JP2010019552A - Motion sensor - Google Patents

Motion sensor Download PDF

Info

Publication number
JP2010019552A
JP2010019552A JP2006298623A JP2006298623A JP2010019552A JP 2010019552 A JP2010019552 A JP 2010019552A JP 2006298623 A JP2006298623 A JP 2006298623A JP 2006298623 A JP2006298623 A JP 2006298623A JP 2010019552 A JP2010019552 A JP 2010019552A
Authority
JP
Japan
Prior art keywords
magnet
magnetic member
magnetoresistive effect
effect element
center line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006298623A
Other languages
Japanese (ja)
Inventor
Koji Kurata
孝二 倉田
Ichiro Tokunaga
一郎 徳永
Masao Kasashima
正男 笠嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2006298623A priority Critical patent/JP2010019552A/en
Priority to PCT/JP2007/071241 priority patent/WO2008053926A1/en
Publication of JP2010019552A publication Critical patent/JP2010019552A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contactless motion sensor using a magnetoresistive effect element, and especially a motion sensor having an improved linearity of position detection. <P>SOLUTION: A first magnet 4 and a second magnet 5 are crossed into the shape of X, and a magnetoresistive effect element (GMR element) 15 is linearly moved in the space between the magnets 4, 5. Between the magnets 4, 5, a rotating magnetic field region where an external magnetic field is rotated and displaced is formed from their left-side ends 4b, 5b over to right-side ends 4c, 5c, and the megnetoresistive element 15 is movably supported so as to pass the rotating magnetic field region. Therefore, with its movement the direction of magnetization of the free magnetic layer of the magnetoresitive element 15 gradually varies. Consequently, the linearity of the position detection can be improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁気抵抗効果素子を用いた非接触式の移動センサに係り、特に、位置検出のリニアリティ(直線性)を向上させることが可能な移動センサに関する。   The present invention relates to a non-contact type movement sensor using a magnetoresistive effect element, and more particularly to a movement sensor capable of improving the linearity of position detection.

磁気抵抗効果を利用したMR素子は以下の特許文献1に記載されている移動センサ等に使用される。前記MR素子は、外部磁界の方向変化を、前記方向変化に伴う電気抵抗変化に基づき高精度に検知できるため、環境変化や磁石の磁力低下等に関係なく検知可能で、ホール素子等のように外部磁界の磁界強度変化を読み取る素子に比べて高性能且つ高寿命を期待できる。   The MR element using the magnetoresistive effect is used for a movement sensor described in Patent Document 1 below. The MR element can detect a change in the direction of an external magnetic field with high accuracy based on a change in electrical resistance accompanying the change in direction, and can detect the change regardless of environmental changes or a decrease in magnetic force of a magnet. Higher performance and longer life can be expected compared to an element that reads changes in magnetic field strength of an external magnetic field.

特許文献1に記載された発明では、例えば特許文献1の図5や図7に示されるように永久磁石と磁気検出素子とが対向配置され、前記永久磁石が直線方向へ移動支持されている。   In the invention described in Patent Document 1, for example, as shown in FIG. 5 and FIG. 7 of Patent Document 1, a permanent magnet and a magnetic detection element are arranged to face each other, and the permanent magnet is supported in a linear direction.

このような配置とした場合、前記永久磁石の磁極付近に前記磁気検出素子が配置されたとき、前記磁気検出素子には、前記永久磁石から前記磁気検出素子の前記永久磁石との対向面に直交する方向の外部磁界が侵入し、また特許文献1の図7のように、前記磁気検出素子が磁極間にある場合には、前記磁気検出素子の前記対向面と平行な方向の外部磁界が侵入する。   In such an arrangement, when the magnetic detection element is arranged near the magnetic pole of the permanent magnet, the magnetic detection element is orthogonal to the surface of the magnetic detection element facing the permanent magnet from the permanent magnet. When the magnetic detection element is located between the magnetic poles as shown in FIG. 7 of Patent Document 1, an external magnetic field in a direction parallel to the facing surface of the magnetic detection element enters. To do.

このように、特許文献1では、前記磁気検出素子に侵入する外部磁界の方向が、前記永久磁石を移動させることで変化するため、磁気検出素子が磁気抵抗効果を利用したMR素子であると、前記外部磁界の方向変化によって前記磁気検出素子の電気抵抗値が変化する。
特開平5−280916号公報
Thus, in Patent Document 1, since the direction of the external magnetic field penetrating into the magnetic detection element is changed by moving the permanent magnet, the magnetic detection element is an MR element using a magnetoresistive effect. A change in the direction of the external magnetic field changes the electric resistance value of the magnetic detection element.
JP-A-5-280916

しかしながら、特許文献1に記載された発明では、前記磁気検出素子の前記対向面と平行な方向に侵入する外部磁界領域が長すぎ、位置検出のリニアリティ(直線性)を適切に向上させることができないと考えられる。   However, in the invention described in Patent Document 1, the external magnetic field region that penetrates in the direction parallel to the facing surface of the magnetic detection element is too long, and the position detection linearity (linearity) cannot be improved appropriately. it is conceivable that.

特許文献1の図5等に示すように、特許文献1に記載された発明では、永久磁石は棒形状であり、前記磁気検出素子の相対移動方向と、前記永久磁石の幅方向の中心を通る中心線方向とは一致している。このため、特許文献1の図7に示す永久磁石の磁極間領域では、前記磁気検出素子には、ほぼ一方向からの外部磁界のベクトル成分が支配的に侵入し、磁極間領域での前記磁気検出素子(MR素子)の電気抵抗変化が小さくなり(あるいは電気抵抗変化が無く)、したがって、位置検出のリニアリティ(直線性)を適切に向上させることができないと考えられる。   As shown in FIG. 5 and the like of Patent Document 1, in the invention described in Patent Document 1, the permanent magnet has a rod shape and passes through the relative movement direction of the magnetic detection element and the center in the width direction of the permanent magnet. It coincides with the direction of the center line. For this reason, in the region between the magnetic poles of the permanent magnet shown in FIG. 7 of Patent Document 1, a vector component of the external magnetic field from almost one direction dominantly enters the magnetic detection element, and the magnetic field in the region between the magnetic poles It is considered that the change in electric resistance of the detection element (MR element) becomes small (or no change in electric resistance), and therefore the linearity (linearity) of position detection cannot be improved appropriately.

そこで本発明は上記従来の課題を解決するためのものであり、磁気抵抗効果素子を用いた非接触式の移動センサに係り、特に、位置検出のリニアリティ(直線性)を向上させることが可能な移動センサを提供することを目的としている。   Accordingly, the present invention is to solve the above-described conventional problems, and relates to a non-contact type movement sensor using a magnetoresistive effect element, and in particular, it is possible to improve the linearity (linearity) of position detection. The object is to provide a movement sensor.

本発明における移動センサは、外部磁界の方向変化に対して電気抵抗が変化する磁気抵抗効果を利用した積層構造の磁気抵抗効果素子と、前記外部磁界を発生させるための磁石とを有し、
前記磁気抵抗効果素子及び磁石の一方が移動可能に支持されており、
前記磁気抵抗効果素子と前記磁石は、高さ方向に間隔を空け、前記高さ方向の真上から見たときに、前記磁石の幅寸法の中心を通る中心線と、前記磁気抵抗効果素子の相対移動経路とが途中で交差すると共に、交差点から磁気抵抗効果素子の相対移動の出発点及び相対移動の終点に向けて徐々に前記中心線と前記磁気抵抗効果素子の相対移動経路間の間隔が幅方向に広がるように対向配置され、
前記磁気抵抗効果素子の相対移動に伴って、前記積層構造内に侵入する積層界面と平行な面方向からの前記外部磁界の侵入方向が回転変位し、前記磁気抵抗効果素子の電気抵抗値が変化することで移動位置が検出されることを特徴とするものである。
The movement sensor according to the present invention includes a magnetoresistive element having a laminated structure using a magnetoresistive effect in which an electric resistance changes with respect to a change in direction of an external magnetic field, and a magnet for generating the external magnetic field,
One of the magnetoresistive effect element and the magnet is movably supported,
The magnetoresistive element and the magnet are spaced apart in the height direction, and when viewed from directly above the height direction, a center line passing through the center of the width dimension of the magnet, and the magnetoresistive element The relative movement path intersects in the middle, and the distance between the center line and the relative movement path of the magnetoresistive element gradually increases from the intersection toward the starting point of relative movement of the magnetoresistive element and the end point of relative movement. Opposed to spread in the width direction,
With the relative movement of the magnetoresistive effect element, the penetration direction of the external magnetic field from the plane direction parallel to the laminated interface penetrating into the laminated structure is rotationally displaced, and the electric resistance value of the magnetoresistive effect element changes. Thus, the movement position is detected.

本発明では上記構成により、従来に比べて、磁気抵抗効果素子を用いた非接触式の移動センサにおいて、位置検出のリニアリティ(直線性)を向上させることが出来る。   In the present invention, with the above-described configuration, position detection linearity (linearity) can be improved in a non-contact type movement sensor using a magnetoresistive effect element as compared with the related art.

すなわち本発明では、上記のように、磁石の前記中心線と、前記磁気抵抗効果素子の相対移動経路とが、途中で交わると共に、交差点から磁気抵抗効果素子の相対移動の出発点、及び相対移動の終点に向けて徐々に前記中心線と前記磁気抵抗効果素子の相対移動経路間の間隔が幅方向に広がるように、磁気抵抗効果素子と磁石とが対向配置されている。   That is, in the present invention, as described above, the center line of the magnet and the relative movement path of the magnetoresistive element intersect each other, and the starting point of the relative movement of the magnetoresistive element from the intersection and the relative movement The magnetoresistive effect element and the magnet are arranged to face each other so that the distance between the center line and the relative movement path of the magnetoresistive effect element gradually increases in the width direction.

従来のように、磁石の前記中心線と前記磁気抵抗効果素子の相対移動経路とが一致していると、前記磁石の中央付近では前記磁気抵抗効果素子に侵入する外部磁界の方向がほぼ一定となってしまい、この結果、位置検出のリニアリティ(直線性)を向上させることが出来なかった。   When the center line of the magnet and the relative movement path of the magnetoresistive effect element coincide with each other as in the prior art, the direction of the external magnetic field entering the magnetoresistive effect element is substantially constant near the center of the magnet. As a result, the linearity (linearity) of position detection could not be improved.

これに対し本発明では、磁石の前記中心線と前記磁気抵抗効果素子の相対移動経路とを一致させず、斜め方向から交差させているので、前記磁気抵抗効果素子を相対移動させると、前記磁気抵抗効果素子は、前記磁石の中心線に対して常に変動した位置にあり、これにより、前記磁気抵抗効果素子の相対移動に伴い、前記磁気抵抗効果素子の積層界面と平行な面方向からの外部磁界の侵入方向を漸次的に、回転変位させることが出来る。   On the other hand, in the present invention, the center line of the magnet and the relative movement path of the magnetoresistive effect element do not coincide with each other but intersect with each other from an oblique direction. The resistance effect element is always in a position that fluctuates with respect to the center line of the magnet, and accordingly, with the relative movement of the magnetoresistance effect element, the resistance effect element is externally viewed from a plane direction parallel to the laminated interface of the magnetoresistance effect element. The intrusion direction of the magnetic field can be gradually displaced.

よって、従来に比べて、位置検出のリニアリティ(直線性)を向上させることが出来る。   Therefore, the linearity (linearity) of the position detection can be improved as compared with the conventional case.

また本発明では、前記磁石は、幅方向の中心を通る中心線長さが前記幅方向の寸法よりも長く、且つ、前記中心線の両側に位置する両側面が前記中心線と平行な方向に延びる形状で形成されていることが、前記磁気抵抗効果素子の相対移動に伴い、前記磁気抵抗効果素子の積層界面と平行な面方向からの外部磁界の侵入方向を適切に、回転変位させることが出来、好適である。   In the present invention, the magnet has a center line length passing through the center in the width direction being longer than the dimension in the width direction, and both side surfaces located on both sides of the center line are in a direction parallel to the center line. As the magnetoresistive effect element is formed in an extending shape, the penetration direction of the external magnetic field from the plane direction parallel to the laminated interface of the magnetoresistive effect element can be appropriately rotationally displaced with the relative movement of the magnetoresistive effect element. It is possible and suitable.

また、前記磁気抵抗効果素子は、直線状に相対移動すると直線式の移動センサとして使用可能となる。   The magnetoresistive element can be used as a linear movement sensor when it is relatively moved linearly.

本発明では、前記磁気抵抗効果素子が移動可能に支持され、前記磁石が固定配置されていると、簡単な構成で且つ小型化を実現できる。   In the present invention, when the magnetoresistive effect element is movably supported and the magnet is fixedly arranged, it is possible to reduce the size with a simple configuration.

本発明では、前記磁気抵抗効果素子は、前記積層構造の積層界面が、前記磁石の前記磁気抵抗効果素子との対向面に対して直交する方向に向けられ、前記磁石の前記対向面が単一の磁極面となっていることが好適である。このような構成とすることで、前記磁気抵抗効果素子の相対移動の出発点から交差点及び終点に向けて、前記磁気抵抗効果素子の相対移動に伴い、前記磁気抵抗効果素子の積層界面と平行な面方向からの外部磁界の侵入方向をより適切に、回転変位させることが出来る。   In the present invention, the magnetoresistive effect element is such that a laminated interface of the laminated structure is oriented in a direction orthogonal to a face of the magnet facing the magnetoresistive effect element, and the face of the magnet is single. It is preferable that the magnetic pole face be With such a configuration, the relative movement of the magnetoresistive element from the starting point of the relative movement of the magnetoresistive effect element toward the intersection and the end point is parallel to the stacked interface of the magnetoresistive effect element. The penetration direction of the external magnetic field from the surface direction can be more appropriately rotationally displaced.

本発明では、第1の磁性部材と、第2の磁性部材とが高さ方向に間隔を空けて対向するとともに、前記第1の磁性部材と前記第2の磁性部材は、前記高さ方向の真上から見たときに、前記第1の磁性部材の幅寸法の中心を通る第1の中心線と、前記第2の磁性部材の幅寸法の中心を通る第2の中心線とが途中で交差すると共に、前記第1の中心線と前記第2の中心線とが交差点から一端部方向、及び交差点から他端部方向に向けて互いに幅方向に離れていく形状にて形成され、前記第1の磁性部材及び前記第2の磁性部材のうち少なくとも一方が前記磁石で形成されており、
前記第1の磁性部材と前記第2の磁性部材間の空間内には、一方の磁性部材の対向面から他方の磁性部材の対向面に向けて発生する外部磁界の方向が、前記第1の磁性部材及び第2の磁性部材の一端部側から他端部側に向けて、徐々に回転変位する回転磁場領域が形成され、前記磁気抵抗効果素子は、前記積層構造の積層界面が、前記磁性部材の前記磁気抵抗効果素子との対向面に対して直交する方向に向けられるとともに、前記一端部側から前記他端部側に向けて、前記回転磁場領域内を通るように相対移動することが好ましい。
In the present invention, the first magnetic member and the second magnetic member are opposed to each other at an interval in the height direction, and the first magnetic member and the second magnetic member are arranged in the height direction. When viewed from directly above, a first center line passing through the center of the width dimension of the first magnetic member and a second center line passing through the center of the width dimension of the second magnetic member are in the middle. The first center line and the second center line are formed so as to be separated from each other in the width direction from the intersection toward the one end direction and from the intersection toward the other end direction. At least one of the first magnetic member and the second magnetic member is formed of the magnet;
In the space between the first magnetic member and the second magnetic member, the direction of the external magnetic field generated from the facing surface of one magnetic member toward the facing surface of the other magnetic member is the first magnetic member. A rotating magnetic field region that is gradually rotated and displaced from one end side to the other end side of the magnetic member and the second magnetic member is formed, and the magnetoresistive element has a layered interface of the layered structure in which the layered interface is magnetic. The member is directed in a direction orthogonal to the surface of the member facing the magnetoresistive effect element, and is relatively moved so as to pass through the rotating magnetic field region from the one end side toward the other end side. preferable.

上記した構成では、2つの磁性部材を高さ方向にて対向させ、しかも各磁性部材の前記中心線を高さ方向の真上から見たときに斜め方向から交差するようにしているので、前記磁性部材間に、一端部側から他端部側に向けて、徐々に外部磁界が回転変位する回転磁場領域を形成することが簡単且つ適切に出来る。   In the above-described configuration, the two magnetic members are opposed to each other in the height direction, and when the center line of each magnetic member is viewed from directly above the height direction, it intersects from an oblique direction. Between the magnetic members, it is possible to easily and appropriately form a rotating magnetic field region in which the external magnetic field gradually rotates and displaces from one end side to the other end side.

そして、前記磁性部材間であって、前記回転磁場領域内を前記磁気抵抗効果素子が相対移動するように規制することで、前記磁気抵抗効果素子の相対移動に伴い前記磁気抵抗効果素子の電気抵抗値を連続的に変化させることができ、より効果的に、位置検出のリニアリティ(直線性)を向上させることが出来る。   Then, the electric resistance of the magnetoresistive effect element is increased with the relative movement of the magnetoresistive effect element by restricting the magnetoresistive effect element to move relatively between the magnetic members and within the rotating magnetic field region. The value can be continuously changed, and the position detection linearity can be more effectively improved.

本発明では、前記第1の磁性部材及び前記第2の磁性部材の各対向面は帯形状で、前記高さ方向の真上から見たときにX字状に交差しており、前記磁気抵抗効果素子は、前記高さ方向の真上から見たときに、前記第1の磁性部材の第1の中心線と前記第2の磁性部材の第2の中心線間の幅方向の中心を直線状に相対移動することが、より効果的に、位置検出のリニアリティ(直線性)を向上させた直線式の移動センサとして使用可能である。   In the present invention, the opposing surfaces of the first magnetic member and the second magnetic member are band-shaped and intersect in an X shape when viewed from directly above the height direction, When the effect element is viewed from directly above in the height direction, the center in the width direction between the first center line of the first magnetic member and the second center line of the second magnetic member is a straight line. It is possible to use a linear movement sensor that improves the linearity (linearity) of position detection more effectively.

本発明では、前記第1の磁性部材及び前記第2の磁性部材は共に磁石で形成され、前記第1の磁性部材の対向面、及び前記第2の磁性部材の対向面が異極に着磁されていることが、前記磁性部材間に外部磁界の乱れが少なく適切に回転変位した回転磁場領域を形成でき、さらに、位置検出のリニアリティ(直線性)を向上させることが可能である。   In the present invention, the first magnetic member and the second magnetic member are both formed of magnets, and the opposing surface of the first magnetic member and the opposing surface of the second magnetic member are magnetized to have different polarities. Therefore, it is possible to form a rotating magnetic field region that is appropriately rotated and displaced with little disturbance of the external magnetic field between the magnetic members, and it is possible to improve the linearity of position detection.

本発明の移動センサによれば、従来に比べて、位置検出のリニアリティ(直線性)を向上させることが出来る。   According to the movement sensor of the present invention, the linearity (linearity) of position detection can be improved as compared with the conventional case.

図1は本実施形態における移動センサの内部構造を示すための部分斜視図、図2は図1に示す移動センサを構成する磁気抵抗効果素子の移動方向と、磁石及び磁気抵抗効果素子との位置関係を示すための部分平面図、図3(a)〜(e)は、図2に示すAからEの位置まで磁気抵抗効果素子が移動した際、各線上に沿って磁気抵抗効果素子及び磁石を高さ方向に切断し、矢印方向から見た部分断面図、図4は磁気抵抗効果素子の積層構造の膜厚方向からの断面図、図5は、図3(c)の拡大断面図、である。   FIG. 1 is a partial perspective view for showing the internal structure of the movement sensor in the present embodiment, and FIG. 2 is a movement direction of the magnetoresistive effect element constituting the movement sensor shown in FIG. 1 and positions of the magnet and the magnetoresistive effect element. 3 (a) to 3 (e) are partial plan views for showing the relationship, and the magnetoresistive effect element and the magnet along each line when the magnetoresistive effect element moves from the position A to the position E shown in FIG. FIG. 4 is a sectional view from the film thickness direction of the laminated structure of the magnetoresistive effect element, FIG. 5 is an enlarged sectional view of FIG. It is.

図1に示すように本実施形態における移動センサ1は、筐体2と、前記筐体2内部に設けられる磁気抵抗効果素子を備えた磁気検出部3、第1の磁石4、及び第2の磁石5とを有して構成される。   As shown in FIG. 1, the movement sensor 1 in this embodiment includes a housing 2, a magnetic detection unit 3 including a magnetoresistive effect element provided in the housing 2, a first magnet 4, and a second And a magnet 5.

ここで各図において図示X方向を幅方向、図示Y方向を長さ方向、図示Z方向を高さ方向として説明する。各方向は残り2つの方向と直交する関係にある。なお高さ方向は磁石と磁気抵抗効果素子とが所定の間隔を空けて対向する方向を指している。   Here, in each figure, the illustrated X direction will be described as the width direction, the illustrated Y direction as the length direction, and the illustrated Z direction as the height direction. Each direction is orthogonal to the remaining two directions. The height direction indicates a direction in which the magnet and the magnetoresistive effect element face each other with a predetermined interval.

図1に示すように、前記筐体2の上面2aには、図示Y方向に沿って直線状の開口部6が形成されている。図1に示すように磁気検出部3は基板7に設けられ、前記基板7に接続されたレバー8が、前記開口部6を介して外部に露出している。   As shown in FIG. 1, a linear opening 6 is formed in the upper surface 2a of the housing 2 along the Y direction in the figure. As shown in FIG. 1, the magnetic detection unit 3 is provided on the substrate 7, and the lever 8 connected to the substrate 7 is exposed to the outside through the opening 6.

前記基板7は、幅方向(図示X方向)に所定の間隔を空けて長さ方向(図示Y方向)に平行に延びる2本のレール部9,10に支持されており、前記レバー8を図示Y方向に移動させることで前記基板7が前記レール部9,10に沿って図示Y方向に移動する。この結果、前記磁気検出部3を図示Y方向に沿って移動させることが出来る。   The substrate 7 is supported by two rail portions 9 and 10 extending in parallel in the length direction (Y direction shown in the drawing) with a predetermined interval in the width direction (X direction shown in the drawing), and the lever 8 is shown in the drawing. By moving in the Y direction, the substrate 7 moves in the Y direction in the drawing along the rail portions 9 and 10. As a result, the magnetic detection unit 3 can be moved along the Y direction in the figure.

前記磁気検出部3は少なくとも一つの磁気抵抗効果素子15を備える。前記磁気検出部3には図示しない固定抵抗素子も設けられ、前記磁気抵抗効果素子15と出力取り出し部を介して直列回路が構成されている。あるいは前記磁気抵抗効果素子15と固定抵抗素子とでブリッジ回路が構成されている。また図示しないが、前記磁気抵抗効果素子15の電気抵抗変化に基づく電圧変化から移動位置を検出するための検出回路が筐体2内部あるいは外部に設けられる。   The magnetic detection unit 3 includes at least one magnetoresistive element 15. The magnetic detection unit 3 is also provided with a fixed resistance element (not shown), and a series circuit is configured through the magnetoresistance effect element 15 and an output extraction unit. Alternatively, the magnetoresistive effect element 15 and the fixed resistance element constitute a bridge circuit. Although not shown, a detection circuit for detecting a movement position from a voltage change based on a change in electric resistance of the magnetoresistive effect element 15 is provided inside or outside the housing 2.

図1ないし図3に示すように、前記磁石4,5は、高さ方向(図示Z方向)に所定の間隔を空けて対向配置されている。前記第1の磁石4の前記第2の磁石5との対向面(下面)4aは、S極に着磁され、前記第1の磁石4の前記対向面4aとの逆面(上面)がN極に着磁されている。一方、前記第2の磁石5の前記第1の磁石4との対向面(上面)5aは、N極に着磁され、前記第2の磁石5の前記対向面5aと逆面(下面)がS極に着磁されている。   As shown in FIGS. 1 to 3, the magnets 4 and 5 are arranged to face each other at a predetermined interval in the height direction (Z direction in the drawing). The opposing surface (lower surface) 4a of the first magnet 4 with the second magnet 5 is magnetized to the S pole, and the opposite surface (upper surface) of the first magnet 4 with respect to the opposing surface 4a is N. The pole is magnetized. On the other hand, the facing surface (upper surface) 5a of the second magnet 5 with respect to the first magnet 4 is magnetized to the N pole, and the opposite surface (lower surface) of the facing surface 5a of the second magnet 5 is formed. S pole is magnetized.

図2に示すように、第1の磁石4は、幅寸法がT1で形成され、前記幅寸法T1の中心を通る第1の中心線O1が前記幅寸法T1よりも長さ寸法L1で形成されている。また、前記幅寸法T1の両側に位置する両側面4d,4eは前記中心線O1と平行に形成されており、前記第1の磁石4の対向面4aは細長い帯形状で形成されている。また、第2の磁石5は、幅寸法がT2で形成され、前記幅寸法T2の中心を通る第2の中心線O2が前記幅寸法T2よりも長さ寸法L2で形成されている。また、前記幅寸法T2の両側に位置する両側面5d,5eは前記中心線O2と平行に形成されており、前記第2の磁石5の対向面5aは細長い帯形状で形成されている。前記幅寸法T1と幅寸法T2は同じ大きさであり、長さ寸法L1と長さ寸法L2は同じ長さである。   As shown in FIG. 2, the first magnet 4 is formed with a width dimension T1, and a first center line O1 passing through the center of the width dimension T1 is formed with a length dimension L1 rather than the width dimension T1. ing. Further, both side surfaces 4d and 4e positioned on both sides of the width dimension T1 are formed in parallel with the center line O1, and the facing surface 4a of the first magnet 4 is formed in an elongated band shape. The second magnet 5 has a width dimension of T2, and a second center line O2 passing through the center of the width dimension T2 is formed with a length dimension L2 that is greater than the width dimension T2. Further, both side surfaces 5d and 5e located on both sides of the width dimension T2 are formed in parallel with the center line O2, and the facing surface 5a of the second magnet 5 is formed in an elongated strip shape. The width dimension T1 and the width dimension T2 are the same, and the length dimension L1 and the length dimension L2 are the same length.

図2に示すように、第1の磁石4は左側端部4b(一端部)が右側端部4c(他端部)よりも紙面上方向(図示X方向)に傾いており、また第2の磁石5は左側端部5bが右側端部5cよりも紙面下方向(図示X方向とは逆方向)に傾いている。そして図2に示すように、高さ方向(図示Z方向)の真上から見たときに、前記第1の中心線O1と第2の中心線O2とが各長さ寸法L1,L2の中心位置で交差している。よって、前記第1の中心線O1と第2の中心線O2は、交差点20から前記左側端部4b,5b方向に、及び前記交差点20から前記右側端部4c,5c方向に向けて徐々に幅方向(図示X方向)に離れている。図2に示すように前記第1の磁石4と第2の磁石5はX字状に交差している。   As shown in FIG. 2, the first magnet 4 has a left end 4b (one end) inclined more upward in the drawing (X direction in the drawing) than the right end 4c (the other end), and the second magnet 4 The left end 5b of the magnet 5 is inclined to the lower side of the drawing (the direction opposite to the X direction in the drawing) than the right end 5c. As shown in FIG. 2, when viewed from directly above in the height direction (Z direction in the drawing), the first center line O1 and the second center line O2 are the centers of the length dimensions L1 and L2. Cross at the position. Therefore, the first center line O1 and the second center line O2 are gradually widened from the intersection 20 toward the left end portions 4b and 5b and from the intersection 20 toward the right end portions 4c and 5c. It is away in the direction (X direction in the figure). As shown in FIG. 2, the first magnet 4 and the second magnet 5 intersect in an X shape.

上記したように、前記第1の磁石4の対向面(下面)4aはS極に、前記第2の磁石5の対向面(上面)5aはN極に着磁されているから、前記第2の磁石5の前記対向面5aから前記第1の磁石4の前記対向面4aに向けて外部磁界Hが生じている。   As described above, the opposing surface (lower surface) 4a of the first magnet 4 is magnetized to the S pole, and the opposing surface (upper surface) 5a of the second magnet 5 is magnetized to the N pole. An external magnetic field H is generated from the facing surface 5 a of the first magnet 5 toward the facing surface 4 a of the first magnet 4.

図3(a)は、図2に示すA線上にて切断した断面図、図3(b)は、図2に示すB線上にて切断した断面図、図3(c)は、図2に示すC線上にて切断した断面図、図3(d)は、図2に示すD線上にて切断した断面図、図3(e)は、図2に示すE線上にて切断した断面図を示している。   3A is a cross-sectional view taken along the line A shown in FIG. 2, FIG. 3B is a cross-sectional view taken along the line B shown in FIG. 2, and FIG. FIG. 3D is a cross-sectional view cut along line D shown in FIG. 2, and FIG. 3E is a cross-sectional view cut along line E shown in FIG. Show.

図3(a)の断面部分は、第1の磁と第2の磁石5とが幅方向(図示X方向)に比較的大きく、ずれている場所である。第1の磁石4は第2の磁石5に対して図示X方向とは逆方向にずれている。よって、前記第2の磁石5の対向面5aから第1の磁石4の対向面4aに向かう外部磁界H1の方向は、図示Z方向から図示X方向とは逆方向に大きく傾いている。図3(b)の断面部分は、第1の磁石4と第2の磁石5とが図3(a)に比べて図示X方向へのずれ量が小さく、前記第2の磁石5の対向面5aから第1の磁石4の対向面4aに向かう外部磁界H2の方向は、図3(a)に比べて、図示Z方向からの傾き角が小さくなっている。図3(c)の断面部分は、第1の磁石4と第2の磁石5とが高さ方向(図示Z方向)に一致している。このため、前記第2の磁石5の対向面5aから第1の磁石4の対向面4aに向かう外部磁界H3の方向は、図示Z方向に一致している。図3(d)の断面部分は、図3(b)と同じく、第1の磁石4と第2の磁石5との図示X方向へのずれ量が小さいが、図3(b)とは異なって、第1の磁石4は第2の磁石5に対して図示X方向にずれている。このため図3(d)に示すように、前記第2の磁石5の対向面5aから第1の磁石4の対向面4aに向かう外部磁界H4の方向は、図示Z方向から図示X方向に小さく傾いている。図3(e)の断面部分は、図3(a)と同じく、第1の磁石4と第2の磁石5との図示X方向へのずれ量が大きいが、図3(a)とは異なって、第1の磁石4は第2の磁石5に対して図示X方向にずれている。このため図3(e)に示すように、前記第2の磁石5の対向面5aから第1の磁石4の対向面4aに向かう外部磁界H5の方向は、図示Z方向から図示X方向に大きく傾いている。   The cross-sectional portion of FIG. 3A is a place where the first magnet and the second magnet 5 are relatively large and displaced in the width direction (X direction in the drawing). The first magnet 4 is displaced from the second magnet 5 in the direction opposite to the illustrated X direction. Therefore, the direction of the external magnetic field H1 from the facing surface 5a of the second magnet 5 toward the facing surface 4a of the first magnet 4 is greatly inclined from the Z direction to the opposite direction to the X direction. The cross section of FIG. 3B shows that the first magnet 4 and the second magnet 5 have a smaller amount of displacement in the X direction shown in FIG. The direction of the external magnetic field H2 from 5a toward the facing surface 4a of the first magnet 4 has a smaller inclination angle from the Z direction shown in the figure than in FIG. 3C, the first magnet 4 and the second magnet 5 coincide with the height direction (Z direction in the drawing). Therefore, the direction of the external magnetic field H3 from the facing surface 5a of the second magnet 5 toward the facing surface 4a of the first magnet 4 coincides with the Z direction shown in the figure. The cross-sectional portion of FIG. 3 (d) is the same as FIG. 3 (b), but the amount of displacement of the first magnet 4 and the second magnet 5 in the X direction is small, but is different from FIG. 3 (b). Thus, the first magnet 4 is shifted in the X direction in the drawing with respect to the second magnet 5. Therefore, as shown in FIG. 3D, the direction of the external magnetic field H4 from the facing surface 5a of the second magnet 5 toward the facing surface 4a of the first magnet 4 is smaller from the Z direction shown in the drawing to the X direction shown in the drawing. Tilted. The cross-sectional portion of FIG. 3 (e) is similar to FIG. 3 (a), but the amount of displacement of the first magnet 4 and the second magnet 5 in the illustrated X direction is large, but is different from FIG. 3 (a). Thus, the first magnet 4 is shifted in the X direction in the drawing with respect to the second magnet 5. Therefore, as shown in FIG. 3 (e), the direction of the external magnetic field H5 from the facing surface 5a of the second magnet 5 toward the facing surface 4a of the first magnet 4 is greatly increased from the Z direction to the X direction. Tilted.

このように、前記第1の磁石4と第2の磁石5との間に発生する外部磁界Hは、左側端部4b,5bから右側端部4c,5c方向に向けて、図3(a)〜(e)の外部磁界H1〜H5に示すように、漸次的に回転変位している。   As described above, the external magnetic field H generated between the first magnet 4 and the second magnet 5 is directed from the left end portions 4b and 5b toward the right end portions 4c and 5c, as shown in FIG. As shown in the external magnetic fields H1 to H5 in (e) to (e), the rotational displacement is gradually made.

図1に示すように、前記第1の磁石4と第2の磁石5との間には磁気検出部3が設けられるが、図2,図3では、前記磁気検出部3を構成する前記磁気抵抗効果素子15を図示している。前記磁気抵抗効果素子15は、図3に示すように、前記第1の磁石4及び第2の磁石5と高さ方向(図示Z方向)にて所定の間隔を空けており接触していない。図3に示すように前記磁気抵抗効果素子15の高さ方向の中心は、第1の磁石4及び第2の磁石5間の高さ方向(図示Z方向)の中心に位置している。   As shown in FIG. 1, a magnetic detection unit 3 is provided between the first magnet 4 and the second magnet 5. In FIGS. 2 and 3, the magnetic elements constituting the magnetic detection unit 3 are provided. A resistance effect element 15 is illustrated. As shown in FIG. 3, the magnetoresistive effect element 15 is not in contact with the first magnet 4 and the second magnet 5 with a predetermined distance in the height direction (Z direction in the drawing). As shown in FIG. 3, the center of the magnetoresistive effect element 15 in the height direction is located at the center of the height direction (Z direction in the drawing) between the first magnet 4 and the second magnet 5.

図2に示すように、前記磁気抵抗効果素子15は、前記第1の磁石4と第2の磁石5間を図示Y方向に沿って移動する。ここで前記磁気抵抗効果素子15の移動経路21は、前記磁気抵抗効果素子15の幅方向(図示X方向)の中心位置での移動経路と定義する。図2に示すように高さ方向(図示Z方向)の真上から見たときに、前記磁気抵抗効果素子15の移動経路21は、前記第1の磁石4の第1の中心線O1と第2の磁石5の第2の中心線O2との交差点20にて交わっている。   As shown in FIG. 2, the magnetoresistive effect element 15 moves between the first magnet 4 and the second magnet 5 along the Y direction shown in the figure. Here, the moving path 21 of the magnetoresistive effect element 15 is defined as a moving path at the center position in the width direction (X direction in the drawing) of the magnetoresistive effect element 15. As shown in FIG. 2, when viewed from directly above in the height direction (Z direction in the drawing), the movement path 21 of the magnetoresistive effect element 15 is connected to the first center line O <b> 1 of the first magnet 4 and the first center line O <b> 1. The second magnet 5 intersects at the intersection 20 with the second center line O2.

図2に示すように、前記交差点20から前記磁気抵抗効果素子15の移動出発点22及び移動終点23に向けて、徐々に、中心線O1,O2と前記磁気抵抗効果素子15の移動経路21間の間隔が幅方向(図示X方向)に向けて広がっている。   As shown in FIG. 2, gradually from the intersection 20 toward the movement start point 22 and the movement end point 23 of the magnetoresistive effect element 15 between the center lines O1 and O2 and the movement path 21 of the magnetoresistive effect element 15. Is widened in the width direction (X direction in the figure).

図2に示すような磁気抵抗効果素子15の移動経路21と磁石4,5との配置関係を設定することで、図3に示すように磁気抵抗効果素子15は、前記磁石4,5間での外部磁界Hの方向が回転変位している回転磁場領域を適切に移動する。   By setting the positional relationship between the moving path 21 of the magnetoresistive effect element 15 and the magnets 4 and 5 as shown in FIG. 2, the magnetoresistive effect element 15 is placed between the magnets 4 and 5 as shown in FIG. The rotating magnetic field region in which the direction of the external magnetic field H is rotationally displaced is appropriately moved.

磁気抵抗効果素子15は巨大磁気抵抗効果(GMR効果)を利用したGMR素子である。   The magnetoresistive effect element 15 is a GMR element using a giant magnetoresistive effect (GMR effect).

図4に示すように、前記磁気抵抗効果素子15は、基板7上に下から絶縁層30、下地層31、反強磁性層32、固定磁性層33、非磁性中間層34、フリー磁性層35及び保護層36の順にスパッタ等の薄膜プロセスを用いて形成されている。反強磁性層32/固定磁性層33/非磁性中間層34/フリー磁性層35は逆積層であってもよい。   As shown in FIG. 4, the magnetoresistive effect element 15 includes an insulating layer 30, an underlayer 31, an antiferromagnetic layer 32, a fixed magnetic layer 33, a nonmagnetic intermediate layer 34, and a free magnetic layer 35 on the substrate 7 from below. The protective layer 36 is formed in this order using a thin film process such as sputtering. The antiferromagnetic layer 32 / pinned magnetic layer 33 / nonmagnetic intermediate layer 34 / free magnetic layer 35 may be reversely stacked.

反強磁性層32は、IrMnやPtMn等の反強磁性材料で形成される。固定磁性層33やフリー磁性層35はCoFeやNiFe等の磁性材料で形成される。非磁性中間層34はCu等の非磁性導電材料で形成される。保護層36はTa等で形成される。前記固定磁性層33やフリー磁性層35は例えば積層フェリ構造であってもよい。   The antiferromagnetic layer 32 is formed of an antiferromagnetic material such as IrMn or PtMn. The pinned magnetic layer 33 and the free magnetic layer 35 are formed of a magnetic material such as CoFe or NiFe. The nonmagnetic intermediate layer 34 is formed of a nonmagnetic conductive material such as Cu. The protective layer 36 is made of Ta or the like. The pinned magnetic layer 33 and the free magnetic layer 35 may have a laminated ferrimagnetic structure, for example.

前記反強磁性層32と前記固定磁性層33とが接して形成されているため磁場中熱処理を施すことにより前記反強磁性層32と前記固定磁性層33との界面に交換結合磁界(Hex)が生じ、前記固定磁性層33の磁化方向33aは一方向に固定される。図4では前記磁化方向33aは図示Z方向に固定される。   Since the antiferromagnetic layer 32 and the pinned magnetic layer 33 are formed in contact with each other, an exchange coupling magnetic field (Hex) is formed at the interface between the antiferromagnetic layer 32 and the pinned magnetic layer 33 by performing a heat treatment in a magnetic field. The magnetization direction 33a of the pinned magnetic layer 33 is pinned in one direction. In FIG. 4, the magnetization direction 33a is fixed in the Z direction shown.

一方、フリー磁性層35の磁化方向35aは、無磁場状態では、前記固定磁性層33の磁化方向33aは前記固定磁性層33によるバイアス磁界を受け、平行か反平行となる。前記フリー磁性層35は固定磁性層33と違って磁化方向が固定されておらず外部磁界の侵入方向の変化によって磁化変動するようになっている。また例えば、図4に示すように前記フリー磁性層35の磁化方向35aを、固定磁性層33の磁化方向33aに対して直交させるにはハードバイアス層(図示しない)を設けることが必要となる。ただし、このようなハードバイアス層を設けず、フリー磁性層35の磁化方向35aを制御しなくてもよい。   On the other hand, the magnetization direction 35a of the free magnetic layer 35 is parallel or anti-parallel when the magnetization direction 33a of the pinned magnetic layer 33 is subjected to a bias magnetic field by the pinned magnetic layer 33 when there is no magnetic field. Unlike the pinned magnetic layer 33, the magnetization direction of the free magnetic layer 35 is not fixed, and the magnetization of the free magnetic layer 35 is changed by a change in the penetration direction of the external magnetic field. Further, for example, as shown in FIG. 4, it is necessary to provide a hard bias layer (not shown) in order to make the magnetization direction 35a of the free magnetic layer 35 orthogonal to the magnetization direction 33a of the pinned magnetic layer 33. However, such a hard bias layer is not provided, and the magnetization direction 35a of the free magnetic layer 35 may not be controlled.

図4に示すように、磁気抵抗効果素子15は、固定磁性層33/非磁性中間層34/フリー磁性層35を有する積層構造で形成され、各層の積層界面37は、図示X−Z平面と平行な方向に形成されている。図5は、図3(c)を拡大して示す部分拡大断面図であり、前記磁気抵抗効果素子15はフリー磁性層35の膜厚中心から切断されている。なお図5に示す前記フリー磁性層35の切断面は、図4に示す積層界面37ではないが、前記フリー磁性層35の切断面と前記積層界面37は平行関係にあるので、便宜上、図5の断面図において「積層界面37」と符号した。なお後述する図7も同様である。   As shown in FIG. 4, the magnetoresistive effect element 15 is formed by a laminated structure having a pinned magnetic layer 33 / non-magnetic intermediate layer 34 / free magnetic layer 35, and a laminated interface 37 of each layer has an XZ plane shown in the figure. They are formed in parallel directions. FIG. 5 is a partially enlarged sectional view showing FIG. 3C in an enlarged manner, and the magnetoresistive effect element 15 is cut from the film thickness center of the free magnetic layer 35. The cut surface of the free magnetic layer 35 shown in FIG. 5 is not the stacked interface 37 shown in FIG. 4, but the cut surface of the free magnetic layer 35 and the stacked interface 37 are in a parallel relationship. In the cross-sectional view of FIG. The same applies to FIG. 7 described later.

前記積層界面37は、前記第1の磁石4及び第2の磁石5の各対向面4a,5aに対して直交する方向に向いている。また、前記磁気抵抗効果素子15の磁石4,5との対向面15a,15bは、前記磁石4,5の各対向面4a,5aと平行な方向を向いている。したがって磁気抵抗効果素子15には、前記積層界面37と平行な面方向(図示X−Z面方向)へ第1の磁石4及び第2の磁石5間で回転変位する外部磁界H1〜H5が侵入出来る位置関係となっている。   The laminated interface 37 is oriented in a direction perpendicular to the facing surfaces 4 a and 5 a of the first magnet 4 and the second magnet 5. Further, the opposing surfaces 15a and 15b of the magnetoresistive element 15 facing the magnets 4 and 5 are oriented in a direction parallel to the opposing surfaces 4a and 5a of the magnets 4 and 5, respectively. Therefore, external magnetic fields H1 to H5 that are rotationally displaced between the first magnet 4 and the second magnet 5 in the plane direction (XZ plane direction in the drawing) parallel to the laminated interface 37 enter the magnetoresistive effect element 15. The positional relationship is possible.

磁気抵抗効果素子15はフリー磁性層35に侵入する積層界面37と平行な方向からの外部磁界Hを読み取る能力に優れる。図3で説明した外部磁界H1〜H5は、図示X−Z面内において回転変位するから、前記積層界面37を前記外部磁界Hの回転変位する面と一致させることで、前記磁気抵抗効果素子15には、前記積層界面と平行な面方向から回転変位した外部磁界H1〜H5が適切に侵入する。   The magnetoresistive effect element 15 is excellent in the ability to read the external magnetic field H from a direction parallel to the laminated interface 37 entering the free magnetic layer 35. Since the external magnetic fields H1 to H5 described with reference to FIG. 3 are rotationally displaced in the XZ plane shown in the figure, the magnetoresistive effect element 15 is obtained by matching the laminated interface 37 with the rotationally displaced surface of the external magnetic field H. The external magnetic fields H1 to H5 that are rotationally displaced from the plane direction parallel to the laminated interface appropriately enter.

図5に示すように、磁気抵抗効果素子15を構成するフリー磁性層35の膜厚中心(図示Y方向への中心)が図2に示す交差点20の位置にまで移動すると、前記第2の磁石5の対向面5aから前記第1の磁石4の対向面4aに向けて高さ方向(図示Z方向)に発生する外部磁界H3の影響を受けて、前記フリー磁性層35の磁化方向35aは図示Z方向に変動する。   As shown in FIG. 5, when the film thickness center (center in the Y direction in the figure) of the free magnetic layer 35 constituting the magnetoresistive element 15 moves to the position of the intersection 20 shown in FIG. 5, the magnetization direction 35a of the free magnetic layer 35 is illustrated under the influence of an external magnetic field H3 generated in the height direction (Z direction in the drawing) from the facing surface 5a to the facing surface 4a of the first magnet 4. Fluctuates in the Z direction.

同じように、前記磁気抵抗効果素子15が、図3(a)(b)、(d)(e)の位置に移動した場合には、前記フリー磁性層35に図示Z方向から図示X方向、あるいは図示X方向とは逆方向に傾いた外部磁界が夫々侵入し、前記フリー磁性層35の磁化方向35aが図5の点線に示すように変動する。このフリー磁性層35の変動磁化方向35aと、固定磁性層33の固定磁化方向33aとの関係で電気抵抗値が変化する。   Similarly, when the magnetoresistive effect element 15 is moved to the positions shown in FIGS. 3A, 3B, 3D, and 3E, the free magnetic layer 35 is moved from the illustrated Z direction to the illustrated X direction, Alternatively, external magnetic fields inclined in the direction opposite to the X direction shown in the figure enter, and the magnetization direction 35a of the free magnetic layer 35 changes as shown by the dotted line in FIG. The electric resistance value changes depending on the relationship between the variable magnetization direction 35 a of the free magnetic layer 35 and the fixed magnetization direction 33 a of the fixed magnetic layer 33.

図1ないし図5に示す実施形態では、第1の磁石4と第2の磁石5との間に磁気抵抗効果素子15が設けられ、前記磁気抵抗効果素子15の積層構造の積層界面37は前記第1の磁石4及び第2の磁石5の対向面4a,5aに対して直交する方向に向けられている。   In the embodiment shown in FIGS. 1 to 5, a magnetoresistive element 15 is provided between the first magnet 4 and the second magnet 5, and the laminated interface 37 of the laminated structure of the magnetoresistive element 15 is The first magnet 4 and the second magnet 5 are oriented in a direction orthogonal to the facing surfaces 4a and 5a.

前記第1の磁石4と第2の磁石5は、前記磁石4,5間の空間内に、前記磁石4,5の左側端部4b,5bから右側端部4c,5cに向けて、前記積層界面37と平行な面内にて回転変位する外部磁界の領域が形成されるように形状及び配置が決定されており、磁気抵抗効果素子15は回転磁場領域内を直線移動するように、前記磁石4,5の中心線O1,O2間の幅方向の中心であって、前記磁石4,5間の高さ方向の中心に移動支持されている。   The first magnet 4 and the second magnet 5 are stacked in the space between the magnets 4 and 5 from the left end portions 4b and 5b of the magnets 4 and 5 toward the right end portions 4c and 5c. The shape and arrangement are determined so as to form a region of an external magnetic field that is rotationally displaced in a plane parallel to the interface 37, and the magnetoresistive effect element 15 moves linearly in the rotational magnetic field region. 4 and 5 is centered in the width direction between the center lines O1 and O2, and is supported by movement at the center in the height direction between the magnets 4 and 5.

この結果、前記磁気抵抗効果素子15が図2に示す出発点22から終点23まで図示Y方向を直線移動すると、前記磁気抵抗効果素子15を構成するフリー磁性層35内部に侵入する外部磁界Hの方向が漸次的に変化することで、電気抵抗値が漸次的に変化し、この電気抵抗値の変化に基づく出力変化によって移動位置が検知される。本実施形態によれば、従来に比べて、磁気抵抗効果素子15を出発点22から終点23まで移動させると、電気抵抗値を漸次的に変化させることができ、位置検出のリニアリティ(直線性)を向上させることが可能である。   As a result, when the magnetoresistive effect element 15 linearly moves in the Y direction shown in the figure from the starting point 22 to the end point 23 shown in FIG. 2, the external magnetic field H entering the free magnetic layer 35 constituting the magnetoresistive effect element 15 is increased. As the direction changes gradually, the electric resistance value changes gradually, and the movement position is detected by the output change based on the change in the electric resistance value. According to this embodiment, when the magnetoresistive effect element 15 is moved from the starting point 22 to the ending point 23 as compared with the conventional case, the electric resistance value can be gradually changed, and the linearity (linearity) of position detection is achieved. It is possible to improve.

図1ないし図5に示す実施形態において、第1の磁石4及び第2の磁石5のどちらか一方がヨークであってもよい。ただし、一方がヨークであると、移動センサ1の外部から内部へ及ぶ外乱磁界が、前記磁石4,5間にて回転変位する外部磁界Hに影響を与えて前記外部磁界Hの方向が乱されやすくなり、位置検出のリニアリティが低下しやすいので、両方とも磁石4,5を用いることが好適である。   In the embodiment shown in FIGS. 1 to 5, one of the first magnet 4 and the second magnet 5 may be a yoke. However, if one of them is a yoke, a disturbance magnetic field extending from the outside to the inside of the movement sensor 1 affects the external magnetic field H that is rotationally displaced between the magnets 4 and 5, and the direction of the external magnetic field H is disturbed. Since it becomes easy and the linearity of a position detection tends to fall, it is suitable to use the magnets 4 and 5 for both.

また磁石を1個だけ用いて移動センサを構成することも出来る。図6は第2実施形態の移動センサを構成する磁気抵抗効果素子と磁石との位置関係を示す部分平面図、図7は図6に示すF線上、G線上、H線上に沿って磁気抵抗効果素子及び磁石を高さ方向(図示Z方向)に沿って切断し矢印方向から見た部分断面図である。   Moreover, a movement sensor can also be comprised using only one magnet. FIG. 6 is a partial plan view showing the positional relationship between the magnetoresistive element and the magnet constituting the movement sensor of the second embodiment, and FIG. 7 is a magnetoresistive effect along the F line, G line, and H line shown in FIG. It is the fragmentary sectional view which cut | disconnected the element and the magnet along the height direction (Z direction of illustration), and was seen from the arrow direction.

図6に示すように、磁石40は、幅寸法がT3で形成され、前記幅寸法T3の中心を通る中心線O3の長さ寸法L3が前記幅寸法T3よりも長く形成されている。また前記幅寸法T3の両側に位置する両側面40b,40cは前記中心線O3と平行に延びており、前記磁石40の前記磁気抵抗効果素子41との対向面40aは矩形状で形成されている。   As shown in FIG. 6, the magnet 40 is formed with a width dimension T3, and the length L3 of the center line O3 passing through the center of the width dimension T3 is longer than the width dimension T3. Further, both side surfaces 40b and 40c located on both sides of the width dimension T3 extend in parallel with the center line O3, and a surface 40a of the magnet 40 facing the magnetoresistive element 41 is formed in a rectangular shape. .

この実施形態では図7に示すように前記磁石40の表面(対向面)40aがN極に、裏面がS極に着磁されている。   In this embodiment, as shown in FIG. 7, the surface (opposing surface) 40a of the magnet 40 is magnetized to the N pole and the back surface is magnetized to the S pole.

図6,図7に示す磁気抵抗効果素子41は、図4で示す磁気抵抗効果素子15と同じ積層構造で形成されている。   The magnetoresistive effect element 41 shown in FIGS. 6 and 7 has the same laminated structure as the magnetoresistive effect element 15 shown in FIG.

前記磁気抵抗効果素子41は、図5と同様に、積層構造の積層界面42が、前記磁石40の前記磁気抵抗効果素子41との対向面40aと直交する方向(高さ方向)で、さらに幅方向(図示X方向)に向けられている。これによって前記磁石40からの外部磁界Hは、前記磁気抵抗効果素子41に前記積層界面42と平行な面方向(図示X−Z面方向)から侵入する。   As in FIG. 5, the magnetoresistive element 41 has a width in the direction (height direction) in which the laminated interface 42 of the laminated structure is orthogonal to the facing surface 40a of the magnet 40 with the magnetoresistive element 41. It is directed in the direction (X direction in the figure). As a result, the external magnetic field H from the magnet 40 enters the magnetoresistive element 41 from a plane direction (XZ plane direction in the drawing) parallel to the laminated interface 42.

図6に示すように前記磁石40の前記中心線O3は、図示Y方向に沿って形成されている。一方、図6に示すように前記磁気抵抗効果素子41の移動経路43は、前記中心線O3に対して紙面左上方向から右下方向への斜め方向の直線経路であり、前記磁気抵抗効果素子41の移動経路43と前記磁石40の中心線O3とが磁石40の長さ方向(図示Y方向)の中心で交差している。   As shown in FIG. 6, the center line O3 of the magnet 40 is formed along the Y direction in the drawing. On the other hand, as shown in FIG. 6, the moving path 43 of the magnetoresistive effect element 41 is a linear path in an oblique direction from the upper left direction to the lower right direction with respect to the center line O3. The movement path 43 and the center line O3 of the magnet 40 intersect at the center of the magnet 40 in the length direction (Y direction in the drawing).

このように、交差点44から前記磁気抵抗効果素子41の出発点45及び終点46に向けて徐々に前記中心線O3と前記磁気抵抗効果素子41の移動経路43間の幅方向(図示X方向)の間隔が広がるように、前記磁気抵抗効果素子41及び磁石40が配置されている。   In this way, gradually from the intersection 44 toward the start point 45 and the end point 46 of the magnetoresistive effect element 41 in the width direction (X direction in the drawing) between the center line O3 and the moving path 43 of the magnetoresistive effect element 41. The magnetoresistive effect element 41 and the magnet 40 are arranged so that the interval is widened.

図7(a)は、図6のF−F線上から高さ方向へ切断した磁気抵抗効果素子及び磁石40の部分断面図、図7(b)は、図6のG−G線上から高さ方向へ切断した磁気抵抗効果素子及び磁石40の部分断面図、図7(c)は図6のH−H線上から高さ方向へ切断した磁気抵抗効果素子及び磁石40の部分断面図を示している。   7A is a partial cross-sectional view of the magnetoresistive element and the magnet 40 cut in the height direction from the line FF in FIG. 6, and FIG. 7B is the height from the line GG in FIG. FIG. 7C is a partial cross-sectional view of the magnetoresistive effect element and the magnet 40 cut in the height direction from the line HH in FIG. 6. Yes.

図7(a)に示すように、前記磁気抵抗効果素子41のフリー磁性層47の膜厚方向(図示Y方向)の中心が図6の図示左端の磁石40上に位置すると、フリー磁性層47には、ほぼ図示X方向から外部磁界H6が支配的に侵入する。   As shown in FIG. 7A, when the center in the film thickness direction (Y direction in the figure) of the free magnetic layer 47 of the magnetoresistive element 41 is positioned on the leftmost magnet 40 in FIG. The external magnetic field H6 invades predominantly from the X direction shown in the figure.

前記磁気抵抗効果素子41が前記移動経路43上を出発点45から交差点44方向へ移動すると、前記積層界面42と平行な面方向から侵入する前記磁石40からの外部磁界は図示X方向から徐々に図示Z方向に向くベクトル成分が増え始め、やがて、図7(b)に示すように、前記磁気抵抗効果素子41のフリー磁性層の膜厚方向(図示Y方向)の中心が前記交差点44上の位置に到達すると、前記フリー磁性層には、ほぼ図示Z方向の外部磁界H7が支配的に侵入する。   When the magnetoresistive element 41 moves on the moving path 43 from the starting point 45 toward the intersection 44, the external magnetic field from the magnet 40 entering from the plane direction parallel to the stacked interface 42 gradually increases from the X direction in the figure. The vector component toward the Z direction shown in the figure starts to increase, and eventually the center in the film thickness direction (Y direction shown in the figure) of the free magnetic layer of the magnetoresistive element 41 is on the intersection 44 as shown in FIG. When the position is reached, an external magnetic field H7 in the Z direction shown in FIG.

次に、前記磁気抵抗効果素子41が前記交差点44の位置から終点46へ向けて移動すると、前記積層界面42と平行な面方向から侵入する前記磁石40からの外部磁界は、図示Z方向から徐々に図示X方向とは逆方向へ向くベクトル成分が増え始め、図7(c)に示すように、前記磁気抵抗効果素子41のフリー磁性層の膜厚中心が図示右端の磁石40上に位置すると、前記フリー磁性層には、図示X方向とはほぼ逆方向の外部磁界H8が支配的に侵入する。   Next, when the magnetoresistive effect element 41 moves from the position of the intersection 44 toward the end point 46, the external magnetic field from the magnet 40 entering from the plane direction parallel to the laminated interface 42 gradually increases from the Z direction in the figure. When the vector component directed in the direction opposite to the X direction in the figure starts to increase, and the film thickness center of the free magnetic layer of the magnetoresistive effect element 41 is positioned on the rightmost magnet 40 in the figure, as shown in FIG. In the free magnetic layer, an external magnetic field H8 in a direction almost opposite to the X direction shown in FIG.

図6,図7に示すように磁石40が一個でも、前記磁気抵抗効果素子41の移動経路43と、磁石40の幅方向の中央を通る中心線O3とを斜め方向から交差させることで、前記磁気抵抗効果素子41の移動に伴って、前記磁気抵抗効果素子41の積層界面42と平行な面方向から侵入する前記磁石40からの外部磁界Hは回転変位する。前記磁気抵抗効果素子41の移動に伴って、回転変位する外部磁界Hの方向に、フリー磁性層47の磁化方向は変動し、これによって前記磁気抵抗効果素子41の電気抵抗値は変動する。このとき、前記フリー磁性層47の磁化方向は、磁気抵抗効果素子41の移動に伴って漸次的に変化するので、前記磁気抵抗効果素子41の電気抵抗値も漸次的に変動し、リニアリティ(直線性)の高い位置検出を行うことが出来る。   As shown in FIGS. 6 and 7, even if there is only one magnet 40, the moving path 43 of the magnetoresistive effect element 41 and the center line O3 passing through the center in the width direction of the magnet 40 are intersected from an oblique direction, thereby As the magnetoresistive effect element 41 moves, the external magnetic field H from the magnet 40 entering from a plane direction parallel to the laminated interface 42 of the magnetoresistive effect element 41 is rotationally displaced. As the magnetoresistive effect element 41 is moved, the magnetization direction of the free magnetic layer 47 changes in the direction of the external magnetic field H that is rotationally displaced, whereby the electric resistance value of the magnetoresistive effect element 41 changes. At this time, the magnetization direction of the free magnetic layer 47 gradually changes with the movement of the magnetoresistive effect element 41, so that the electric resistance value of the magnetoresistive effect element 41 also gradually changes and linearity (linear Position detection can be performed.

ただし図6,図7に示すように磁石40は1個より、図1ないし図5に示した実施形態のように磁石4,5を2個用意して磁石4,5間に回転磁場領域を人為的に作る出すことが、より外部磁界を、漸次的に且つ直線的な方向性を持って回転変位させることができ、より位置検出のリニアリティ(直線性)を向上させることができ好適である。   However, as shown in FIG. 6 and FIG. 7, the number of magnets 40 is one, and two magnets 4 and 5 are prepared as in the embodiment shown in FIG. 1 to FIG. It is preferable to produce artificially because the external magnetic field can be rotated and displaced gradually and with a linear direction, and the linearity (linearity) of position detection can be improved. .

また上記した本実施形態を利用すれば図8に示すように、磁石50,51を、直交方向に2セット用意することで、X軸60及びY軸61に支持された磁気抵抗効果素子53のX方向及びY方向の2軸方向の移動を検知することも可能である。   If the above-described embodiment is used, as shown in FIG. 8, two sets of magnets 50 and 51 are prepared in the orthogonal direction so that the magnetoresistive effect element 53 supported by the X axis 60 and the Y axis 61 It is also possible to detect the movement in the biaxial direction of the X direction and the Y direction.

上記した移動センサは、いずれも磁気抵抗効果素子が移動支持され、磁石が固定支持されていたが、逆であってもよい。ただし、磁気抵抗効果素子を固定支持して磁石を移動させると、例えば図2の磁気抵抗効果素子15の出発点22から終点23までの相対移動距離を確保するには、前記磁石4,5の移動を確保すべく前記相対移動距離のほぼ2倍の移動スペースが必要となってしまうので、磁気抵抗効果素子を移動支持し、磁石を固定支持したほうが、簡単な構成で移動センサの小型化を実現できて好適である。   In any of the above-described movement sensors, the magnetoresistive effect element is moved and supported, and the magnet is fixedly supported. However, if the magnetoresistive effect element is fixedly supported and the magnet is moved, for example, in order to secure the relative movement distance from the start point 22 to the end point 23 of the magnetoresistive effect element 15 in FIG. Since a movement space approximately twice the relative movement distance is required to ensure the movement, the movement sensor can be downsized with a simple structure by supporting the magnetoresistive element and supporting the magnet fixedly. It can be realized and is preferable.

また上記の実施形態では前記磁気抵抗効果素子の移動経路はいずれも直線状であったが、直線状以外であってもよい。ただし、直線状であるほうが、高い位置検出のリニアリティ(直線性)を確保でき好適である。   In the above embodiment, the movement path of the magnetoresistive element is linear, but may be other than linear. However, the straight line shape is preferable because it can ensure high position detection linearity.

また磁気抵抗効果素子は巨大磁気抵抗効果(GMR効果)を利用したGMR素子以外に、異方性磁気抵抗効果(AMR効果)を利用したAMR素子、トンネル磁気抵抗効果(TMR効果)を利用したTMR素子であってもよい。   In addition to the GMR element using the giant magnetoresistive effect (GMR effect), the magnetoresistive effect element is an AMR element using an anisotropic magnetoresistive effect (AMR effect), and a TMR using the tunnel magnetoresistive effect (TMR effect). It may be an element.

本実施形態における移動センサは、例えば、ミキサ用フェ−ダやそのほかコントロール用のスライドボリューム等に使用可能である。   The movement sensor in the present embodiment can be used, for example, as a mixer fader or a slide volume for control.

本実施形態における移動センサの内部構造を示すための部分斜視図、The partial perspective view for showing the internal structure of the movement sensor in this embodiment, 図1に示す移動センサを構成する磁気抵抗効果素子の移動方向と、磁石及び磁気抵抗効果素子との位置関係を示すための部分平面図、FIG. 2 is a partial plan view for showing a positional relationship between a moving direction of the magnetoresistive effect element constituting the movement sensor shown in FIG. 1 and a magnet and the magnetoresistive effect element; (a)〜(e)は、図2に示すA線上からE線上の位置まで磁気抵抗効果素子が移動した際、各線上に沿って磁気抵抗効果素子及び磁石を高さ方向に切断し、矢印方向から見た部分断面図、(A)-(e), when a magnetoresistive effect element moves from the position on the A line to the position on the E line shown in FIG. 2, the magnetoresistive effect element and the magnet are cut in the height direction along each line, and the arrows Partial sectional view seen from the direction, 磁気抵抗効果素子の積層構造の膜厚方向からの断面図、Sectional drawing from the film thickness direction of the laminated structure of the magnetoresistive effect element, 図3(c)の拡大断面図、FIG. 3 (c) is an enlarged sectional view, 第2実施形態の移動センサを構成する磁気抵抗効果素子と磁石との位置関係を示す部分平面図、The partial top view which shows the positional relationship of the magnetoresistive effect element and magnet which comprise the movement sensor of 2nd Embodiment, 図6に示すF線上、G線上、H線上の位置まで磁気抵抗効果素子が移動した際、各線上に沿って磁気抵抗効果素子及び磁石を高さ方向に切断し、矢印方向から見た部分断面図、When the magnetoresistive effect element moves to the position on the F line, the G line, and the H line shown in FIG. 6, the magnetoresistive effect element and the magnet are cut in the height direction along each line, and a partial cross section seen from the arrow direction Figure, 第3実施形態の移動センサを構成する磁気抵抗効果素子と磁石との位置関係を示す部分平面図、The fragmentary top view which shows the positional relationship of the magnetoresistive effect element and magnet which comprise the movement sensor of 3rd Embodiment,

符号の説明Explanation of symbols

1 移動センサ
2 筐体
3 磁気検出部
4、5、40、50、51 磁石
15、41、53 磁気抵抗効果素子
20、44 交差点
21、43 移動経路
22、45 出発点
23、46 終点
32 反強磁性層
33 固定磁性層
34 非磁性中間層
35、47 フリー磁性層
35a (フリー磁性層の)磁化方向
37、42 積層界面
H、H1〜H8 外部磁界
O1〜O3 (磁石の幅方向の中心を通る)中心線
DESCRIPTION OF SYMBOLS 1 Movement sensor 2 Housing | casing 3 Magnetic detection part 4, 5, 40, 50, 51 Magnet 15,41,53 Magnetoresistive element 20,44 Intersection 21,43 Movement path 22,45 Starting point 23,46 End point 32 Anti-strong Magnetic layer 33 Pinned magnetic layer 34 Nonmagnetic intermediate layer 35, 47 Free magnetic layer 35a (Free magnetic layer) Magnetization direction 37, 42 Stack interface H, H1-H8 External magnetic field O1-O3 (passes the center in the width direction of the magnet) ) Center line

Claims (8)

外部磁界の方向変化に対して電気抵抗が変化する磁気抵抗効果を利用した積層構造の磁気抵抗効果素子と、前記外部磁界を発生させるための磁石とを有し、
前記磁気抵抗効果素子及び磁石の一方が移動可能に支持されており、
前記磁気抵抗効果素子と前記磁石は、高さ方向に間隔を空け、前記高さ方向の真上から見たときに、前記磁石の幅寸法の中心を通る中心線と、前記磁気抵抗効果素子の相対移動経路とが途中で交差すると共に、交差点から磁気抵抗効果素子の相対移動の出発点及び相対移動の終点に向けて徐々に前記中心線と前記磁気抵抗効果素子の相対移動経路間の間隔が幅方向に広がるように対向配置され、
前記磁気抵抗効果素子の相対移動に伴って、前記積層構造内に侵入する積層界面と平行な面方向からの前記外部磁界の侵入方向が回転変位し、前記磁気抵抗効果素子の電気抵抗値が変化することで移動位置が検出されることを特徴とする移動センサ。
A magnetoresistive element having a laminated structure using a magnetoresistive effect in which an electric resistance changes with respect to a change in direction of an external magnetic field, and a magnet for generating the external magnetic field,
One of the magnetoresistive effect element and the magnet is movably supported,
The magnetoresistive element and the magnet are spaced apart in the height direction, and when viewed from directly above the height direction, a center line passing through the center of the width dimension of the magnet, and the magnetoresistive element The relative movement path intersects in the middle, and the distance between the center line and the relative movement path of the magnetoresistive element gradually increases from the intersection toward the starting point of relative movement of the magnetoresistive element and the end point of relative movement. Opposed to spread in the width direction,
With the relative movement of the magnetoresistive effect element, the penetration direction of the external magnetic field from the plane direction parallel to the laminated interface penetrating into the laminated structure is rotationally displaced, and the electric resistance value of the magnetoresistive effect element changes. A movement sensor, wherein a movement position is detected.
前記磁石は、幅寸法の中心を通る中心線長さが前記幅方向の寸法よりも長く、且つ、前記幅寸法の両側に位置する両側面が前記中心線と平行な方向に延びる形状で形成されている請求項1記載の移動センサ。   The magnet is formed in such a shape that a center line length passing through a center of a width dimension is longer than a dimension in the width direction, and both side surfaces located on both sides of the width dimension extend in a direction parallel to the center line. The movement sensor according to claim 1. 前記磁気抵抗効果素子は、直線状に相対移動する請求項1又は2に記載の移動センサ。   The movement sensor according to claim 1, wherein the magnetoresistive effect element relatively moves linearly. 前記磁気抵抗効果素子が移動可能に支持され、前記磁石が固定配置されている請求項1ないし3のいずれかに記載の移動センサ。   The movement sensor according to claim 1, wherein the magnetoresistive element is movably supported and the magnet is fixedly disposed. 前記磁気抵抗効果素子は、前記積層構造の積層界面が、前記磁石の前記磁気抵抗効果素子との対向面に対して直交する方向に向けられ、前記磁石の前記対向面が単一の磁極面となっている請求項1ないし4のいずれかに記載の移動センサ。   In the magnetoresistive effect element, a laminated interface of the laminated structure is oriented in a direction orthogonal to a facing surface of the magnet facing the magnetoresistive effect element, and the facing surface of the magnet is a single magnetic pole surface. The movement sensor according to any one of claims 1 to 4. 第1の磁性部材と、第2の磁性部材とが高さ方向に間隔を空けて対向するとともに、前記第1の磁性部材と前記第2の磁性部材は、前記高さ方向の真上から見たときに、前記第1の磁性部材の幅寸法の中心を通る第1の中心線と、前記第2の磁性部材の幅寸法の中心を通る第2の中心線とが途中で交差すると共に、前記第1の中心線と前記第2の中心線とが交差点から一端部方向、及び交差点から他端部方向に向けて互いに幅方向に離れていく形状にて形成され、前記第1の磁性部材及び前記第2の磁性部材のうち少なくとも一方が前記磁石で形成されており、
前記第1の磁性部材と前記第2の磁性部材間の空間内には、一方の磁性部材の対向面から他方の磁性部材の対向面に向けて発生する外部磁界の方向が、前記第1の磁性部材及び第2の磁性部材の一端部側から他端部側に向けて、徐々に回転変位する回転磁場領域が形成され、前記磁気抵抗効果素子は、前記積層構造の積層界面が、前記磁性部材の前記磁気抵抗効果素子との対向面に対して直交する方向に向けられるとともに、前記一端部側から前記他端部側に向けて、前記回転磁場領域内を通るように相対移動する請求項1ないし4のいずれかに記載の移動センサ。
The first magnetic member and the second magnetic member are opposed to each other at an interval in the height direction, and the first magnetic member and the second magnetic member are viewed from directly above in the height direction. The first center line passing through the center of the width dimension of the first magnetic member and the second center line passing through the center of the width dimension of the second magnetic member intersect in the middle, The first magnetic member is formed in a shape in which the first center line and the second center line are separated from each other in the width direction from the intersection toward the one end direction and from the intersection toward the other end direction. And at least one of the second magnetic members is formed of the magnet,
In the space between the first magnetic member and the second magnetic member, the direction of the external magnetic field generated from the facing surface of one magnetic member toward the facing surface of the other magnetic member is the first magnetic member. A rotating magnetic field region that is gradually rotated and displaced from one end side to the other end side of the magnetic member and the second magnetic member is formed, and the magnetoresistive element has a layered interface of the layered structure in which the layered interface is magnetic. The member is directed in a direction orthogonal to a surface facing the magnetoresistive effect element of the member, and relatively moves so as to pass through the rotating magnetic field region from the one end side toward the other end side. The movement sensor according to any one of 1 to 4.
前記第1の磁性部材及び前記第2の磁性部材の各対向面は帯形状で、前記高さ方向の真上から見たときにX字状に交差しており、前記磁気抵抗効果素子は、前記高さ方向の真上から見たときに、前記第1の磁性部材の第1の中心線と前記第2の磁性部材の第2の中心線間の幅方向の中心を直線状に相対移動する請求項6記載の移動センサ。   The opposing surfaces of the first magnetic member and the second magnetic member are band-shaped, intersecting in an X shape when viewed from directly above the height direction, and the magnetoresistive element is When viewed from directly above in the height direction, the center in the width direction between the first center line of the first magnetic member and the second center line of the second magnetic member is relatively moved linearly. The movement sensor according to claim 6. 前記第1の磁性部材及び前記第2の磁性部材は共に磁石で形成され、前記第1の磁性部材の対向面、及び前記第2の磁性部材の対向面が異極に着磁されている請求項6又は7に記載の移動センサ。   The first magnetic member and the second magnetic member are both formed of magnets, and the opposing surface of the first magnetic member and the opposing surface of the second magnetic member are magnetized to have different polarities. Item 8. The movement sensor according to Item 6 or 7.
JP2006298623A 2006-11-02 2006-11-02 Motion sensor Withdrawn JP2010019552A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006298623A JP2010019552A (en) 2006-11-02 2006-11-02 Motion sensor
PCT/JP2007/071241 WO2008053926A1 (en) 2006-11-02 2007-10-31 Motion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298623A JP2010019552A (en) 2006-11-02 2006-11-02 Motion sensor

Publications (1)

Publication Number Publication Date
JP2010019552A true JP2010019552A (en) 2010-01-28

Family

ID=39344267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298623A Withdrawn JP2010019552A (en) 2006-11-02 2006-11-02 Motion sensor

Country Status (2)

Country Link
JP (1) JP2010019552A (en)
WO (1) WO2008053926A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147988A1 (en) * 2008-06-03 2009-12-10 アルプス電気株式会社 Position detecting device and lens device using the same
WO2010032667A1 (en) * 2008-09-19 2010-03-25 アルプス電気株式会社 Position detection sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029346B1 (en) * 1969-03-29 1975-09-22
JP3296871B2 (en) * 1993-02-05 2002-07-02 浜松光電株式会社 Non-contact linear displacement sensor
DE19849613A1 (en) * 1998-10-28 2000-05-04 Philips Corp Intellectual Pty Arrangement for measuring a relative linear position
EP1046022B1 (en) * 1998-11-11 2004-03-31 Philips Electronics N.V. Magnetoresistive sensor for measuring relative displacements of construction parts
JP4543350B2 (en) * 1999-12-03 2010-09-15 日立金属株式会社 Rotation angle sensor and rotation angle sensor unit

Also Published As

Publication number Publication date
WO2008053926A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
TWI774189B (en) Magnetoresistance element and spin valve
JP4837749B2 (en) Magnetic sensor and magnetic encoder using the same
JP4780117B2 (en) Angle sensor, manufacturing method thereof, and angle detection device using the same
US20150192432A1 (en) Magnetic sensor
JP5532166B1 (en) Magnetic sensor and magnetic sensor system
US7772835B2 (en) AMR array magnetic design for improved sensor flexibility and improved air gap performance
JP2010286236A (en) Origin detection device
JP4874781B2 (en) Magnetic sensor and magnetic encoder using the same
JP4790448B2 (en) Magnetoresistive element and method for forming the same
JPWO2008081797A1 (en) Magnetic detector
KR20180035701A (en) Thin-film magnetic sensor
JP2010019552A (en) Motion sensor
JP4833691B2 (en) Magnetic sensor and manufacturing method thereof
US20150198430A1 (en) Magnetism detection element and rotation detector
US20230384125A1 (en) Position detection system
JP5184380B2 (en) Magnetic detector
JP4890401B2 (en) Origin detection device
JP4639216B2 (en) Magnetic sensor
JP2015095630A (en) Magnetic sensor
WO2021181534A1 (en) Magnetic linear position detector
JP5630247B2 (en) Rotation angle sensor
JP2014006126A (en) Magnetic sensor
WO2010095495A1 (en) Magnetism detection device
JP2015194389A (en) Magnetic field detection device and multi piece substrate
JPWO2008102786A1 (en) Magnetic detector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202