can be realized.
  • the movement path of the magnetoresistive effect element is! / And the deviation is linear, but it may be other than linear. However, a straight line is preferable because high linearity (linearity) of position detection can be secured.
  • the magnetoresistive element is an AMR element using the anisotropic magnetoresistive effect (AMR effect), and the tunnel magnetoresistive effect (TMR effect). Even a TMR element using the GMR element using the giant magnetoresistive effect (GMR effect), the magnetoresistive element is an AMR element using the anisotropic magnetoresistive effect (AMR effect), and the tunnel magnetoresistive effect (TMR effect). Even a TMR element using the GMR element using the giant magnetoresistive effect (GMR effect), the magnetoresistive element is an AMR element using the anisotropic magnetoresistive effect (AMR effect), and the tunnel magnetoresistive effect (TMR effect). Even a TMR element using the GMR element using the GMR effect (GMR effect), the magnetoresistive element is an AMR element using the anisotropic magnetoresistive effect (AMR effect), and the tunnel magnetoresistive effect (TMR effect). Even a TMR element using the GMR element using the GMR effect using the GMR effect (G effect),
  • the movement sensor in this embodiment can be used, for example, as a mixer fader or a slide volume for a control console.
  • FIG. 1 is a partial perspective view for showing an internal structure of a movement sensor in the present embodiment
  • FIG. 2 is a partial plan view for showing the positional relationship between the moving direction of the magnetoresistive effect element constituting the movement sensor shown in FIG. 1 and the magnet and the magnetoresistive effect element;
  • FIG. 3 (a) to (e) show the height direction of the magnetoresistive element and the magnet along each line when the magnetoresistive element moves from the position on the A line to the position on the E line shown in FIG. A partial cross-sectional view as seen from the direction of the arrow,
  • FIG. 4 is a cross-sectional view from the film thickness direction of the laminated structure of magnetoresistive elements
  • FIG. 5 Enlarged sectional view of Fig. 3 (c),
  • FIG. 6 is a partial plan view showing the positional relationship between a magnetoresistive element and a magnet constituting the movement sensor of the second embodiment
  • FIG. 7 When the magnetoresistive effect element moves to the position on the F line, G line, and H line shown in FIG. 6, the magnetoresistive effect element and the magnet are cut in the height direction along each line, and from the arrow direction.
  • FIG. 8 is a partial plan view showing the positional relationship between a magnetoresistive element and a magnet constituting the movement sensor of the third embodiment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

[PROBLEMS] A contactless motion sensor using a magnetoresistive effect element and especially a motion sensor having an improved linearity of position detection. [MEANS FOR SOLVING PROBLEMS] A first magnet (4) and a second magnet (5) are crossed, and a magnetoresistive effect element (GMR element) (15) is linearly moved in the space between the magnets (4, 5). Between the magnets (4, 5), a rotating magnetic field region where an external magnetic field is rotation-displaced is formed from the left-side ends (4b, 5b) and right-side ends (4c, 5c). The magnetoresistive effect element (15) is supported movably within the rotating magnetic field region. Therefore, while the magnetoresistive effect element (15) is moving, the direction of magnetization in the free magnetic layer of the magnetoresistive effect element (15) gradually varies. Consequently, the linearity of the position detection is improved.

Description

明 細 書  Specification
移動センサ 技術分野  Technical field of movement sensor
[0001] 本発明は、磁気抵抗効果素子を用いた非接触式の移動センサに係り、特に、位置 検出のリニアリティ(直線性)を向上させることが可能な移動センサに関する。  The present invention relates to a non-contact type movement sensor using a magnetoresistive effect element, and more particularly to a movement sensor that can improve the linearity of position detection.
背景技術  Background art
[0002] 磁気抵抗効果を利用した MR素子は以下の特許文献 1に記載されている移動セン サ等に使用される。前記 MR素子は、外部磁界の方向変化を、前記方向変化に伴う 電気抵抗変化に基づき高精度に検知できるため、環境変化や磁石の磁力低下等に 関係なく検知可能で、ホール素子等のように外部磁界の磁界強度変化を読み取る素 子に比べて高性能且つ高寿命を期待できる。  [0002] MR elements using the magnetoresistive effect are used in a mobile sensor described in Patent Document 1 below. The MR element can detect the change in the direction of the external magnetic field with high accuracy based on the change in electrical resistance that accompanies the change in direction. Higher performance and longer life can be expected compared to an element that reads changes in the magnetic field strength of an external magnetic field.
[0003] 特許文献 1に記載された発明では、例えば特許文献 1の図 5や図 7に示されるよう に永久磁石と磁気検出素子とが対向配置され、前記永久磁石が直線方向へ移動支 持されている。  [0003] In the invention described in Patent Document 1, for example, as shown in FIG. 5 and FIG. 7 of Patent Document 1, the permanent magnet and the magnetic detection element are arranged to face each other, and the permanent magnet is supported to move in the linear direction. Has been.
[0004] このような配置とした場合、前記永久磁石の磁極付近に前記磁気検出素子が配置 されたとき、前記磁気検出素子には、前記永久磁石から前記磁気検出素子の前記 永久磁石との対向面に直交する方向の外部磁界が侵入し、また特許文献 1の図 7の ように、前記磁気検出素子が磁極間にある場合には、前記磁気検出素子の前記対 向面と平行な方向の外部磁界が侵入する。  In such an arrangement, when the magnetic detection element is arranged near the magnetic pole of the permanent magnet, the magnetic detection element is opposed to the permanent magnet of the magnetic detection element from the permanent magnet. When an external magnetic field in a direction perpendicular to the surface penetrates and the magnetic detection element is between the magnetic poles as shown in FIG. 7 of Patent Document 1, the magnetic field is parallel to the opposite surface of the magnetic detection element. An external magnetic field enters.
[0005] このように、特許文献 1では、前記磁気検出素子に侵入する外部磁界の方向が、前 記永久磁石を移動させることで変化するため、磁気検出素子が磁気抵抗効果を利用 した MR素子であると、前記外部磁界の方向変化によって前記磁気検出素子の電気 抵抗値が変化する。  Thus, in Patent Document 1, since the direction of the external magnetic field that enters the magnetic detection element changes by moving the permanent magnet, the magnetic detection element uses an MR element that uses the magnetoresistive effect. If so, the electric resistance value of the magnetic sensing element changes due to the change in direction of the external magnetic field.
特許文献 1 :特開平 5— 280916号公報  Patent Document 1: JP-A-5-280916
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、特許文献 1に記載された発明では、前記磁気検出素子の前記対向 面と平行な方向に侵入する外部磁界領域が長すぎ、位置検出のリニアリティ(直線性 )を適切に向上させることができないと考えられる。 However, in the invention described in Patent Document 1, the opposite of the magnetic detection element It is considered that the external magnetic field area that penetrates in the direction parallel to the surface is too long, and the linearity of position detection cannot be improved appropriately.
[0007] 特許文献 1の図 5等に示すように、特許文献 1に記載された発明では、永久磁石は 棒形状であり、前記磁気検出素子の相対移動方向と、前記永久磁石の幅方向の中 心を通る中心線方向とは一致している。このため、特許文献 1の図 7に示す永久磁石 の磁極間領域では、前記磁気検出素子には、ほぼ一方向からの外部磁界のベクトル 成分が支配的に侵入し、磁極間領域での前記磁気検出素子(MR素子)の電気抵抗 変化が小さくなり(あるいは電気抵抗変化が無く)、したがって、位置検出のリニアリテ ィ(直線性)を適切に向上させることができないと考えられる。  As shown in FIG. 5 of Patent Document 1, etc., in the invention described in Patent Document 1, the permanent magnet has a rod shape, and the relative movement direction of the magnetic detection element and the width direction of the permanent magnet are It coincides with the direction of the center line passing through the center. For this reason, in the region between the magnetic poles of the permanent magnet shown in FIG. 7 of Patent Document 1, the vector component of the external magnetic field from almost one direction dominates into the magnetic detection element, and the magnetic field in the region between the magnetic poles is dominant. It is considered that the change in electrical resistance of the detection element (MR element) becomes small (or no change in electrical resistance), and therefore the linearity (linearity) of position detection cannot be improved appropriately.
[0008] そこで本発明は上記従来の課題を解決するためのものであり、磁気抵抗効果素子 を用いた非接触式の移動センサに係り、特に、位置検出のリニアリティ(直線性)を向 上させることが可能な移動センサを提供することを目的として!/、る。  [0008] Therefore, the present invention is to solve the above-described conventional problems, and relates to a non-contact type movement sensor using a magnetoresistive effect element, and in particular, to improve the linearity (linearity) of position detection. The purpose is to provide a movement sensor that can!
課題を解決するための手段  Means for solving the problem
[0009] 本発明における移動センサは、外部磁界の方向変化に対して電気抵抗が変化す る磁気抵抗効果を利用した積層構造の磁気抵抗効果素子と、前記外部磁界を発生 させるための磁石とを有し、 [0009] The movement sensor according to the present invention includes a magnetoresistive element having a laminated structure using a magnetoresistive effect in which an electric resistance changes with a change in direction of an external magnetic field, and a magnet for generating the external magnetic field. Have
前記磁気抵抗効果素子及び磁石の一方が移動可能に支持されており、 前記磁気抵抗効果素子と前記磁石は、高さ方向に間隔を空け、前記高さ方向の真 上から見たときに、前記磁石の幅寸法の中心を通る中心線と、前記磁気抵抗効果素 子の相対移動経路とが途中で交差すると共に、交差点から磁気抵抗効果素子の相 対移動の出発点及び相対移動の終点に向けて徐々に前記中心線と前記磁気抵抗 効果素子の相対移動経路間の間隔が幅方向に広がるように対向配置され、  One of the magnetoresistive effect element and the magnet is movably supported, and the magnetoresistive effect element and the magnet are spaced apart in a height direction, and when viewed from directly above the height direction, A center line passing through the center of the width dimension of the magnet and the relative movement path of the magnetoresistive element intersect in the middle, and from the intersection to the starting point of relative movement of the magnetoresistive element and the end point of relative movement. The center line and the magnetoresistive effect element are arranged so as to face each other so that the distance between the relative movement paths of the magnetoresistive effect element gradually increases in the width direction.
前記磁気抵抗効果素子の相対移動に伴って、前記積層構造内に侵入する積層界 面と平行な面方向からの前記外部磁界の侵入方向が回転変位し、前記磁気抵抗効 果素子の電気抵抗値が変化することで移動位置が検出されることを特徴とするもの である。  With the relative movement of the magnetoresistive effect element, the penetration direction of the external magnetic field from a plane direction parallel to the laminated interface entering the laminated structure is rotationally displaced, and the electric resistance value of the magnetoresistive effect element The moving position is detected by changing.
[0010] 本発明では上記構成により、従来に比べて、磁気抵抗効果素子を用いた非接触式 の移動センサにおいて、位置検出のリニアリティ(直線性)を向上させることが出来る。 [0011] すなわち本発明では、上記のように、磁石の前記中心線と、前記磁気抵抗効果素 子の相対移動経路とが、途中で交わると共に、交差点から磁気抵抗効果素子の相対 移動の出発点、及び相対移動の終点に向けて徐々に前記中心線と前記磁気抵抗 効果素子の相対移動経路間の間隔が幅方向に広がるように、磁気抵抗効果素子と 磁石とが対向配置されて!/、る。 In the present invention, with the above-described configuration, the position detection linearity (linearity) can be improved in a non-contact type movement sensor using a magnetoresistive effect element as compared with the conventional case. That is, in the present invention, as described above, the center line of the magnet and the relative movement path of the magnetoresistive element intersect each other along the way, and the starting point of the relative movement of the magnetoresistive element from the intersection , And the magnetoresistive element and the magnet are opposed to each other so that the distance between the center line and the relative movement path of the magnetoresistive element gradually increases in the width direction toward the end point of the relative movement! The
[0012] 従来のように、磁石の前記中心線と前記磁気抵抗効果素子の相対移動経路とがー 致していると、前記磁石の中央付近では前記磁気抵抗効果素子に侵入する外部磁 界の方向がほぼ一定となってしまい、この結果、位置検出のリニアリティ(直線性)を 向上させることが出来なかった。  [0012] As in the prior art, when the center line of the magnet and the relative movement path of the magnetoresistive element are aligned, the direction of the external magnetic field that enters the magnetoresistive element near the center of the magnet As a result, the linearity of position detection could not be improved.
[0013] これに対し本発明では、磁石の前記中心線と前記磁気抵抗効果素子の相対移動 経路とを一致させず、斜め方向から交差させているので、前記磁気抵抗効果素子を 相対移動させると、前記磁気抵抗効果素子は、前記磁石の中心線に対して常に変 動した位置にあり、これにより、前記磁気抵抗効果素子の相対移動に伴い、前記磁 気抵抗効果素子の積層界面と平行な面方向からの外部磁界の侵入方向を漸次的 に、回転変位させることが出来る。  On the other hand, in the present invention, since the center line of the magnet and the relative movement path of the magnetoresistive effect element do not coincide with each other, but intersect with each other from an oblique direction, if the magnetoresistive effect element is relatively moved, The magnetoresistive effect element is always in a position that is moved with respect to the center line of the magnet, and accordingly, with the relative movement of the magnetoresistive effect element, the magnetoresistive effect element is parallel to the laminated interface of the magnetoresistive effect element. The direction of penetration of the external magnetic field from the surface direction can be gradually rotationally displaced.
[0014] よって、従来に比べて、位置検出のリニアリティ(直線性)を向上させることが出来る  [0014] Therefore, the linearity (linearity) of position detection can be improved as compared with the conventional case.
[0015] また本発明では、前記磁石は、幅方向の中心を通る中心線長さが前記幅方向の寸 法よりも長ぐ且つ、前記中心線の両側に位置する両側面が前記中心線と平行な方 向に延びる形状で形成されていることが、前記磁気抵抗効果素子の相対移動に伴 い、前記磁気抵抗効果素子の積層界面と平行な面方向からの外部磁界の侵入方向 を適切に、回転変位させることが出来、好適である。 [0015] In the present invention, the magnet has a center line length passing through the center in the width direction longer than a dimension in the width direction, and both side surfaces located on both sides of the center line are the center line. It is formed in a shape extending in a parallel direction so that the invasion direction of the external magnetic field from the plane direction parallel to the laminated interface of the magnetoresistive effect element is appropriately adjusted with the relative movement of the magnetoresistive effect element. It can be rotated and displaced, which is preferable.
[0016] また、前記磁気抵抗効果素子は、直線状に相対移動すると直線式の移動センサと して使用可能となる。  [0016] The magnetoresistive element can be used as a linear movement sensor when it is relatively moved linearly.
[0017] 本発明では、前記磁気抵抗効果素子が移動可能に支持され、前記磁石が固定配 置されて!/、ると、簡単な構成で且つ小型化を実現できる。  In the present invention, when the magnetoresistive effect element is supported so as to be movable and the magnet is fixedly arranged, it is possible to realize downsizing with a simple configuration.
[0018] 本発明では、前記磁気抵抗効果素子は、前記積層構造の積層界面が、前記磁石 の前記磁気抵抗効果素子との対向面に対して直交する方向に向けられ、前記磁石 の前記対向面が単一の磁極面となっていることが好適である。このような構成とするこ とで、前記磁気抵抗効果素子の相対移動の出発点から交差点及び終点に向けて、 前記磁気抵抗効果素子の相対移動に伴い、前記磁気抵抗効果素子の積層界面と 平行な面方向からの外部磁界の侵入方向をより適切に、回転変位させることが出来 [0018] In the present invention, the magnetoresistive effect element has a laminated interface of the laminated structure oriented in a direction perpendicular to a surface of the magnet facing the magnetoresistive effect element. It is preferable that the facing surface is a single magnetic pole surface. With such a configuration, the relative movement of the magnetoresistive element from the starting point of the relative movement of the magnetoresistive element to the intersection and the end point is parallel to the stacked interface of the magnetoresistive element. It is possible to rotate and displace the penetration direction of the external magnetic field from the proper plane direction more appropriately.
[0019] 本発明では、第 1の磁性部材と、第 2の磁性部材とが高さ方向に間隔を空けて対向 するとともに、前記第 1の磁性部材と前記第 2の磁性部材は、前記高さ方向の真上か ら見たときに、前記第 1の磁性部材の幅寸法の中心を通る第 1の中心線と、前記第 2 の磁性部材の幅寸法の中心を通る第 2の中心線とが途中で交差すると共に、前記第 1の中心線と前記第 2の中心線とが交差点から一端部方向、及び交差点から他端部 方向に向けて互いに幅方向に離れていく形状にて形成され、前記第 1の磁性部材及 び前記第 2の磁性部材のうち少なくとも一方が前記磁石で形成されており、 In the present invention, the first magnetic member and the second magnetic member are opposed to each other with a gap in the height direction, and the first magnetic member and the second magnetic member are A first center line passing through the center of the width dimension of the first magnetic member and a second center line passing through the center of the width dimension of the second magnetic member when viewed from directly above the vertical direction. And the first center line and the second center line are formed so as to be separated from each other in the width direction from the intersection to the one end direction and from the intersection to the other end direction. And at least one of the first magnetic member and the second magnetic member is formed of the magnet,
前記第 1の磁性部材と前記第 2の磁性部材間の空間内には、一方の磁性部材の対 向面から他方の磁性部材の対向面に向けて発生する外部磁界の方向力 前記第 1 の磁性部材及び第 2の磁性部材の一端部側から他端部側に向けて、徐々に回転変 位する回転磁場領域が形成され、前記磁気抵抗効果素子は、前記積層構造の積層 界面力 前記磁性部材の前記磁気抵抗効果素子との対向面に対して直交する方向 に向けられるとともに、前記一端部側から前記他端部側に向けて、前記回転磁場領 域内を通るように相対移動することが好ましい。  In the space between the first magnetic member and the second magnetic member, the directional force of the external magnetic field generated from the facing surface of one magnetic member toward the facing surface of the other magnetic member. A rotating magnetic field region that gradually rotates is formed from one end side to the other end side of the magnetic member and the second magnetic member, and the magnetoresistive effect element has a laminated interface force of the laminated structure and the magnetic force. The member is directed in a direction orthogonal to the surface of the member facing the magnetoresistive effect element, and is relatively moved so as to pass through the rotating magnetic field region from the one end side toward the other end side. preferable.
[0020] 上記した構成では、 2つの磁性部材を高さ方向にて対向させ、し力、も各磁性部材の 前記中心線を高さ方向の真上から見たときに斜め方向から交差するようにしているの で、前記磁性部材間に、一端部側から他端部側に向けて、徐々に外部磁界が回転 変位する回転磁場領域を形成することが簡単且つ適切に出来る。  [0020] In the configuration described above, two magnetic members are opposed to each other in the height direction, and the force and crossing from the oblique direction when the center line of each magnetic member is viewed from directly above the height direction. Therefore, it is possible to easily and appropriately form a rotating magnetic field region in which an external magnetic field gradually rotates and displaces from the one end side to the other end side between the magnetic members.
[0021] そして、前記磁性部材間であって、前記回転磁場領域内を前記磁気抵抗効果素 子が相対移動するように規制することで、前記磁気抵抗効果素子の相対移動に伴い 前記磁気抵抗効果素子の電気抵抗値を連続的に変化させることができ、より効果的 に、位置検出のリニアリティ(直泉性)を向上させることが出来る。  [0021] Then, by restricting the magnetoresistive effect element to move relatively between the magnetic members and within the rotating magnetic field region, the magnetoresistive effect is increased with the relative movement of the magnetoresistive effect element. The electric resistance value of the element can be continuously changed, and the linearity (direct spring) of position detection can be improved more effectively.
[0022] 本発明では、前記第 1の磁性部材及び前記第 2の磁性部材の各対向面は帯形状 で、前記高さ方向の真上から見たときに X字状に交差しており、前記磁気抵抗効果 素子は、前記高さ方向の真上から見たときに、前記第 1の磁性部材の第 1の中心線と 前記第 2の磁性部材の第 2の中心線間の幅方向の中心を直線状に相対移動するこ と力 より効果的に、位置検出のリニアリティ(直線性)を向上させた直線式の移動セ ンサとして使用可能である。 In the present invention, the opposing surfaces of the first magnetic member and the second magnetic member are band-shaped. The magnetoresistive element intersects the first magnetic member when viewed from directly above the height direction. The force of moving the center in the width direction between the first center line and the second center line of the second magnetic member in a straight line more effectively improves the linearity of the position detection. It can also be used as a linear movement sensor.
[0023] 本発明では、前記第 1の磁性部材及び前記第 2の磁性部材は共に磁石で形成さ れ、前記第 1の磁性部材の対向面、及び前記第 2の磁性部材の対向面が異極に着 磁されていること力 S、前記磁性部材間に外部磁界の乱れが少なく適切に回転変位し た回転磁場領域を形成でき、さらに、位置検出のリニアリティ(直線性)を向上させる ことが可能である。 In the present invention, the first magnetic member and the second magnetic member are both formed of magnets, and the facing surface of the first magnetic member and the facing surface of the second magnetic member are different. It is possible to form a rotating magnetic field region that is appropriately rotated and displaced with little disturbance of the external magnetic field between the magnetic members, and that the linearity (linearity) of position detection can be improved. Is possible.
発明の効果  The invention's effect
[0024] 本発明の移動センサによれば、従来に比べて、位置検出のリニアリティ(直線性)を 向上させることが出来る。  [0024] According to the movement sensor of the present invention, the linearity (linearity) of position detection can be improved as compared with the conventional case.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 図 1は本実施形態における移動センサの内部構造を示すための部分斜視図、図 2 は図 1に示す移動センサを構成する磁気抵抗効果素子の移動方向と、磁石及び磁 気抵抗効果素子との位置関係を示すための部分平面図、図 3 (a)〜(e)は、図 2に示 す Aから Eの位置まで磁気抵抗効果素子が移動した際、各線上に沿って磁気抵抗効 果素子及び磁石を高さ方向に切断し、矢印方向から見た部分断面図、図 4は磁気抵 抗効果素子の積層構造を膜厚方向に切断したときの断面図、図 5は、図 3 (c)の拡大 断面図、である。 FIG. 1 is a partial perspective view for showing the internal structure of the movement sensor in the present embodiment, and FIG. 2 is a movement direction of the magnetoresistive effect element constituting the movement sensor shown in FIG. 1, and a magnet and a magnetoresistance effect. 3 (a) to 3 (e) are partial plan views for showing the positional relationship with the element. When the magnetoresistive effect element moves from position A to E shown in FIG. Fig. 4 is a partial cross-sectional view of the resistive element and magnet cut in the height direction and viewed from the direction of the arrow. Fig. 4 is a cross-sectional view of the laminated structure of the magneto-resistance element in the film thickness direction. FIG. 4 is an enlarged cross-sectional view of FIG.
[0026] 図 1に示すように本実施形態における移動センサ 1は、筐体 2と、前記筐体 2内部に 設けられる磁気抵抗効果素子を備えた磁気検出部 3、第 1の磁石 4、及び第 2の磁石 5とを有して構成される。  As shown in FIG. 1, the movement sensor 1 in the present embodiment includes a housing 2, a magnetic detection unit 3 including a magnetoresistive element provided in the housing 2, a first magnet 4, and And a second magnet 5.
[0027] ここで各図において図示 X方向を幅方向、図示 Y方向を長さ方向、図示 Z方向を高 さ方向として説明する。各方向は残り 2つの方向と直交する関係にある。なお高さ方 向は磁石と磁気抵抗効果素子とが所定の間隔を空けて対向する方向を指している。  [0027] Here, in each figure, the illustrated X direction is the width direction, the illustrated Y direction is the length direction, and the illustrated Z direction is the height direction. Each direction is orthogonal to the other two directions. The height direction indicates a direction in which the magnet and the magnetoresistive effect element face each other with a predetermined interval.
[0028] 図 1に示すように、前記筐体 2の側面 2aには、図示 Y方向に沿って直線状の開口 部 6が形成されている。図 1に示すように磁気検出部 3は基板 7に設けられ、前記基 板 7に接続されたレバー 8が、前記開口部 6を介して外部に露出している。 [0028] As shown in FIG. 1, the side surface 2a of the housing 2 has a linear opening along the Y direction in the figure. Part 6 is formed. As shown in FIG. 1, the magnetic detection unit 3 is provided on the substrate 7, and the lever 8 connected to the substrate 7 is exposed to the outside through the opening 6.
[0029] 前記基板 7は、幅方向(図示 X方向)に所定の間隔を空けて長さ方向(図示 Y方向) に平行に延びる 2本のレール部 9, 10に支持されており、前記レバー 8を図示 Y方向 に移動させることで前記基板 7が前記レール部 9, 10に沿って図示 Y方向に移動す る。この結果、前記磁気検出部 3を図示 Y方向に沿って移動させることが出来る。  [0029] The substrate 7 is supported by two rail portions 9 and 10 extending in parallel in the length direction (Y direction in the figure) with a predetermined interval in the width direction (X direction in the figure), and the lever By moving 8 in the Y direction in the figure, the substrate 7 moves in the Y direction in the figure along the rail portions 9 and 10. As a result, the magnetic detection unit 3 can be moved along the Y direction in the figure.
[0030] 前記磁気検出部 3は少なくとも一つの磁気抵抗効果素子 15を備える。前記磁気検 出部 3には図示しない固定抵抗素子も設けられ、前記磁気抵抗効果素子 15と出力 取り出し部を介して直列回路が構成されている。あるいは前記磁気抵抗効果素子 15 と固定抵抗素子とでブリッジ回路が構成されている。また図示しないが、前記磁気抵 抗効果素子 15の電気抵抗変化に基づく電圧変化から移動位置を検出するための検 出回路が筐体 2内部あるいは外部に設けられる。  The magnetic detection unit 3 includes at least one magnetoresistive element 15. The magnetic detection unit 3 is also provided with a fixed resistance element (not shown), and a series circuit is configured via the magnetoresistance effect element 15 and an output extraction unit. Alternatively, the magnetoresistive effect element 15 and the fixed resistance element constitute a bridge circuit. Although not shown, a detection circuit for detecting the movement position from the voltage change based on the electric resistance change of the magnetoresistive effect element 15 is provided inside or outside the housing 2.
[0031] 図 1ないし図 3に示すように、前記磁石 4, 5は、高さ方向(図示 Z方向)に所定の間 隔を空けて対向配置されている。前記第 1の磁石 4の前記第 2の磁石 5との対向面( 下面) 4aは、 S極に着磁され、前記第 1の磁石 4の前記対向面 4aとの逆面(上面)が N極に着磁されている。一方、前記第 2の磁石 5の前記第 1の磁石 4との対向面(上 面) 5aは、 N極に着磁され、前記第 2の磁石 5の前記対向面 5aと逆面(下面)が S極 に着磁されている。  As shown in FIGS. 1 to 3, the magnets 4 and 5 are disposed to face each other with a predetermined gap in the height direction (Z direction in the drawing). The facing surface (lower surface) 4a of the first magnet 4 to the second magnet 5 is magnetized to the S pole, and the opposite surface (upper surface) of the first magnet 4 to the facing surface 4a is N. The pole is magnetized. On the other hand, the facing surface (upper surface) 5a of the second magnet 5 with respect to the first magnet 4 is magnetized in the N pole, and is opposite to the facing surface 5a of the second magnet 5 (lower surface). Is magnetized on the S pole.
[0032] 図 2に示すように、第 1の磁石 4は、幅寸法が T1で形成され、前記幅寸法 T1の中 心を通る第 1の中心線 Olが前記幅寸法 T1よりも長い寸法 L1で形成されている。ま た、前記幅寸法 T1の両側に位置する両側面 4d, 4eは前記中心線 Olと平行に形成 されており、前記第 1の磁石 4の対向面 4aは細長い帯形状で形成されている。また、 第 2の磁石 5は、幅寸法が T2で形成され、前記幅寸法 T2の中心を通る第 2の中心線 02が前記幅寸法 T2よりも長い寸法 L2で形成されている。また、前記幅寸法 T2の両 側に位置する両側面 5d, 5eは前記中心線 02と平行に形成されており、前記第 2の 磁石 5の対向面 5aは細長い帯形状で形成されている。前記幅寸法 T1と幅寸法 T2 は同じ大きさであり、長さ寸法 L1と長さ寸法 L2は同じ長さである。  As shown in FIG. 2, the first magnet 4 has a width dimension T1, and a first center line Ol passing through the center of the width dimension T1 has a length L1 longer than the width dimension T1. It is formed with. Further, both side surfaces 4d and 4e located on both sides of the width dimension T1 are formed in parallel with the center line Ol, and the facing surface 4a of the first magnet 4 is formed in an elongated band shape. The second magnet 5 has a width dimension T2 and a second center line 02 passing through the center of the width dimension T2 is formed with a dimension L2 longer than the width dimension T2. Further, both side surfaces 5d and 5e positioned on both sides of the width dimension T2 are formed in parallel with the center line 02, and the facing surface 5a of the second magnet 5 is formed in an elongated strip shape. The width dimension T1 and the width dimension T2 have the same size, and the length dimension L1 and the length dimension L2 have the same length.
[0033] 図 2に示すように、第 1の磁石 4は左側端部 4b (—端部)が右側端部 4c (他端部)よ りも紙面上方向(図示 X方向)に傾いており、また第 2の磁石 5は左側端部 5bが右側 端部 5cよりも紙面下方向(図示 X方向とは逆方向)に傾いている。そして図 2に示すよ うに、高さ方向(図示 Z方向)の真上から見たときに、前記第 1の中心線 Olと第 2の中 心線 02とが各長さ寸法 LI , L2の中心位置で交差している。よって、前記第 1の中心 線 Olと第 2の中心線 02は、交差点 20から前記左側端部 4b, 5b方向に、及び前記 交差点 20から前記右側端部 4c, 5c方向に向けて徐々に幅方向(図示 X方向)に離 れている。図 2に示すように前記第 1の磁石 4と第 2の磁石 5は X字状に交差している [0033] As shown in FIG. 2, the first magnet 4 has a left end 4b (—end) at the right end 4c (the other end). The second magnet 5 is inclined in the lower direction of the drawing (the opposite direction to the X direction in the drawing) than the right end portion 5c of the second magnet 5 in the upper direction (the X direction in the drawing). As shown in FIG. 2, when viewed from directly above in the height direction (Z direction in the figure), the first center line Ol and the second center line 02 have length dimensions LI and L2. It intersects at the center position. Therefore, the first center line Ol and the second center line 02 are gradually widened from the intersection 20 toward the left end 4b, 5b, and from the intersection 20 toward the right end 4c, 5c. It is separated in the direction (X direction in the figure). As shown in FIG. 2, the first magnet 4 and the second magnet 5 intersect in an X shape.
[0034] 上記したように、前記第 1の磁石 4の対向面(下面) 4aは S極に、前記第 2の磁石 5 の対向面(上面) 5aは N極に着磁されているから、前記第 2の磁石 5の前記対向面 5a 力、ら前記第 1の磁石 4の前記対向面 4aに向けて外部磁界 Hが生じている。 [0034] As described above, the facing surface (lower surface) 4a of the first magnet 4 is magnetized to the S pole, and the facing surface (upper surface) 5a of the second magnet 5 is magnetized to the N pole. An external magnetic field H is generated toward the facing surface 4a of the first magnet 4 from the force of the facing surface 5a of the second magnet 5.
[0035] 図 3 (a)は、図 2に示す A線上にて切断した断面図、図 3 (b)は、図 2に示す B線上 にて切断した断面図、図 3 (c)は、図 2に示す C線上にて切断した断面図、図 3 (d)は 、図 2に示す D線上にて切断した断面図、図 3 (e)は、図 2に示す E線上にて切断した 断面図を示している。  [0035] Fig. 3 (a) is a cross-sectional view cut along line A shown in Fig. 2, Fig. 3 (b) is a cross-sectional view cut along line B shown in Fig. 2, and Fig. 3 (c) is 2 is a cross-sectional view taken along line C shown in FIG. 2, FIG. 3 (d) is a cross-sectional view taken along line D shown in FIG. 2, and FIG. 3 (e) is taken along line E shown in FIG. A cross-sectional view is shown.
[0036] 図 3 (a)の断面部分は、第 1の磁石と第 2の磁石 5とが幅方向(図示 X方向)に比較 的大きぐずれている場所である。第 1の磁石 4は第 2の磁石 5に対して図示 X方向と は逆方向にずれている。よって、前記第 2の磁石 5の対向面 5aから第 1の磁石 4の対 向面 4aに向力、う外部磁界 HIの方向は、図示 Z方向から図示 X方向とは逆方向に大 きく傾いている。図 3 (b)の断面部分は、第 1の磁石 4と第 2の磁石 5とが図 3 (a)に比 ベて図示 X方向へのずれ量が小さぐ前記第 2の磁石 5の対向面 5aから第 1の磁石 4 の対向面 4aに向力、う外部磁界 H2の方向は、図 3 (a)に比べて、図示 Z方向からの傾 き角が小さくなつている。図 3 (c)の断面部分は、第 1の磁石 4と第 2の磁石 5とが高さ 方向(図示 Z方向)に一致している。このため、前記第 2の磁石 5の対向面 5aから第 1 の磁石 4の対向面 4aに向力、う外部磁界 H3の方向は、図示 Z方向に一致している。図 3 (d)の断面部分は、図 3 (b)と同じぐ第 1の磁石 4と第 2の磁石 5との図示 X方向へ のずれ量が小さいが、図 3 (b)とは異なって、第 1の磁石 4は第 2の磁石 5に対して図 示 X方向にずれている。このため図 3 (d)に示すように、前記第 2の磁石 5の対向面 5 aから第 1の磁石 4の対向面 4aに向力、う外部磁界 H4の方向は、図示 Z方向から図示 X方向に小さく傾いている。図 3 (e)の断面部分は、図 3 (a)と同じぐ第 1の磁石 4と第 2の磁石 5との図示 X方向へのずれ量が大きいが、図 3 (a)とは異なって、第 1の磁石 4は第 2の磁石 5に対して図示 X方向にずれている。このため図 3 (e)に示すように、 前記第 2の磁石 5の対向面 5aから第 1の磁石 4の対向面 4aに向力、う外部磁界 H5の 方向は、図示 Z方向から図示 X方向に大きく傾!/、て!/、る。 [0036] The cross-sectional portion of Fig. 3 (a) is a place where the first magnet 5 and the second magnet 5 are relatively displaced in the width direction (X direction in the drawing). The first magnet 4 is displaced from the second magnet 5 in the direction opposite to the X direction shown in the figure. Therefore, the direction of the external magnetic field HI from the facing surface 5a of the second magnet 5 to the facing surface 4a of the first magnet 4 is greatly inclined from the Z direction shown in the drawing to the opposite direction to the X direction shown in the drawing. ing. The cross section of FIG. 3 (b) shows that the first magnet 4 and the second magnet 5 are opposed to the second magnet 5 in which the amount of displacement in the X direction is small compared to FIG. 3 (a). The direction of the external magnetic field H2 from the surface 5a toward the opposing surface 4a of the first magnet 4 has a smaller inclination angle from the Z direction in the figure than in FIG. 3 (a). In the cross section of FIG. 3 (c), the first magnet 4 and the second magnet 5 coincide with the height direction (Z direction in the drawing). Therefore, the direction of the external magnetic field H3 from the facing surface 5a of the second magnet 5 to the facing surface 4a of the first magnet 4 coincides with the Z direction shown in the figure. The cross-section of Fig. 3 (d) is the same as Fig. 3 (b), but the amount of displacement of the first magnet 4 and the second magnet 5 in the X direction is small, but is different from Fig. 3 (b). Thus, the first magnet 4 is displaced from the second magnet 5 in the X direction. Therefore, as shown in FIG. 3 (d), the opposing surface 5 of the second magnet 5 The direction of the external magnetic field H4 from the a toward the facing surface 4a of the first magnet 4 is slightly inclined from the Z direction in the figure to the X direction in the figure. The cross-sectional part of Fig. 3 (e) is the same as Fig. 3 (a), but the displacement of the first magnet 4 and the second magnet 5 in the X direction is large, but is different from Fig. 3 (a). Thus, the first magnet 4 is displaced in the X direction in the drawing with respect to the second magnet 5. Therefore, as shown in FIG. 3 (e), the direction of the external magnetic field H5 from the facing surface 5a of the second magnet 5 to the facing surface 4a of the first magnet 4 is changed from the Z direction in the drawing to the X in the drawing. A big tilt in the direction! /, Te! /, Ru.
[0037] このように、前記第 1の磁石 4と第 2の磁石 5との間に発生する外部磁界 Hは、左側 端部 4b, 5bから右側端部 4c, 5c方向に向けて、図 3 (a)〜(e)の外部磁界 H1〜H5 に示すように、漸次的に回転変位している。  Thus, the external magnetic field H generated between the first magnet 4 and the second magnet 5 is directed from the left end 4b, 5b toward the right end 4c, 5c, as shown in FIG. As shown in the external magnetic fields H1 to H5 in (a) to (e), the rotational displacement is gradually made.
[0038] 図 1に示すように、前記第 1の磁石 4と第 2の磁石 5との間には磁気検出部 3が設け られるが、図 2,図 3では、前記磁気検出部 3を構成する前記磁気抵抗効果素子 15 を図示している。前記磁気抵抗効果素子 15は、図 3に示すように、前記第 1の磁石 4 及び第 2の磁石 5と高さ方向(図示 Z方向)にて所定の間隔を空けており接触していな い。図 3に示すように前記磁気抵抗効果素子 15の高さ方向の中心は、第 1の磁石 4 及び第 2の磁石 5間の高さ方向(図示 Z方向)の中心に位置している。  As shown in FIG. 1, a magnetic detection unit 3 is provided between the first magnet 4 and the second magnet 5, but in FIG. 2 and FIG. 3, the magnetic detection unit 3 is configured. The magnetoresistive effect element 15 is illustrated. As shown in FIG. 3, the magnetoresistive element 15 is not in contact with the first magnet 4 and the second magnet 5 at a predetermined interval in the height direction (Z direction in the drawing). . As shown in FIG. 3, the center of the magnetoresistive effect element 15 in the height direction is located at the center of the height direction (Z direction in the drawing) between the first magnet 4 and the second magnet 5.
[0039] 図 2に示すように、前記磁気抵抗効果素子 15は、前記第 1の磁石 4と第 2の磁石 5 間を図示 Y方向に沿って移動する。ここで前記磁気抵抗効果素子 15の移動経路 21 は、前記磁気抵抗効果素子 15の幅方向(図示 X方向)の中心位置での移動経路と 定義する。図 2に示すように高さ方向(図示 Z方向)の真上から見たときに、前記磁気 抵抗効果素子 15の移動経路 21は、前記第 1の磁石 4の第 1の中心線 Olと第 2の磁 石 5の第 2の中心線 02との交差点 20にて交わっている。  As shown in FIG. 2, the magnetoresistive element 15 moves between the first magnet 4 and the second magnet 5 along the Y direction shown in the figure. Here, the moving path 21 of the magnetoresistive element 15 is defined as a moving path at the center position of the magnetoresistive element 15 in the width direction (X direction in the drawing). As shown in FIG. 2, when viewed from directly above in the height direction (Z direction in the figure), the movement path 21 of the magnetoresistive effect element 15 is connected to the first center line Ol of the first magnet 4 and the first center line Ol. It intersects at the intersection 20 of the second centerline 02 of the magnet 2 of 2.
[0040] 図 2に示すように、前記交差点 20から前記磁気抵抗効果素子 15の移動出発点 22 及び移動終点 23に向けて、徐々に、中心線 Ol , 02と前記磁気抵抗効果素子 15の 移動経路 21間の間隔が幅方向(図示 X方向)に向けて広がって!/、る。  As shown in FIG. 2, the center lines Ol, 02 and the magnetoresistive effect element 15 gradually move from the intersection 20 toward the movement start point 22 and the movement end point 23 of the magnetoresistive effect element 15. The distance between the paths 21 widens in the width direction (X direction in the figure)!
[0041] 図 2に示すような磁気抵抗効果素子 15の移動経路 21と磁石 4, 5との配置関係を 設定することで、図 3に示すように磁気抵抗効果素子 15は、前記磁石 4, 5間での外 部磁界 Hの方向が回転変位している回転磁場領域を適切に移動する。  By setting the positional relationship between the moving path 21 of the magnetoresistive effect element 15 and the magnets 4 and 5 as shown in FIG. 2, the magnetoresistive effect element 15 includes the magnets 4 and 4 as shown in FIG. Appropriately move in the rotating magnetic field region where the direction of the external magnetic field H between 5 is rotationally displaced.
[0042] 磁気抵抗効果素子 15は巨大磁気抵抗効果 (GMR効果)を利用した GMR素子で ある。 [0042] The magnetoresistive element 15 is a GMR element using the giant magnetoresistive effect (GMR effect). is there.
[0043] 図 4に示すように、前記磁気抵抗効果素子 15は、基板 7上に下から絶縁層 30、下 地層 31、反強磁性層 32、固定磁性層 33、非磁性中間層 34、フリー磁性層 35及び 保護層 36の順にスパッタ等の薄膜プロセスを用いて形成されている。反強磁性層 32 /固定磁性層 33/非磁性中間層 34/フリ一磁性層 35は逆積層であってもよい。  As shown in FIG. 4, the magnetoresistive effect element 15 includes an insulating layer 30, an underlayer 31, an antiferromagnetic layer 32, a fixed magnetic layer 33, a nonmagnetic intermediate layer 34, a free layer on a substrate 7 from below. The magnetic layer 35 and the protective layer 36 are formed in this order using a thin film process such as sputtering. The antiferromagnetic layer 32 / pinned magnetic layer 33 / nonmagnetic intermediate layer 34 / free magnetic layer 35 may be reversely stacked.
[0044] 反強磁性層 32は、 IrMnや PtMn等の反強磁性材料で形成される。固定磁性層 3 3ゃフリ一磁性層 35は CoFeや NiFe等の磁性材料で形成される。非磁性中間層 34 は Cu等の非磁性導電材料で形成される。保護層 36は Ta等で形成される。前記固 定磁性層 33ゃフリ一磁性層 35は例えば積層フェリ構造であつてもよい。  [0044] The antiferromagnetic layer 32 is formed of an antiferromagnetic material such as IrMn or PtMn. The pinned magnetic layer 33 is made of a magnetic material such as CoFe or NiFe. The nonmagnetic intermediate layer 34 is formed of a nonmagnetic conductive material such as Cu. The protective layer 36 is made of Ta or the like. The fixed magnetic layer 33 or the free magnetic layer 35 may have, for example, a laminated ferrimagnetic structure.
[0045] 前記反強磁性層 32と前記固定磁性層 33とが接して形成されているため磁場中熱 処理を施すことにより前記反強磁性層 32と前記固定磁性層 33との界面に交換結合 磁界 (Hex)が生じ、前記固定磁性層 33の磁化方向 33aは一方向に固定される。図 4では前記磁化方向 33aは図示 Z方向に固定される。  [0045] Since the antiferromagnetic layer 32 and the pinned magnetic layer 33 are formed in contact with each other, exchange coupling is formed at the interface between the antiferromagnetic layer 32 and the pinned magnetic layer 33 by performing heat treatment in a magnetic field. A magnetic field (Hex) is generated, and the magnetization direction 33a of the fixed magnetic layer 33 is fixed in one direction. In FIG. 4, the magnetization direction 33a is fixed in the Z direction shown.
[0046] 一方、フリー磁性層 35の磁化方向 35aは、無磁場状態では、前記固定磁性層 33 によるバイアス磁界を受け、平行か反平行となる。前記フリー磁性層 35は固定磁性 層 33と違って磁化方向が固定されておらず外部磁界の侵入方向の変化によって磁 化変動するようになっている。また例えば、図 4に示すように前記フリー磁性層 35の 磁化方向 35aを、固定磁性層 33の磁化方向 33aに対して直交させるにはハードバイ ァス層(図示しない)を設けることが必要となる。ただし、このようなハードバイアス層を 設けず、フリー磁性層 35の磁化方向 35aを制御しなくてもよい。  On the other hand, the magnetization direction 35a of the free magnetic layer 35 receives a bias magnetic field from the pinned magnetic layer 33 in the absence of a magnetic field, and is parallel or antiparallel. Unlike the pinned magnetic layer 33, the free magnetic layer 35 is not pinned in the magnetization direction, and changes in magnetization due to a change in the penetration direction of an external magnetic field. Further, for example, as shown in FIG. 4, it is necessary to provide a hard bias layer (not shown) in order to make the magnetization direction 35a of the free magnetic layer 35 perpendicular to the magnetization direction 33a of the pinned magnetic layer 33. . However, such a hard bias layer is not provided, and the magnetization direction 35a of the free magnetic layer 35 may not be controlled.
[0047] 図 4に示すように、磁気抵抗効果素子 15は、固定磁性層 33/非磁性中間層 34/ フリー磁性層 35を有する積層構造で形成され、各層の積層界面 37は、図示 X— Z平 面と平行な方向に形成されている。図 5は、図 3 (c)を拡大して示す部分拡大断面図 であり、前記磁気抵抗効果素子 15はフリー磁性層 35の膜厚中心から切断されてい る。なお図 5に示す前記フリー磁性層 35の切断面は、図 4に示す積層界面 37ではな いが、前記フリー磁性層 35の切断面と前記積層界面 37は平行関係にあるので、便 宜上、図 5の断面図において「積層界面 37」と符号した。なお後述する図 7も同様で ある。 [0048] 前記積層界面 37は、前記第 1の磁石 4及び第 2の磁石 5の各対向面 4a, 5aに対し て直交する方向に向いている。また、前記磁気抵抗効果素子 15の磁石 4, 5との対 向面 15a, 15bは、前記磁石 4, 5の各対向面 4a, 5aと平行な方向を向いている。し たがって磁気抵抗効果素子 15には、前記積層界面 37と平行な面方向(図示 X— Z 面方向)へ第 1の磁石 4及び第 2の磁石 5間で回転変位する外部磁界 H1〜H5が侵 入出来る位置関係となってレ、る。 As shown in FIG. 4, the magnetoresistive effect element 15 is formed of a laminated structure having a pinned magnetic layer 33 / a nonmagnetic intermediate layer 34 / a free magnetic layer 35, and a laminated interface 37 of each layer is shown in FIG. It is formed in a direction parallel to the Z plane. FIG. 5 is a partially enlarged cross-sectional view showing an enlarged view of FIG. 3 (c). The magnetoresistive effect element 15 is cut from the film thickness center of the free magnetic layer 35. The cut surface of the free magnetic layer 35 shown in FIG. 5 is not the laminated interface 37 shown in FIG. 4, but the cut surface of the free magnetic layer 35 and the laminated interface 37 are in a parallel relationship. In the cross-sectional view of FIG. The same applies to Fig. 7 described later. [0048] The laminated interface 37 is oriented in a direction perpendicular to the facing surfaces 4a, 5a of the first magnet 4 and the second magnet 5. The facing surfaces 15a and 15b of the magnetoresistive element 15 facing the magnets 4 and 5 are oriented in parallel to the facing surfaces 4a and 5a of the magnets 4 and 5, respectively. Therefore, the magnetoresistive effect element 15 has an external magnetic field H1 to H5 that rotates and displaces between the first magnet 4 and the second magnet 5 in a plane direction parallel to the laminated interface 37 (X-Z plane direction in the figure). It becomes the positional relationship that can enter.
[0049] 磁気抵抗効果素子 15はフリー磁性層 35に侵入する積層界面 37と平行な方向から の外部磁界 Hを読み取る能力に優れる。図 3で説明した外部磁界 H1〜H5は、図示 X— Z面内において回転変位するから、前記積層界面 37を前記外部磁界 Hの回転 変位する面と一致させることで、前記磁気抵抗効果素子 15には、前記積層界面と平 行な面方向から回転変位した外部磁界 HI〜H5が適切に侵入する。  The magnetoresistive effect element 15 is excellent in the ability to read the external magnetic field H from a direction parallel to the laminated interface 37 entering the free magnetic layer 35. Since the external magnetic fields H1 to H5 described with reference to FIG. 3 are rotationally displaced in the X-Z plane shown in FIG. 3, the magnetoresistive effect element 15 is obtained by matching the laminated interface 37 with the rotationally displaced surface of the external magnetic field H. The external magnetic field HI to H5, which is rotationally displaced from the plane direction parallel to the laminated interface, appropriately enters.
[0050] 図 5に示すように、磁気抵抗効果素子 15を構成するフリー磁性層 35の膜厚中心( 図示 Y方向への中心)が図 2に示す交差点 20の位置にまで移動すると、前記第 2の 磁石 5の対向面 5aから前記第 1の磁石 4の対向面 4aに向けて高さ方向(図示 Z方向) に発生する外部磁界 H3の影響を受けて、前記フリー磁性層 35の磁化方向 35aは図 示 Z方向に変動する。  As shown in FIG. 5, when the film thickness center (the center in the Y direction in the figure) of the free magnetic layer 35 constituting the magnetoresistive effect element 15 moves to the position of the intersection 20 shown in FIG. Magnetization direction of the free magnetic layer 35 under the influence of an external magnetic field H3 generated in the height direction (Z direction in the figure) from the facing surface 5a of the magnet 5 to the facing surface 4a of the first magnet 4 35a varies in the Z direction.
[0051] 同じように、前記磁気抵抗効果素子 15が、図 3 (a) (b)、 (d) (e)の位置に移動した 場合には、前記フリー磁性層 35に図示 Z方向から図示 X方向、あるいは図示 X方向 とは逆方向に傾いた外部磁界が夫々侵入し、前記フリー磁性層 35の磁化方向 35a が図 5の点線に示すように変動する。このフリー磁性層 35の変動磁化方向 35aと、固 定磁性層 33の固定磁化方向 33aとの関係で電気抵抗値が変化する。  Similarly, when the magnetoresistive effect element 15 is moved to the positions shown in FIGS. 3A, 3B, 3D, and 3E, the free magnetic layer 35 is illustrated in the Z direction. An external magnetic field inclined in the X direction or in the direction opposite to the X direction shown in the figure enters, and the magnetization direction 35a of the free magnetic layer 35 changes as shown by the dotted line in FIG. The electric resistance value changes depending on the relationship between the variable magnetization direction 35 a of the free magnetic layer 35 and the fixed magnetization direction 33 a of the fixed magnetic layer 33.
[0052] 図 1ないし図 5に示す実施形態では、第 1の磁石 4と第 2の磁石 5との間に磁気抵抗 効果素子 15が設けられ、前記磁気抵抗効果素子 15の積層構造の積層界面 37は前 記第 1の磁石 4及び第 2の磁石 5の対向面 4a, 5aに対して直交する方向に向けられ ている。  In the embodiment shown in FIGS. 1 to 5, a magnetoresistive effect element 15 is provided between the first magnet 4 and the second magnet 5, and the laminated interface of the laminated structure of the magnetoresistive effect element 15 37 is directed in a direction orthogonal to the facing surfaces 4a and 5a of the first magnet 4 and the second magnet 5.
[0053] 前記第 1の磁石 4と第 2の磁石 5は、前記磁石 4, 5間の空間内に、前記磁石 4, 5の 左側端部 4b, 5bから右側端部 4c, 5cに向けて、前記積層界面 37と平行な面内にて 回転変位する外部磁界の領域が形成されるように形状及び配置が決定されており、 磁気抵抗効果素子 15は回転磁場領域内を直線移動するように、前記磁石 4, 5の中 心線 Ol , 02間の幅方向の中心であって、前記磁石 4, 5間の高さ方向の中心に移 動支持されている。 The first magnet 4 and the second magnet 5 are arranged in the space between the magnets 4 and 5 from the left end portions 4b and 5b of the magnets 4 and 5 toward the right end portions 4c and 5c. The shape and arrangement are determined so that an external magnetic field region that rotates and displaces in a plane parallel to the laminated interface 37 is formed. The magnetoresistive effect element 15 is the center in the width direction between the center lines Ol and 02 of the magnets 4 and 5 so as to move linearly in the rotating magnetic field region, and is in the height direction between the magnets 4 and 5. It is moved and supported at the center.
[0054] この結果、前記磁気抵抗効果素子 15が図 2に示す出発点 22から終点 23まで図示 Y方向を直線移動すると、前記磁気抵抗効果素子 15を構成するフリー磁性層 35内 部に侵入する外部磁界 Hの方向が漸次的に変化することで、電気抵抗値が漸次的 に変化し、この電気抵抗値の変化に基づく出力変化によって移動位置が検知される 。本実施形態によれば、従来に比べて、磁気抵抗効果素子 15を出発点 22から終点 23まで移動させると、電気抵抗値を漸次的に変化させることができ、位置検出のリニ ァリティ(直泉性)を向上させることが可能である。  As a result, when the magnetoresistive effect element 15 linearly moves in the Y direction shown in the figure from the starting point 22 to the end point 23 shown in FIG. 2, the magnetoresistive effect element 15 enters the free magnetic layer 35 constituting the magnetoresistive effect element 15. As the direction of the external magnetic field H changes gradually, the electric resistance value changes gradually, and the moving position is detected by the output change based on the change in the electric resistance value. According to the present embodiment, when the magnetoresistive effect element 15 is moved from the starting point 22 to the ending point 23 as compared with the conventional case, the electric resistance value can be gradually changed, and the position detection linearity (Naozumi) Property) can be improved.
[0055] 図 1ないし図 5に示す実施形態において、第 1の磁石 4及び第 2の磁石 5のどちらか 一方がヨークであってもよい。ただし、一方がヨークであると、移動センサ 1の外部から 内部へ及ぶ外乱磁界が、前記磁石 4, 5間にて回転変位する外部磁界 Hに影響を与 えて前記外部磁界 Hの方向が乱されやすくなり、位置検出のリニアリティが低下しや すいので、両方とも磁石 4, 5を用いることが好適である。  In the embodiment shown in FIG. 1 to FIG. 5, one of the first magnet 4 and the second magnet 5 may be a yoke. However, if one of them is a yoke, a disturbance magnetic field extending from the outside to the inside of the movement sensor 1 affects the external magnetic field H that is rotationally displaced between the magnets 4 and 5, and the direction of the external magnetic field H is disturbed. It is preferable to use magnets 4 and 5 for both because the position detection linearity is easily reduced.
[0056] また磁石を 1個だけ用いて移動センサを構成することも出来る。図 6は第 2実施形態 の移動センサを構成する磁気抵抗効果素子と磁石との位置関係を示す部分平面図 、図 7は図 6に示す F線上、 G線上、 H線上に沿って磁気抵抗効果素子及び磁石を 高さ方向(図示 Z方向)に沿って切断し矢印方向から見た部分断面図である。  [0056] The movement sensor can also be configured using only one magnet. FIG. 6 is a partial plan view showing the positional relationship between the magnetoresistive element and the magnet constituting the movement sensor of the second embodiment, and FIG. 7 shows the magnetoresistive effect along the F line, G line, and H line shown in FIG. It is the fragmentary sectional view which cut | disconnected the element and the magnet along the height direction (illustrated Z direction), and was seen from the arrow direction.
[0057] 図 6に示すように、磁石 40は、幅寸法が T3で形成され、前記幅寸法 T3の中心を通 る中心線 03の長さ寸法 L3が前記幅寸法 T3よりも長く形成されている。また前記幅 寸法 T3の両側に位置する両側面 40b, 40cは前記中心線 03と平行に延びており、 前記磁石 40の前記磁気抵抗効果素子 41との対向面 40aは矩形状で形成されてい  As shown in FIG. 6, the magnet 40 is formed with a width dimension of T3, and the length dimension L3 of the center line 03 passing through the center of the width dimension T3 is longer than the width dimension T3. Yes. Further, both side surfaces 40b and 40c located on both sides of the width dimension T3 extend in parallel to the center line 03, and the opposing surface 40a of the magnet 40 to the magnetoresistive element 41 is formed in a rectangular shape.
[0058] この実施形態では図 7に示すように前記磁石 40の表面(対向面) 40aが N極に、裏 面が S極に着磁されている。 In this embodiment, as shown in FIG. 7, the surface (opposing surface) 40a of the magnet 40 is magnetized to the N pole and the back surface is magnetized to the S pole.
[0059] 図 6,図 7に示す磁気抵抗効果素子 41は、図 4で示す磁気抵抗効果素子 15と同じ 積層構造で形成されてレ、る。 [0060] 前記磁気抵抗効果素子 41は、図 5と同様に、積層構造の積層界面 42が、前記磁 石 40の前記磁気抵抗効果素子 41との対向面 40aと直交する方向(高さ方向)で、さ らに幅方向(図示 X方向)に向けられている。これによつて前記磁石 40からの外部磁 界 Hは、前記磁気抵抗効果素子 41に前記積層界面 42と平行な面方向(図示 X— Z 面方向)から侵入する。 The magnetoresistive effect element 41 shown in FIGS. 6 and 7 is formed with the same laminated structure as the magnetoresistive effect element 15 shown in FIG. In the magnetoresistive effect element 41, as in FIG. 5, the laminated interface 42 of the laminated structure is in a direction (height direction) orthogonal to the facing surface 40a of the magnet 40 facing the magnetoresistive effect element 41. In addition, it is oriented in the width direction (X direction in the figure). As a result, the external magnetic field H from the magnet 40 enters the magnetoresistive element 41 from a plane direction (X-Z plane direction in the drawing) parallel to the laminated interface 42.
[0061] 図 6に示すように前記磁石 40の前記中心線 03は、図示 Y方向に沿って形成され ている。一方、図 6に示すように前記磁気抵抗効果素子 41の移動経路 43は、前記 中心線 03に対して紙面左上方向力、ら右下方向への斜め方向の直線経路であり、前 記磁気抵抗効果素子 41の移動経路 43と前記磁石 40の中心線 03とが磁石 40の長 さ方向(図示 Y方向)の中心で交差している。  As shown in FIG. 6, the center line 03 of the magnet 40 is formed along the Y direction in the figure. On the other hand, as shown in FIG. 6, the moving path 43 of the magnetoresistive effect element 41 is a linear path diagonally extending in the lower left direction from the force on the upper left direction of the paper with respect to the center line 03. The moving path 43 of the effect element 41 and the center line 03 of the magnet 40 intersect at the center of the magnet 40 in the length direction (Y direction in the drawing).
[0062] このように、交差点 44から前記磁気抵抗効果素子 41の出発点 45及び終点 46に向 けて徐々に前記中心線 03と前記磁気抵抗効果素子 41の移動経路 43間の幅方向( 図示 X方向)の間隔が広がるように、前記磁気抵抗効果素子 41及び磁石 40が配置 されている。  In this way, from the intersection 44 toward the starting point 45 and the end point 46 of the magnetoresistive effect element 41, the width direction between the center line 03 and the moving path 43 of the magnetoresistive effect element 41 (illustrated) The magnetoresistive effect element 41 and the magnet 40 are arranged so that the interval in the (X direction) is widened.
[0063] 図 7 (a)は、図 6の F— F線上から高さ方向へ切断した磁気抵抗効果素子及び磁石  FIG. 7 (a) shows a magnetoresistive element and a magnet cut in the height direction from the line FF in FIG.
40の部分断面図、図 7 (b)は、図 6の G— G線上から高さ方向へ切断した磁気抵抗 効果素子及び磁石 40の部分断面図、図 7 (c)は図 6の H— H線上から高さ方向へ切 断した磁気抵抗効果素子及び磁石 40の部分断面図を示している。  Fig. 7 (b) is a partial cross-sectional view of the magnetoresistive effect element 40 and the magnet 40 cut from the G-G line in Fig. 6 in the height direction. Fig. 7 (c) is a H- A partial sectional view of the magnetoresistive element and the magnet 40 cut in the height direction from the H line is shown.
[0064] 図 7 (a)に示すように、前記磁気抵抗効果素子 41のフリー磁性層 47の膜厚方向( 図示 Y方向)の中心が図 6の図示左端の磁石 40上に位置すると、フリー磁性層 47に は、ほぼ図示 X方向から外部磁界 H6が支配的に侵入する。  [0064] As shown in FIG. 7 (a), when the center of the free magnetic layer 47 of the magnetoresistive element 41 in the film thickness direction (Y direction in the figure) is positioned on the leftmost magnet 40 in FIG. The external magnetic field H6 dominates into the magnetic layer 47 almost from the X direction shown in the figure.
[0065] 前記磁気抵抗効果素子 41が前記移動経路 43上を出発点 45から交差点 44方向 へ移動すると、前記積層界面 42と平行な面方向から侵入する前記磁石 40からの外 部磁界は図示 X方向から徐々に図示 Z方向に向くベクトル成分が増え始め、やがて、 図 7 (b)に示すように、前記磁気抵抗効果素子 41のフリー磁性層の膜厚方向(図示 Y方向)の中心が前記交差点 44上の位置に到達すると、前記フリー磁性層には、ほ ぼ図示 Z方向の外部磁界 H7が支配的に侵入する。  [0065] When the magnetoresistive element 41 moves on the moving path 43 from the starting point 45 toward the intersection 44, the external magnetic field from the magnet 40 entering from the plane direction parallel to the laminated interface 42 is illustrated as X As shown in FIG. 7B, the center of the free magnetic layer of the magnetoresistive effect element 41 in the film thickness direction (Y direction in the figure) is gradually increased. When the position on the intersection 44 is reached, an external magnetic field H7 in the Z direction shown in FIG.
[0066] 次に、前記磁気抵抗効果素子 41が前記交差点 44の位置から終点 46へ向けて移 動すると、前記積層界面 42と平行な面方向から侵入する前記磁石 40からの外部磁 界は、図示 Z方向から徐々に図示 X方向とは逆方向へ向くベクトル成分が増え始め、 図 7 (c)に示すように、前記磁気抵抗効果素子 41のフリー磁性層の膜厚中心が図示 右端の磁石 40上に位置すると、前記フリー磁性層には、図示 X方向とはほぼ逆方向 の外部磁界 H8が支配的に侵入する。 Next, the magnetoresistive element 41 moves from the position of the intersection 44 toward the end point 46. When moving, the external magnetic field from the magnet 40 entering from the plane direction parallel to the laminated interface 42 begins to increase in vector components gradually moving from the Z direction shown in the figure to the direction opposite to the X direction shown in FIG. ), When the film thickness center of the free magnetic layer of the magnetoresistive effect element 41 is located on the rightmost magnet 40 in the figure, the free magnetic layer has an external magnetic field H8 in a direction almost opposite to the X direction in the figure. Invades dominantly.
[0067] 図 6,図 7に示すように磁石 40がー個でも、前記磁気抵抗効果素子 41の移動経路  As shown in FIG. 6 and FIG. 7, even if there are a single magnet 40, the movement path of the magnetoresistive effect element 41
43と、磁石 40の幅方向の中央を通る中心線 03とを斜め方向から交差させることで、 前記磁気抵抗効果素子 41の移動に伴って、前記磁気抵抗効果素子 41の積層界面 42と平行な面方向力も侵入する前記磁石 40からの外部磁界 Hは回転変位する。前 記磁気抵抗効果素子 41の移動に伴って、回転変位する外部磁界 Hの方向に、フリ 一磁性層 47の磁化方向は変動し、これによつて前記磁気抵抗効果素子 41の電気 抵抗値は変動する。このとき、前記フリー磁性層 47の磁化方向は、磁気抵抗効果素 子 41の移動に伴って漸次的に変化するので、前記磁気抵抗効果素子 41の電気抵 抗値も漸次的に変動し、リニアリティ(直線性)の高い位置検出を行うことが出来る。  43 and a center line 03 passing through the center in the width direction of the magnet 40 are crossed from the oblique direction so that the movement of the magnetoresistive effect element 41 leads to a parallel to the laminated interface 42 of the magnetoresistive effect element 41. The external magnetic field H from the magnet 40 that also penetrates the surface force is rotationally displaced. As the magnetoresistive effect element 41 moves, the magnetization direction of the free magnetic layer 47 fluctuates in the direction of the external magnetic field H that is rotationally displaced, and as a result, the electric resistance value of the magnetoresistive effect element 41 is fluctuate. At this time, since the magnetization direction of the free magnetic layer 47 gradually changes as the magnetoresistive element 41 moves, the electric resistance value of the magnetoresistive element 41 also gradually changes, and linearity Position detection with high (linearity) can be performed.
[0068] ただし図 6,図 7に示すように磁石 40は 1個より、図 1ないし図 5に示した実施形態の ように磁石 4, 5を 2個用意して磁石 4, 5間に回転磁場領域を人為的に作り出すこと 1S より外部磁界を、漸次的に且つ直線的な方向性を持って回転変位させることがで き、より位置検出のリニアリティ(直線性)を向上させることができ好適である。  [0068] However, as shown in FIGS. 6 and 7, the number of magnets 40 is less than one, and two magnets 4 and 5 are prepared and rotated between magnets 4 and 5 as in the embodiment shown in FIGS. Artificial creation of magnetic field area The external magnetic field can be rotated and displaced gradually and in a linear direction from 1S, and the position detection linearity (linearity) can be further improved. It is.
[0069] また上記した本実施形態を利用すれば図 8に示すように、磁石 50, 51を、直交方 向に 2セット用意することで、 X軸 60及び Y軸 61に支持された磁気抵抗効果素子 53 の X方向及び Y方向の 2軸方向の移動を検知することも可能である。  If the above-described embodiment is used, as shown in FIG. 8, two sets of magnets 50 and 51 are prepared in the orthogonal direction so that the magnetoresistance supported by the X-axis 60 and the Y-axis 61 is obtained. It is also possible to detect the movement of the effect element 53 in two directions, the X direction and the Y direction.
[0070] 上記した移動センサは、いずれも磁気抵抗効果素子が移動支持され、磁石が固定 支持されていたが、逆であってもよい。ただし、磁気抵抗効果素子を固定支持して磁 石を移動させると、例えば図 2の磁気抵抗効果素子 15の出発点 22から終点 23まで の相対移動距離を確保するには、前記磁石 4, 5の移動を確保すべく前記相対移動 距離のほぼ 2倍の移動スペースが必要となってしまうので、磁気抵抗効果素子を移 動支持し、磁石を固定支持したほうが、簡単な構成で移動センサの小型化を実現で きて好適である。 [0071] また上記の実施形態では前記磁気抵抗効果素子の移動経路は!/、ずれも直線状で あつたが、直線状以外であってもよい。ただし、直線状であるほうが、高い位置検出 のリニアリティ(直線性)を確保でき好適である。 [0070] In any of the movement sensors described above, the magnetoresistive element is moved and supported, and the magnet is fixedly supported. However, if the magnetoresistive effect element is fixedly supported and the magnet is moved, for example, in order to secure the relative movement distance from the start point 22 to the end point 23 of the magnetoresistive effect element 15 in FIG. Therefore, it is necessary to move and support the magnetoresistive effect element and to fix and support the magnet in a simple configuration. This is suitable because it can be realized. In the above embodiment, the movement path of the magnetoresistive effect element is! / And the deviation is linear, but it may be other than linear. However, a straight line is preferable because high linearity (linearity) of position detection can be secured.
[0072] また磁気抵抗効果素子は巨大磁気抵抗効果 (GMR効果)を利用した GMR素子以 外に、異方性磁気抵抗効果 (AMR効果)を利用した AMR素子、トンネル磁気抵抗 効果 (TMR効果)を利用した TMR素子であってもよレ、。 [0072] In addition to the GMR element using the giant magnetoresistive effect (GMR effect), the magnetoresistive element is an AMR element using the anisotropic magnetoresistive effect (AMR effect), and the tunnel magnetoresistive effect (TMR effect). Even a TMR element using
[0073] 本実施形態における移動センサは、例えば、ミキサ用フエーダやそのほかコント口 ール用のスライドボリューム等に使用可能である。 [0073] The movement sensor in this embodiment can be used, for example, as a mixer fader or a slide volume for a control console.
図面の簡単な説明  Brief Description of Drawings
[0074] [図 1]本実施形態における移動センサの内部構造を示すための部分斜視図、  [0074] FIG. 1 is a partial perspective view for showing an internal structure of a movement sensor in the present embodiment;
[図 2]図 1に示す移動センサを構成する磁気抵抗効果素子の移動方向と、磁石及び 磁気抵抗効果素子との位置関係を示すための部分平面図、  FIG. 2 is a partial plan view for showing the positional relationship between the moving direction of the magnetoresistive effect element constituting the movement sensor shown in FIG. 1 and the magnet and the magnetoresistive effect element;
[図 3] (a)〜(e)は、図 2に示す A線上から E線上の位置まで磁気抵抗効果素子が移 動した際、各線上に沿って磁気抵抗効果素子及び磁石を高さ方向に切断し、矢印 方向から見た部分断面図、  [FIG. 3] (a) to (e) show the height direction of the magnetoresistive element and the magnet along each line when the magnetoresistive element moves from the position on the A line to the position on the E line shown in FIG. A partial cross-sectional view as seen from the direction of the arrow,
[図 4]磁気抵抗効果素子の積層構造の膜厚方向からの断面図、  FIG. 4 is a cross-sectional view from the film thickness direction of the laminated structure of magnetoresistive elements,
[図 5]図 3 (c)の拡大断面図、  [Fig. 5] Enlarged sectional view of Fig. 3 (c),
[図 6]第 2実施形態の移動センサを構成する磁気抵抗効果素子と磁石との位置関係 を示す部分平面図、  FIG. 6 is a partial plan view showing the positional relationship between a magnetoresistive element and a magnet constituting the movement sensor of the second embodiment,
[図 7]図 6に示す F線上、 G線上、 H線上の位置まで磁気抵抗効果素子が移動した際 、各線上に沿って磁気抵抗効果素子及び磁石を高さ方向に切断し、矢印方向から 見た部分断面図、  [FIG. 7] When the magnetoresistive effect element moves to the position on the F line, G line, and H line shown in FIG. 6, the magnetoresistive effect element and the magnet are cut in the height direction along each line, and from the arrow direction. A partial cross-sectional view,
[図 8]第 3実施形態の移動センサを構成する磁気抵抗効果素子と磁石との位置関係 を示す部分平面図、  FIG. 8 is a partial plan view showing the positional relationship between a magnetoresistive element and a magnet constituting the movement sensor of the third embodiment,
符号の説明  Explanation of symbols
[0075] 1 移動センサ [0075] 1 Movement sensor
2 筐体  2 Enclosure
3 磁気検出部 4、 5、 40、 50、 51 磁石 3 Magnetic detector 4, 5, 40, 50, 51 Magnet
15、 41、 53 磁気抵抗効果素子  15, 41, 53 Magnetoresistive element
20、 44 交差点  20, 44 intersection
21、 43 移動経路  21, 43 Route
22、 45 出発点  22, 45 Starting point
23、 46 終点  23, 46 End point
32 反強磁性層 32 Antiferromagnetic layer
33 固定磁性層 33 Fixed magnetic layer
34 非磁性中間層 34 Nonmagnetic interlayer
35、 47 フリー磁性層 35, 47 Free magnetic layer
35a (フリー磁性層の)磁化方向  35a Magnetization direction (of free magnetic layer)
37、 42 積層界面 37, 42 Laminated interface
H、 H1〜H8 外部磁界 H, H1 ~ H8 External magnetic field
〇1〜03 (磁石の幅方向の中心を通る)中心線  〇 1 to 03 (pass through the center in the width direction of the magnet)

Claims

請求の範囲 The scope of the claims
[1] 外部磁界の方向変化に対して電気抵抗が変化する磁気抵抗効果を利用した積層 構造の磁気抵抗効果素子と、前記外部磁界を発生させるための磁石とを有し、 前記磁気抵抗効果素子及び磁石の一方が移動可能に支持されており、 前記磁気抵抗効果素子と前記磁石は、高さ方向に間隔を空け、前記高さ方向の真 上から見たときに、前記磁石の幅寸法の中心を通る中心線と、前記磁気抵抗効果素 子の相対移動経路とが途中で交差すると共に、交差点から磁気抵抗効果素子の相 対移動の出発点及び相対移動の終点に向けて徐々に前記中心線と前記磁気抵抗 効果素子の相対移動経路間の間隔が幅方向に広がるように対向配置され、  [1] A magnetoresistive element having a laminated structure using a magnetoresistive effect in which an electric resistance changes in response to a change in direction of an external magnetic field, and a magnet for generating the external magnetic field, and the magnetoresistive element And one of the magnets is movably supported, and the magnetoresistive element and the magnet are spaced apart from each other in the height direction, and when viewed from directly above the height direction, A center line passing through the center and the relative movement path of the magnetoresistive element intersect in the middle, and gradually the center from the intersection toward the starting point of relative movement of the magnetoresistive element and the end point of relative movement. The line and the magnetoresistive effect element are arranged to face each other so that the distance between the relative movement paths of the magnetoresistive effect element is widened in the width direction,
前記磁気抵抗効果素子の相対移動に伴って、前記積層構造内に侵入する積層界 面と平行な面方向からの前記外部磁界の侵入方向が回転変位し、前記磁気抵抗効 果素子の電気抵抗値が変化することで移動位置が検出されることを特徴とする移動 センサ。  With the relative movement of the magnetoresistive effect element, the penetration direction of the external magnetic field from a plane direction parallel to the laminated interface entering the laminated structure is rotationally displaced, and the electric resistance value of the magnetoresistive effect element A movement sensor, characterized in that the movement position is detected by changing.
[2] 前記磁石は、幅寸法の中心を通る中心線長さが前記幅方向の寸法よりも長ぐ且 つ、前記幅寸法の両側に位置する両側面が前記中心線と平行な方向に延びる形状 で形成されて!/、る請求項 1記載の移動センサ。  [2] The magnet has a centerline length passing through the center of the width dimension longer than the dimension in the width direction, and both side surfaces located on both sides of the width dimension extend in a direction parallel to the centerline. The movement sensor according to claim 1, wherein the movement sensor is formed in a shape!
[3] 前記磁気抵抗効果素子は、直線状に相対移動する請求項 1に記載の移動センサ  [3] The movement sensor according to claim 1, wherein the magnetoresistive effect element relatively moves linearly.
[4] 前記磁気抵抗効果素子が移動可能に支持され、前記磁石が固定配置されている 請求項 1に記載の移動センサ。 4. The movement sensor according to claim 1, wherein the magnetoresistive element is movably supported and the magnet is fixedly arranged.
[5] 前記磁気抵抗効果素子は、前記積層構造の積層界面が、前記磁石の前記磁気抵 抗効果素子との対向面に対して直交する方向に向けられ、前記磁石の前記対向面 が単一の磁極面となって!/、る請求項 1に記載の移動センサ。  [5] In the magnetoresistive effect element, the laminated interface of the laminated structure is oriented in a direction perpendicular to the facing surface of the magnet facing the magnetoresistive effect element, and the facing surface of the magnet is single. The movement sensor according to claim 1, wherein the movement sensor is! /.
[6] 第 1の磁性部材と、第 2の磁性部材とが高さ方向に間隔を空けて対向するとともに、 前記第 1の磁性部材と前記第 2の磁性部材は、前記高さ方向の真上から見たときに、 前記第 1の磁性部材の幅寸法の中心を通る第 1の中心線と、前記第 2の磁性部材の 幅寸法の中心を通る第 2の中心線とが途中で交差すると共に、前記第 1の中心線と 前記第 2の中心線とが交差点から一端部方向、及び交差点から他端部方向に向け て互いに幅方向に離れていく形状にて形成され、前記第 1の磁性部材及び前記第 2 の磁性部材のうち少なくとも一方が前記磁石で形成されており、 [6] The first magnetic member and the second magnetic member are opposed to each other with a gap in the height direction, and the first magnetic member and the second magnetic member are When viewed from above, the first center line passing through the center of the width dimension of the first magnetic member and the second center line passing through the center of the width dimension of the second magnetic member intersect in the middle. And the first center line and the second center line are directed from the intersection toward one end and from the intersection toward the other end. And at least one of the first magnetic member and the second magnetic member is formed of the magnet.
前記第 1の磁性部材と前記第 2の磁性部材間の空間内には、一方の磁性部材の対 向面から他方の磁性部材の対向面に向けて発生する外部磁界の方向力 前記第 1 の磁性部材及び第 2の磁性部材の一端部側から他端部側に向けて、徐々に回転変 位する回転磁場領域が形成され、前記磁気抵抗効果素子は、前記積層構造の積層 界面力 前記磁性部材の前記磁気抵抗効果素子との対向面に対して直交する方向 に向けられるとともに、前記一端部側から前記他端部側に向けて、前記回転磁場領 域内を通るように相対移動する移動センサ。  In the space between the first magnetic member and the second magnetic member, the directional force of the external magnetic field generated from the facing surface of one magnetic member toward the facing surface of the other magnetic member. A rotating magnetic field region that gradually rotates is formed from one end side to the other end side of the magnetic member and the second magnetic member, and the magnetoresistive effect element has a laminated interface force of the laminated structure and the magnetic force. A movement sensor that is directed in a direction orthogonal to the surface of the member facing the magnetoresistive effect element, and that relatively moves so as to pass through the rotating magnetic field region from the one end side toward the other end side. .
[7] 前記第 1の磁性部材及び前記第 2の磁性部材の各対向面は帯形状で、前記高さ 方向の真上から見たときに X字状に交差しており、前記磁気抵抗効果素子は、前記 高さ方向の真上から見たときに、前記第 1の磁性部材の第 1の中心線と前記第 2の磁 性部材の第 2の中心線間の幅方向の中心を直線状に相対移動する請求項 6記載の 移動センサ。 [7] The opposing surfaces of the first magnetic member and the second magnetic member are band-shaped, intersecting in an X shape when viewed from directly above the height direction, and the magnetoresistive effect When viewed from directly above the height direction, the element has a straight line in the center in the width direction between the first center line of the first magnetic member and the second center line of the second magnetic member. The movement sensor according to claim 6, wherein the movement sensor is relatively moved.
[8] 前記第 1の磁性部材及び前記第 2の磁性部材は共に磁石で形成され、前記第 1の 磁性部材の対向面、及び前記第 2の磁性部材の対向面が異極に着磁されている請 求項 6に記載の移動センサ。  [8] The first magnetic member and the second magnetic member are both formed of magnets, and the opposing surface of the first magnetic member and the opposing surface of the second magnetic member are magnetized to have different polarities. The movement sensor according to claim 6.
PCT/JP2007/071241 2006-11-02 2007-10-31 Motion sensor WO2008053926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006298623A JP2010019552A (en) 2006-11-02 2006-11-02 Motion sensor
JP2006-298623 2006-11-02

Publications (1)

Publication Number Publication Date
WO2008053926A1 true WO2008053926A1 (en) 2008-05-08

Family

ID=39344267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071241 WO2008053926A1 (en) 2006-11-02 2007-10-31 Motion sensor

Country Status (2)

Country Link
JP (1) JP2010019552A (en)
WO (1) WO2008053926A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147988A1 (en) * 2008-06-03 2009-12-10 アルプス電気株式会社 Position detecting device and lens device using the same
WO2010032667A1 (en) * 2008-09-19 2010-03-25 アルプス電気株式会社 Position detection sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029346B1 (en) * 1969-03-29 1975-09-22
JPH06229708A (en) * 1993-02-05 1994-08-19 Hamamatsu Koden Kk Noncontact linear displacement sensor
JP2000131006A (en) * 1998-10-28 2000-05-12 Koninkl Philips Electronics Nv Relative straight line position measuring device
JP2001159542A (en) * 1999-12-03 2001-06-12 Hitachi Metals Ltd Rotation angle sensor and rotation angle sensor unit
JP2002529724A (en) * 1998-11-11 2002-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetoresistive sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029346B1 (en) * 1969-03-29 1975-09-22
JPH06229708A (en) * 1993-02-05 1994-08-19 Hamamatsu Koden Kk Noncontact linear displacement sensor
JP2000131006A (en) * 1998-10-28 2000-05-12 Koninkl Philips Electronics Nv Relative straight line position measuring device
JP2002529724A (en) * 1998-11-11 2002-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetoresistive sensor
JP2001159542A (en) * 1999-12-03 2001-06-12 Hitachi Metals Ltd Rotation angle sensor and rotation angle sensor unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147988A1 (en) * 2008-06-03 2009-12-10 アルプス電気株式会社 Position detecting device and lens device using the same
WO2010032667A1 (en) * 2008-09-19 2010-03-25 アルプス電気株式会社 Position detection sensor

Also Published As

Publication number Publication date
JP2010019552A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
US9644994B2 (en) Magnetic sensor
US6900713B2 (en) Magnetic switch capable of instantaneous switching of an output signal and magnetic sensor
JP5532166B1 (en) Magnetic sensor and magnetic sensor system
JP4837749B2 (en) Magnetic sensor and magnetic encoder using the same
JP5297442B2 (en) Magnetic sensor
US7772835B2 (en) AMR array magnetic design for improved sensor flexibility and improved air gap performance
US20120217961A1 (en) Magnetic sensor
JP2010286236A (en) Origin detection device
CN106257298B (en) Magnetic field generator, magnetic sensor system, and magnetic sensor
JP5014968B2 (en) Position sensor
JP4874781B2 (en) Magnetic sensor and magnetic encoder using the same
KR100438059B1 (en) Plane magnetic sensor and plane magnetic sensor for multidimensional magnetic field analysis
US20090251830A1 (en) Magnetic detector
WO2011074488A1 (en) Magnetic sensor
WO2008053926A1 (en) Motion sensor
US20150198430A1 (en) Magnetism detection element and rotation detector
JP5453198B2 (en) Magnetic sensor
JP5936126B2 (en) Shift lever device using magnetic detection type switch
JP4890401B2 (en) Origin detection device
JP2012107914A (en) Magnetic field detection device
JP5184380B2 (en) Magnetic detector
JP4639216B2 (en) Magnetic sensor
JP2008170273A (en) Position detector using magnetoresistance effect element
WO2010095495A1 (en) Magnetism detection device
JP2014006126A (en) Magnetic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP