JPH06221724A - Freezing cycle - Google Patents

Freezing cycle

Info

Publication number
JPH06221724A
JPH06221724A JP5011569A JP1156993A JPH06221724A JP H06221724 A JPH06221724 A JP H06221724A JP 5011569 A JP5011569 A JP 5011569A JP 1156993 A JP1156993 A JP 1156993A JP H06221724 A JPH06221724 A JP H06221724A
Authority
JP
Japan
Prior art keywords
heat exchange
refrigerant
section
downstream
subcool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5011569A
Other languages
Japanese (ja)
Other versions
JP3208889B2 (en
Inventor
Takahisa Suzuki
隆久 鈴木
Kunio Iritani
邦夫 入谷
Akira Isaji
晃 伊佐治
Hiroshi Ishikawa
石川  浩
Keita Honda
桂太 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP01156993A priority Critical patent/JP3208889B2/en
Publication of JPH06221724A publication Critical patent/JPH06221724A/en
Application granted granted Critical
Publication of JP3208889B2 publication Critical patent/JP3208889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To provide a freezing cycle in which, even if a temperature sensing cylinder part is made to have subcooling in a control of the subcooling of a refrigerant condenser in which a heat exchanging part forms a layered structure with respect to a flow of cooling medium, a rising of high temperature and an increase of refrigerant pressure can be minimized, and also cycle performance can stabilized. CONSTITUTION:In an indoor condenser 14, a heat exchanging part is formed of a first core part 14a, a seond core part 14b and a third core part 14c, and all these core parts 14a to 14c, with the second core part 14b placed between the other two, form a three-layered structure, where the first core part 14a which forms an upstream side of a refrigerant flowing direction is arranged in the air downstream inside a duct 2, while the third core part 14c which forms a downstream side is arranged in the air upstream inside the duct 2. A subcooling control valve 19 is formed of a valve body 19a provided in the downstream of the indoor condenser 14 and a temperature sensing cylinder 19b which is in contact with a bypass pipe 14d interposed in the third core part 14c. It is designed that some amount of subcooling is carried out at a position where the bypass pipe 14d contacts with the temperature sensing cylinder 19b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高圧冷媒の過冷却度
(以下サブクールと言う)を制御する過冷却度制御弁を
備えた冷凍サイクルに関し、特に車両用空調装置に用い
て好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle equipped with a supercooling degree control valve for controlling the degree of supercooling of high-pressure refrigerant (hereinafter referred to as "subcool"), and is particularly suitable for use in a vehicle air conditioner. is there.

【0002】[0002]

【従来の技術】従来の電気自動車用空調装置における室
内ユニット部の一例を図6に示す。この室内ユニット
は、ダクト100内で室内蒸発器101の下流(風下)
に配された室内凝縮器102と、この室内凝縮器102
内のサブクールを制御するサブクール制御弁(後述す
る)を備える。室内凝縮器102は、暖房用熱交換器と
して使用されるもので、ダクト100内を流れる空気の
流れに対して層構造を成す第1熱交換部102a、第2
熱交換部102b、第3熱交換部102cを有し、冷媒
の流れ方向において上流側の第1熱交換部102aが空
気の流れ方向において最も風下側に配され、冷媒の流れ
方向において下流側の第3熱交換部102cが空気の流
れ方向において最も風上側に配されている。サブクール
制御弁は、室内凝縮器102の下流に設けられた弁本体
103と、第2熱交換部102bと第3熱交換部102
cとを結ぶ冷媒配管に接触する感温筒104より成り、
その感温筒104内の圧力変化に基づいて、第3熱交換
部102cでサブクールが得られるように弁本体103
の弁開度が制御される。なお、サブクール制御弁は、弁
の応答性や冷媒流量の変動等により、冷媒の凝縮が終了
する点、つまりサブクール=0となる点を特定すること
が困難なため、感温筒104部で若干のサブクール(サ
ブクール=4℃程度)を持つように設定されている。
2. Description of the Related Art FIG. 6 shows an example of an indoor unit portion of a conventional air conditioner for an electric vehicle. This indoor unit is located in the duct 100 downstream of the indoor evaporator 101 (downwind).
The indoor condenser 102 arranged in the
A subcool control valve (described later) for controlling the subcool therein is provided. The indoor condenser 102 is used as a heat exchanger for heating, and has a layered structure with respect to the flow of air flowing in the duct 100.
It has a heat exchange part 102b and a third heat exchange part 102c, and the first heat exchange part 102a on the upstream side in the flow direction of the refrigerant is arranged on the most leeward side in the flow direction of the air and on the downstream side in the flow direction of the refrigerant. The third heat exchange unit 102c is arranged on the most windward side in the air flow direction. The subcool control valve includes a valve body 103 provided downstream of the indoor condenser 102, a second heat exchange section 102b, and a third heat exchange section 102.
The temperature sensing cylinder 104 is in contact with the refrigerant pipe connecting to c
Based on the pressure change in the temperature sensing cylinder 104, the valve body 103 is controlled so that a subcool is obtained in the third heat exchange section 102c.
The valve opening of is controlled. Note that it is difficult for the subcool control valve to identify the point at which the condensation of the refrigerant ends, that is, the point where subcool = 0, due to the responsiveness of the valve, fluctuations in the refrigerant flow rate, etc. It is set to have a sub-cool of (sub-cool = about 4 ° C).

【0003】[0003]

【発明が解決しようとする課題】上記のように感温筒1
04部で若干のサブクールを持つことは、感温筒104
部上流(第2熱交換部102bの下流域)でサブクール
を持たせることになる。ところが、図6に示したよう
に、感温筒104部上流となる第2熱交換部102bの
下流域が、感温筒104部下流となる第3熱交換部10
2cの上流域の風下に配されている場合には、第3熱交
換部102cの上流域を通って暖められた温風が第2熱
交換部102bの下流域に当たることになる。従って、
第2熱交換部102bの下流域では、冷媒と空気との温
度差が小さくなるため、少しのサブクールをとるために
大きな面積が必要となる。この結果、室内凝縮器102
全体として気液二相域の熱交換部が減少して高圧上昇が
大きくなることにより、サイクル効率が悪くなるととも
に、必要な冷媒量も多くなる。また、感温筒104部の
サブクールの変動に対して、高圧変動および冷媒量の変
動が大きいことから、サイクル性能が不安定となる。本
発明は、上記事情に基づいて成されたもので、その目的
は、冷却媒体の流れに対して熱交換部が層構造を成す冷
媒凝縮器のサブクールを制御する場合に、感温筒部でサ
ブクールを持たせても、高圧上昇および冷媒量の増加が
少なく、且つ性能の安定化を図ることのできる冷凍サイ
クルの提供にある。
As described above, the temperature sensing tube 1 is used.
Having a slight subcool in 04 copies is the temperature sensitive tube 104
A sub-cool is provided upstream of the part (downstream of the second heat exchange part 102b). However, as shown in FIG. 6, the downstream region of the second heat exchange section 102b upstream of the temperature sensitive tube 104 section is the third heat exchange section 10 downstream of the temperature sensitive tube 104 section.
When it is arranged leeward of the upstream region of 2c, the warm air warmed through the upstream region of the third heat exchange unit 102c hits the downstream region of the second heat exchange unit 102b. Therefore,
In the downstream region of the second heat exchange section 102b, the temperature difference between the refrigerant and the air is small, so a large area is required to take a small amount of subcool. As a result, the indoor condenser 102
As a whole, the heat exchange section in the gas-liquid two-phase region is reduced and the increase in high pressure is increased, so that the cycle efficiency is deteriorated and the required amount of refrigerant is increased. Further, since the high pressure fluctuation and the refrigerant quantity fluctuation are large with respect to the fluctuation of the subcool of the temperature sensitive cylinder 104, the cycle performance becomes unstable. The present invention has been made based on the above circumstances, and an object of the present invention is to provide a temperature-sensitive tubular portion in a case where a heat exchange section controls a subcool of a refrigerant condenser having a layered structure with respect to a flow of a cooling medium. It is to provide a refrigeration cycle in which the increase in high pressure and the increase in the amount of refrigerant are small even if a subcool is provided, and the performance is stabilized.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1では、通過する冷媒を冷却媒体
との熱交換によって凝縮液化する熱交換部を有し、この
熱交換部が、冷媒の流れ方向において前記熱交換部の上
流側を成す第1熱交換部と下流側を成す第2熱交換部よ
り成り、前記第1熱交換部が前記冷却媒体の流れ方向に
おいて前記第2熱交換部の下流側に配された冷媒凝縮器
と、前記第2熱交換部の途中から過冷却域となるように
前記冷媒凝縮器下流の冷媒流路の開度を調整する過冷却
度調整弁とを備えることを技術的手段とする。また、請
求項2では、通過する冷媒を冷却媒体との熱交換によっ
て凝縮液化する熱交換部を有し、この熱交換部が、冷媒
の流れ方向において前記熱交換部の上流側を成す第1熱
交換部と下流側を成す第2熱交換部より成り、前記第1
熱交換部が前記冷却媒体の流れ方向において前記第2熱
交換部の下流側に配された冷媒凝縮器と、前記第2熱交
換部の全域が過冷却域となるように前記冷媒凝縮器下流
の冷媒流路の開度を調整する過冷却度調整弁とを備えた
冷凍サイクルにおいて、前記熱交換部は、冷媒の流れ方
向における前記第1熱交換部の下流域が、前記第2熱交
換部の下流域の前記冷却媒体の流れ方向における下流側
に位置する様に配されたことを技術的手段とする。
In order to achieve the above object, the present invention comprises, in claim 1, a heat exchange section for condensing and liquefying a passing refrigerant by heat exchange with a cooling medium. The part comprises a first heat exchanging part which constitutes an upstream side of the heat exchanging part and a second heat exchanging part which constitutes a downstream side of the heat exchanging part in the flow direction of the refrigerant, and the first heat exchanging part is the above in the flow direction of the cooling medium. A refrigerant condenser arranged on the downstream side of the second heat exchange section, and a supercooler for adjusting the opening degree of the refrigerant flow path downstream of the refrigerant condenser so as to be in the supercooling region from the middle of the second heat exchange section. The provision of a degree adjusting valve is a technical means. Moreover, in Claim 2, it has a heat exchange part which condenses and liquefies the refrigerant passing therethrough by heat exchange with a cooling medium, and this heat exchange part constitutes the upstream side of the heat exchange part in the flow direction of the refrigerant. The heat exchange section and a second heat exchange section that forms a downstream side, and
A refrigerant condenser in which a heat exchange section is arranged on the downstream side of the second heat exchange section in the flow direction of the cooling medium, and the refrigerant condenser downstream so that the entire area of the second heat exchange section is a supercooling zone. In the refrigeration cycle including a subcooling degree adjusting valve for adjusting the opening degree of the refrigerant flow path of the second heat exchange section, The technical means is arranged so as to be located on the downstream side in the flow direction of the cooling medium in the downstream region of the section.

【0005】[0005]

【作用】請求項1に係る本発明の冷凍サイクルは、第2
熱交換部の途中から過冷却域となるように制御されるこ
とから、第2熱交換部内で過冷却域と気液二相域とが形
成される。この過冷却域と気液二相域は、第2熱交換部
が第1熱交換部より冷却媒体の流れ方向において上流側
に配されることから、第1熱交換部と比較して、冷媒と
冷却媒体との温度差を大きくとることができる。また、
請求項2に係る本発明の冷凍サイクルは、第1熱交換部
の下流域が第2熱交換部の下流域の冷却媒体の流れ方向
における下流側に位置する。従って、第1熱交換部の下
流域は、第2熱交換部の下流域で冷媒と熱交換された冷
却媒体が流れることになる。ここで、過冷却域となる第
2熱交換部では、下流域より上流域の方が冷媒温度が高
いため、第2熱交換部で冷媒と熱交換された冷却媒体
は、第2熱交換部の上流域側より下流域側の方が温度上
昇が小さくなる。この結果、第1熱交換部の下流域が第
2熱交換部の上流域の冷却媒体の流れ方向における下流
側に位置する場合と比較して、冷媒と冷却媒体との温度
差を大きくとることができる。
The refrigeration cycle of the present invention according to claim 1 is the second
Since the supercooling zone is controlled from the middle of the heat exchanging section, a supercooling zone and a gas-liquid two-phase zone are formed in the second heat exchanging section. Since the second heat exchange part is arranged upstream of the first heat exchange part in the flow direction of the cooling medium, the subcooling region and the gas-liquid two-phase region are different from the first heat exchange part in the refrigerant. The temperature difference between the cooling medium and the cooling medium can be made large. Also,
In the refrigeration cycle of the present invention according to claim 2, the downstream region of the first heat exchange unit is located on the downstream side in the flow direction of the cooling medium in the downstream region of the second heat exchange unit. Therefore, in the downstream region of the first heat exchange unit, the cooling medium that has exchanged heat with the refrigerant in the downstream region of the second heat exchange unit flows. Here, in the second heat exchange section serving as the supercooling zone, the refrigerant temperature in the upstream zone is higher than that in the downstream zone, so that the cooling medium heat-exchanged with the refrigerant in the second heat exchange zone is the second heat exchange zone. The temperature rise is smaller on the downstream side than on the upstream side. As a result, the temperature difference between the refrigerant and the cooling medium should be made larger than that in the case where the downstream region of the first heat exchange unit is located on the downstream side in the flow direction of the cooling medium in the upstream region of the second heat exchange unit. You can

【0006】[0006]

【発明の効果】本発明の冷凍サイクルは、感温筒部でサ
ブクールを持たせるように制御する場合でも、感温筒部
上流の熱交換部で冷媒と冷却媒体の温度差を大きくとる
ことができるため、感温筒部上流でサブクールを持つた
めに必要な熱交換部の面積を少なくすることができる。
その結果、気液二相域の熱交換部の減少による高圧上昇
および液域増加による冷媒量の増加を防止することがで
きるとともに、サブクール変動に対するサイクル性能の
安定性の向上を図ることができる。
According to the refrigeration cycle of the present invention, the temperature difference between the refrigerant and the cooling medium can be made large in the heat exchange section upstream of the temperature-sensing cylinder even when the temperature-sensing cylinder is controlled to have a subcool. Therefore, it is possible to reduce the area of the heat exchanging portion required to have the subcool upstream of the temperature-sensitive tubular portion.
As a result, it is possible to prevent an increase in the high pressure due to a decrease in the heat exchange portion in the gas-liquid two-phase region and an increase in the amount of the refrigerant due to an increase in the liquid region, and it is possible to improve the stability of the cycle performance against the subcool fluctuation.

【0007】[0007]

【実施例】次に、本発明の冷凍サイクルを用いた車両用
空調装置の一実施例を図1および図2を基に説明する。
図1は車両用空調装置の全体模式図である。この車両用
空調装置1は、電気自動車に搭載されるもので、車室内
に送風空気を導くダクト2、このダクト2内に空気を導
入して車室内へ送る送風機3、およびアキュムレータ式
冷凍サイクル4を備える。ダクト2は、その上流端に内
気導入口5、6と外気導入口7が設けられ、内気導入口
5と外気導入口7の導入空気量が内外気ダンパ8によっ
て調節される。ダクト2の下流端は、車両のフロントガ
ラスに向かって送風空気を吐出するデフロスタ吹出口
9、乗員の上半身に向かって送風空気を吐出するフェイ
ス吹出口10、乗員の足元に向かって送風空気を吐出す
るフット吹出口11に連絡されている。各吹出口9〜1
1は、吹出口モードに応じて作動するダンパ12および
図示しない吹出口ダンパによって選択的に開閉される。
ダクト2内には、冷凍サイクル4の室内蒸発器13と室
内凝縮器14が配されるとともに、室内凝縮器14をバ
イパスして流れるための冷風バイパス路15が形成され
ている。この冷風バイパス路15には、冷暖房モードに
連動して、冷房運転時に冷風バイパス路15を開き、暖
房運転時に冷風バイパス路15を閉じるバイパスダンパ
16が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a vehicle air conditioner using the refrigerating cycle of the present invention will be described with reference to FIGS.
FIG. 1 is an overall schematic diagram of a vehicle air conditioner. This vehicle air conditioner 1 is installed in an electric vehicle, and has a duct 2 for introducing blown air into the passenger compartment, a blower 3 for introducing air into the duct 2 and sending the air into the passenger compartment, and an accumulator refrigeration cycle 4. Equipped with. The duct 2 is provided with the inside air introduction ports 5 and 6 and the outside air introduction port 7 at its upstream end, and the introduced air amount of the inside air introduction port 5 and the outside air introduction port 7 is adjusted by the inside and outside air damper 8. At the downstream end of the duct 2, a defroster outlet 9 that discharges blast air toward the windshield of the vehicle, a face outlet 10 that discharges blast air toward the upper half of the occupant, and a blast air toward the feet of the occupant. The foot outlet 11 is connected to. Each outlet 9-1
1 is selectively opened and closed by a damper 12 that operates according to the outlet mode and an outlet damper (not shown).
In the duct 2, an indoor evaporator 13 and an indoor condenser 14 of the refrigeration cycle 4 are arranged, and a cold air bypass passage 15 for bypassing the indoor condenser 14 and flowing. The cold air bypass passage 15 is provided with a bypass damper 16 that opens the cold air bypass passage 15 during the cooling operation and closes the cold air bypass passage 15 during the heating operation in association with the cooling and heating mode.

【0008】冷凍サイクル4は、前述の室内蒸発器13
および室内凝縮器14の他に、冷媒圧縮機17、室外熱
交換器18、サブクール制御弁19、減圧装置20、ア
キュムレータ21、流路切替手段(後述する)を備え
る。室内蒸発器13は、ダクト2内に配されて、通過す
る空気を低温、低圧の冷媒との熱交換によって冷却す
る。室内凝縮器14は、ダクト2内で室内蒸発器13の
風下に配されて、通過する空気を高温、高圧の冷媒との
熱交換によって加熱する。なお、この室内凝縮器14
は、冷媒と送風空気との熱交換を行う熱交換部が第1コ
ア部14a、第2コア部14b、第3コア部14cに区
分けされ、その各コア部14a〜14cが、ダクト2内
を流れる送風空気に対して対向流となるように、第2コ
ア部14bを挟んで、冷媒の流れ方向の上流側を成す第
1コア部14aがダクト2内の風下側に配され、下流側
を成す第3コア部14cがダクト2内の風上側に配され
た3層構造を成す(図2参照)。冷媒圧縮機17は、駆
動用の電動モータ(図示しない)を内蔵する密閉型圧縮
機で、電動モータの回転速度に応じて冷媒吐出量が変化
する。室外熱交換器18は、ダクト2の外部(車室外)
に配されて外気と冷媒との熱交換を行うもので、室外フ
ァン22の送風を受けることにより、暖房運転時には冷
媒蒸発器として機能し、冷房運転時には冷媒凝縮器とし
て機能する。
The refrigeration cycle 4 includes the above-mentioned indoor evaporator 13
In addition to the indoor condenser 14, a refrigerant compressor 17, an outdoor heat exchanger 18, a subcool control valve 19, a pressure reducing device 20, an accumulator 21, and a flow path switching means (described later) are provided. The indoor evaporator 13 is arranged in the duct 2 and cools the passing air by heat exchange with a low-temperature, low-pressure refrigerant. The indoor condenser 14 is arranged in the duct 2 at the lee side of the indoor evaporator 13, and heats the passing air by heat exchange with a high-temperature, high-pressure refrigerant. In addition, this indoor condenser 14
The heat exchanging portion for exchanging heat between the refrigerant and the blown air is divided into the first core portion 14a, the second core portion 14b, and the third core portion 14c, and the respective core portions 14a to 14c are arranged inside the duct 2. The first core portion 14a, which is the upstream side in the flow direction of the refrigerant, is arranged on the leeward side in the duct 2 and the downstream side so as to be a counterflow to the flowing blast air. The 3rd core part 14c which comprises consists of the 3 layer structure distribute | arranged to the windward inside the duct 2 (refer FIG. 2). The refrigerant compressor 17 is a hermetic compressor that incorporates an electric motor (not shown) for driving, and the refrigerant discharge amount changes according to the rotation speed of the electric motor. The outdoor heat exchanger 18 is located outside the duct 2 (outside the passenger compartment).
Are arranged in the air conditioner to perform heat exchange between the outside air and the refrigerant, and by receiving the air blown from the outdoor fan 22, function as a refrigerant evaporator during heating operation and as a refrigerant condenser during cooling operation.

【0009】サブクール制御弁19は、室内凝縮器14
の下流に設けられた弁本体19aと第3コア部14cの
途中に設けられたバイパス配管14dに接触する感温筒
19bより成り、感温筒19b内の圧力変化に基づい
て、弁本体19aの弁開度が調整される。本実施例で
は、感温筒19bが接触する部位で若干のサブクール
(サブクール=4℃程度)を持つように設定されてい
る。減圧装置20は、冷房運転時に室内蒸発器13へ流
入する冷媒を減圧膨脹するもので、本実施例ではキャピ
ラリチューブを使用する。アキュムレータ21は、冷凍
サイクル4内の過剰冷媒を一時蓄えるとともに、冷媒圧
縮機17に気相冷媒のみを送り出して、液冷媒が冷媒圧
縮機17に吸い込まれるのを防止する。流路切替手段
は、冷房運転時、暖房運転時、および除湿運転時(除湿
冷房と除湿暖房)で冷媒の流れ方向を切り替えるもの
で、四方弁23、電磁弁24、25、26、および逆止
弁27、28より成る。
The subcool control valve 19 is used for the indoor condenser 14
Of the valve body 19a provided on the downstream side of the valve core 19a and the temperature sensitive tube 19b contacting the bypass pipe 14d provided in the middle of the third core portion 14c. The valve opening is adjusted. In the present embodiment, it is set so as to have a slight subcool (subcool = about 4 ° C.) at the portion where the temperature sensitive cylinder 19b comes into contact. The decompression device 20 decompresses and expands the refrigerant flowing into the indoor evaporator 13 during the cooling operation. In this embodiment, a capillary tube is used. The accumulator 21 temporarily stores the excess refrigerant in the refrigeration cycle 4 and sends out only the gas-phase refrigerant to the refrigerant compressor 17 to prevent the liquid refrigerant from being sucked into the refrigerant compressor 17. The flow path switching means switches the flow direction of the refrigerant during the cooling operation, the heating operation, and the dehumidifying operation (dehumidifying cooling and dehumidifying heating). The four-way valve 23, the solenoid valves 24, 25, 26, and the check valve. It consists of valves 27, 28.

【0010】この流路切替手段は、冷房運転時、暖房運
転時、および除湿運転時に応じて、冷媒の流れを次のよ
うに切り替える。冷房運転時は、冷媒圧縮機17より吐
出された冷媒が、四方弁23→逆止弁27→室外熱交換
器18→減圧装置20→室内蒸発器13→アキュムレー
タ21→冷媒圧縮機17の順に流れる様に切り替える
(この冷房運転時の冷媒の流れを図中矢印Cで示す)。
暖房運転時は、冷媒圧縮機17より吐出された冷媒が、
四方弁23→室内凝縮器14→サブクール制御弁19の
弁本体19a→逆止弁28→室外熱交換器18→電磁弁
25→アキュムレータ21→冷媒圧縮機17の順に流れ
る様に切り替える(この暖房運転時の冷媒の流れを図中
矢印Hで示す)。除湿冷房運転時は、冷媒圧縮機17よ
り吐出された冷媒が、四方弁23→室内凝縮器14→電
磁弁24→逆止弁28→室外熱交換器18→減圧装置2
0→室内蒸発器13→アキュムレータ21→冷媒圧縮機
17の順に流れる様に切り替える(この除湿冷房運転時
の冷媒の流れを図中矢印DC で示す)。除湿暖房運転時
は、冷媒圧縮機17より吐出された冷媒が、四方弁23
→室内凝縮器14→サブクール制御弁19の弁本体19
a→逆止弁28→室外熱交換器18→電磁弁26→室内
蒸発器13→アキュムレータ21→冷媒圧縮機17の順
に流れる様に切り替える(この除湿冷房運転時の冷媒の
流れを図中矢印DH で示す)。
The flow path switching means switches the flow of the refrigerant as follows according to the cooling operation, the heating operation, and the dehumidifying operation. During the cooling operation, the refrigerant discharged from the refrigerant compressor 17 flows in the order of the four-way valve 23, the check valve 27, the outdoor heat exchanger 18, the pressure reducing device 20, the indoor evaporator 13, the accumulator 21, and the refrigerant compressor 17. (The flow of the refrigerant during the cooling operation is indicated by an arrow C in the figure).
During the heating operation, the refrigerant discharged from the refrigerant compressor 17 is
Four-way valve 23-> indoor condenser 14-> valve body 19a of subcool control valve 19-> check valve 28-> outdoor heat exchanger 18-> solenoid valve 25-> accumulator 21-> refrigerant compressor 17 Switching to flow in this order (this heating operation The flow of the refrigerant at that time is indicated by an arrow H in the figure). During the dehumidifying and cooling operation, the refrigerant discharged from the refrigerant compressor 17 is a four-way valve 23 → indoor condenser 14 → solenoid valve 24 → check valve 28 → outdoor heat exchanger 18 → pressure reducing device 2
The flow is switched in the order of 0 → indoor evaporator 13 → accumulator 21 → refrigerant compressor 17 (the refrigerant flow during this dehumidifying and cooling operation is indicated by arrow D C in the figure). During the dehumidifying and heating operation, the refrigerant discharged from the refrigerant compressor 17 is discharged by the four-way valve 23.
→ Indoor condenser 14 → Subcool control valve 19 valve body 19
a-> check valve 28-> outdoor heat exchanger 18-> solenoid valve 26-> indoor evaporator 13-> accumulator 21-> refrigerant compressor 17 (flow of refrigerant during dehumidifying and cooling operation is indicated by arrow D in the figure) Indicated by H ).

【0011】次に、本実施例の作動を説明する。本実施
例の室内凝縮器14は、サブクール制御弁19の感温筒
19bが接触する部位で若干のサブクールを持つことか
ら、感温筒19bが接触する部位の少し上流から下流側
(図2にハッチングで示す領域)が過冷却域となる。こ
こで、感温筒19bが接触する第3コア部14cは、第
1コア部14aおよび第2コア部14bより風上側に配
されており、ダクト2内を流れる空気が直接当たるた
め、第1コア部14aおよび第2コア部14bと比較し
て、冷媒と空気との温度差を大きくとることができる。
従って、感温筒19bが接触する部位で若干のサブクー
ルを持たせるために感温筒19bが接触する部位より上
流側で必要なコア面積を少なくすることができる。つま
り、少しのコア面積でサブクールをとることができる。
この結果、室内凝縮器14の全体として、過冷却域以外
の気液二相域を成す熱交換部の面積を必要以上に減少さ
せることはなく、高圧上昇に伴うサイクル効率の低下を
防止することができるとともに、液域増加による冷媒量
の増加を招くこともない。また、感温筒19bが接触す
る部位のサブクールの変動に対して、高圧変動および冷
媒量の変動が小さいことから、サイクルのハンチングを
抑えて、システム性能の安定化を図ることができる。
Next, the operation of this embodiment will be described. Since the indoor condenser 14 of the present embodiment has some subcool at the portion of the subcool control valve 19 with which the temperature sensitive tube 19b comes into contact, a little from upstream to downstream of the portion with which the temperature sensitive tube 19b comes into contact (see FIG. 2). The hatched area) is the supercooled area. Here, the third core portion 14c with which the temperature-sensitive tube 19b contacts is arranged on the windward side of the first core portion 14a and the second core portion 14b, and the air flowing in the duct 2 directly hits the first core portion 14c. Compared with the core portion 14a and the second core portion 14b, the temperature difference between the refrigerant and the air can be made larger.
Therefore, it is possible to reduce the core area required on the upstream side of the portion where the temperature-sensing cylinder 19b comes into contact so as to have a slight subcool at the portion where the temperature-sensing cylinder 19b comes into contact. In other words, it is possible to take subcool with a small core area.
As a result, the overall area of the indoor condenser 14 does not unnecessarily reduce the area of the heat exchange section that forms the gas-liquid two-phase region other than the supercooling region, and prevents the decrease in cycle efficiency due to the increase in high pressure. In addition, the amount of the refrigerant is not increased due to the increase in the liquid area. Further, since the high-pressure fluctuation and the fluctuation of the refrigerant amount are small with respect to the fluctuation of the subcool at the portion where the temperature-sensitive cylinder 19b comes into contact, cycle hunting can be suppressed and the system performance can be stabilized.

【0012】次に、本発明の第2実施例を示す。図3は
本実施例に係る室内ユニット部の模式図である。本実施
例の室内凝縮器14は、熱交換部の各コア部14a〜1
4cが、各コア部14a〜14c内を流れる冷媒の流れ
方向が同一(図3では下から上へ向かって流れる)とな
るように接続されている。また、サブクール制御弁19
は、ダクト2の外部で第2コア部14bと第3コア部1
4cとを結ぶ配管に感温筒19bを接触させて、この感
温筒19bが接触する部位で若干のサブクールを持つよ
うに制御している。従って、感温筒19bが接触する部
位より下流の第3コア部14cは、その全域が過冷却域
となる。本実施例では、感温筒19bが接触する部位の
上流が第2コア部14bの下流域となる。従って、感温
筒19bが接触する部位で若干のサブクールを持つため
には、第2コア部14bの下流域でサブクールを持たせ
ることになる。その第2コア部14bの下流域は、第3
コア部14cの下流域の風下に配されるため、第3コア
部14cの下流域を通った空気が当たることになる。こ
こで、第3コア部14cで冷媒と熱交換された後の空気
の温度分布を調べると、図4に示すように、第3コア部
14cを流れる冷媒温度の低い下流域側の方が上流域側
より低くなる。この結果、第2コア部14bの下流域で
は、冷媒と空気との温度差を比較的大きくとることがで
きるため、第2コア部14bの下流域でサブクールを持
つために必要なコア面積が増大するのを防止することが
できる。
Next, a second embodiment of the present invention will be shown. FIG. 3 is a schematic diagram of the indoor unit portion according to the present embodiment. The indoor condenser 14 of this embodiment includes core portions 14a to 1 of the heat exchange portion.
4c are connected so that the flow direction of the refrigerant flowing in each of the core portions 14a to 14c is the same (flows from bottom to top in FIG. 3). In addition, the subcool control valve 19
Outside the duct 2, the second core portion 14b and the third core portion 1
The temperature-sensing cylinder 19b is brought into contact with the pipe connecting to 4c, and control is performed so that the temperature-sensing cylinder 19b has a slight subcool at the contacting portion. Therefore, the entire area of the third core portion 14c downstream of the portion in contact with the temperature sensitive cylinder 19b is the supercooling region. In this embodiment, the area upstream of the portion in contact with the temperature sensitive tube 19b is the downstream area of the second core portion 14b. Therefore, in order to have a slight amount of subcool at the portion where the temperature-sensitive cylinder 19b comes into contact, the subcool is provided in the downstream region of the second core portion 14b. The downstream region of the second core portion 14b is the third
Since it is arranged on the leeward side of the downstream region of the core portion 14c, the air that has passed through the downstream region of the third core portion 14c will hit. Here, when the temperature distribution of the air after the heat exchange with the refrigerant in the third core portion 14c is examined, as shown in FIG. 4, the lower temperature side of the refrigerant flowing through the third core portion 14c has a higher temperature. It will be lower than the basin side. As a result, the temperature difference between the refrigerant and the air can be made relatively large in the downstream region of the second core portion 14b, so that the core area required to have a subcool in the downstream region of the second core portion 14b increases. Can be prevented.

【0013】次に、本発明の第3実施例を示す。図5は
本実施例に係る室内ユニット部の模式図である。本実施
例の冷凍サイクル4は、室内凝縮器14の出口配管にサ
ブクール制御弁19の感温筒19bを接触させて、室内
凝縮器14出口のサブクールを制御するものである。室
内凝縮器14の各コア部14a〜14cは、上記第2実
施例の場合と同様に、冷媒の流れ方向が各コア部14a
〜14cで同一となるように接続されている。サブクー
ル制御弁19は、第3コア部14cの全域を過冷却域と
するために、第2コア部14bの下流域でサブクールを
持つように室内凝縮器14出口のサブクールを制御す
る。従って、本実施例の場合は、上記第2実施例の場合
と同様に、第2コア部14bの下流域で冷媒と空気との
温度差を比較的大きくとることができるため、第2コア
部14bの下流域でサブクールを持つために必要なコア
面積が増大するのを防止することができる。
Next, a third embodiment of the present invention will be shown. FIG. 5 is a schematic diagram of the indoor unit portion according to the present embodiment. In the refrigeration cycle 4 of the present embodiment, the temperature sensing cylinder 19b of the subcool control valve 19 is brought into contact with the outlet pipe of the indoor condenser 14 to control the subcool at the outlet of the indoor condenser 14. In the core portions 14a to 14c of the indoor condenser 14, the refrigerant flow direction is the core portions 14a as in the case of the second embodiment.
They are connected so as to be the same at 14c. The subcool control valve 19 controls the subcool at the outlet of the indoor condenser 14 so as to have a subcool in the downstream region of the second core portion 14b in order to make the entire area of the third core portion 14c a supercooling region. Therefore, in the case of the present embodiment, as in the case of the second embodiment described above, the temperature difference between the refrigerant and the air can be made relatively large in the downstream region of the second core portion 14b, so that the second core portion 14b. It is possible to prevent the core area required to have a subcool in the downstream region of 14b from increasing.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る車両用空調装置の全体模式図
である。
FIG. 1 is an overall schematic diagram of a vehicle air conditioner according to a first embodiment.

【図2】第1実施例に係る室内ユニット部の模式図であ
る。
FIG. 2 is a schematic diagram of an indoor unit portion according to the first embodiment.

【図3】第2実施例に係る室内ユニット部の模式図であ
る。
FIG. 3 is a schematic diagram of an indoor unit section according to a second embodiment.

【図4】第3コア部を通過後の空気の温度分布を示す図
である(第2実施例)。
FIG. 4 is a diagram showing a temperature distribution of air after passing through a third core portion (second embodiment).

【図5】第3実施例に係る室内ユニット部の模式図であ
る。
FIG. 5 is a schematic diagram of an indoor unit portion according to a third embodiment.

【図6】従来技術に係る室内ユニット部の模式図であ
る。
FIG. 6 is a schematic view of an indoor unit section according to a conventional technique.

【符号の説明】[Explanation of symbols]

4 冷凍サイクル 13 室内蒸発器(冷媒凝縮器) 14a 第1コア部(第1熱交換部) 14b 第2コア部(第1熱交換部) 14c 第3コア部(第2熱交換部) 19 サブクール制御弁(過冷却度調整弁) 4 Refrigeration cycle 13 Indoor evaporator (refrigerant condenser) 14a 1st core part (1st heat exchange part) 14b 2nd core part (1st heat exchange part) 14c 3rd core part (2nd heat exchange part) 19 Subcool Control valve (supercooling degree adjustment valve)

フロントページの続き (72)発明者 石川 浩 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 本多 桂太 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Front Page Continuation (72) Inventor Hiroshi Ishikawa 1-1, Showa-cho, Kariya, Aichi Prefecture, Nihon Denso Co., Ltd. (72) Inventor Keita Honda 1-1-1-1, Showa-cho, Kariya, Aichi Prefecture, Nidec Corporation Within

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】通過する冷媒を冷却媒体との熱交換によっ
て凝縮液化する熱交換部を有し、この熱交換部が、冷媒
の流れ方向において前記熱交換部の上流側を成す第1熱
交換部と下流側を成す第2熱交換部より成り、前記第1
熱交換部が前記冷却媒体の流れ方向において前記第2熱
交換部の下流側に配された冷媒凝縮器と、 前記第2熱交換部の途中から過冷却域となるように前記
冷媒凝縮器下流の冷媒流路の開度を調整する過冷却度調
整弁とを備えた冷凍サイクル。
1. A first heat exchange unit having a heat exchange unit for condensing and liquefying a refrigerant passing therethrough by heat exchange with a cooling medium, the heat exchange unit constituting an upstream side of the heat exchange unit in the flow direction of the refrigerant. Section and a second heat exchange section forming a downstream side, and the first section
A refrigerant condenser in which a heat exchange section is arranged on the downstream side of the second heat exchange section in the flow direction of the cooling medium, and the refrigerant condenser downstream so as to become a supercooled region from the middle of the second heat exchange section. And a subcooling degree adjusting valve for adjusting the opening degree of the refrigerant flow path.
【請求項2】通過する冷媒を冷却媒体との熱交換によっ
て凝縮液化する熱交換部を有し、この熱交換部が、冷媒
の流れ方向において前記熱交換部の上流側を成す第1熱
交換部と下流側を成す第2熱交換部より成り、前記第1
熱交換部が前記冷却媒体の流れ方向において前記第2熱
交換部の下流側に配された冷媒凝縮器と、 前記第2熱交換部の全域が過冷却域となるように前記冷
媒凝縮器下流の冷媒流路の開度を調整する過冷却度調整
弁とを備えた冷凍サイクルにおいて、 前記熱交換部は、冷媒の流れ方向における前記第1熱交
換部の下流域が、前記第2熱交換部の下流域の前記冷却
媒体の流れ方向における下流側に位置する様に配された
ことを特徴とする冷凍サイクル。
2. A first heat exchange unit having a heat exchange unit for condensing and liquefying a refrigerant passing therethrough by heat exchange with a cooling medium, the heat exchange unit constituting an upstream side of the heat exchange unit in the flow direction of the refrigerant. Section and a second heat exchange section forming a downstream side, and the first section
A refrigerant condenser in which a heat exchange section is arranged on the downstream side of the second heat exchange section in the flow direction of the cooling medium, and the refrigerant condenser downstream so that the entire area of the second heat exchange section is a supercooling zone. A refrigeration cycle including a subcooling degree adjusting valve for adjusting the opening degree of the refrigerant flow path of the first heat exchange section in the refrigerant flow direction, wherein the second heat exchange section is provided. The refrigeration cycle is arranged so as to be located on the downstream side in the flow direction of the cooling medium in the downstream region of the section.
JP01156993A 1993-01-27 1993-01-27 Refrigeration cycle Expired - Lifetime JP3208889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01156993A JP3208889B2 (en) 1993-01-27 1993-01-27 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01156993A JP3208889B2 (en) 1993-01-27 1993-01-27 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH06221724A true JPH06221724A (en) 1994-08-12
JP3208889B2 JP3208889B2 (en) 2001-09-17

Family

ID=11781565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01156993A Expired - Lifetime JP3208889B2 (en) 1993-01-27 1993-01-27 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3208889B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854956A (en) * 1986-07-14 1989-08-08 U.S. Philips Corp. Method of manufacturing optical fibres having a core and a cladding of glass applying the rod-in-tube technique
JPH08226727A (en) * 1995-02-22 1996-09-03 Nippondenso Co Ltd Heat exchanger for heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854956A (en) * 1986-07-14 1989-08-08 U.S. Philips Corp. Method of manufacturing optical fibres having a core and a cladding of glass applying the rod-in-tube technique
JPH08226727A (en) * 1995-02-22 1996-09-03 Nippondenso Co Ltd Heat exchanger for heat pump

Also Published As

Publication number Publication date
JP3208889B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JP2003291635A (en) Air-conditioner
CA2278415A1 (en) Heat exchange equipment
JP2003121019A (en) Air conditioner
JPH05296580A (en) Refrigeration cycle
JPH10232073A (en) Air conditioner
JP4610688B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPH06221724A (en) Freezing cycle
JP2525338B2 (en) Defrost mechanism of heat pump type air conditioner
JPH0434371Y2 (en)
JPH10329532A (en) Vehicular air conditioner
JPH07132729A (en) Air conditioner
JPH08244446A (en) Refrigerating cycle of air conditioner for vehicle
JPH1053022A (en) Air-conditioning device for vehicle
JPH1163709A (en) Air conditioner
JP2917749B2 (en) Air conditioner
JPH11105541A (en) Heat pump type air conditioner for automobile
JPH04278153A (en) Cooling and heating device
JP2871166B2 (en) Air conditioner
JP2000337720A (en) Air conditioner
JPH02223778A (en) Defrosting device for air-conditioning machine
JPH06323674A (en) Air-conditioner
JPH08338668A (en) Multi-room type air conditioner
JPH06123499A (en) Air conditioner
JPH09310931A (en) Air conditioner
JPH0113972Y2 (en)