JPH04278153A - Cooling and heating device - Google Patents

Cooling and heating device

Info

Publication number
JPH04278153A
JPH04278153A JP4015591A JP4015591A JPH04278153A JP H04278153 A JPH04278153 A JP H04278153A JP 4015591 A JP4015591 A JP 4015591A JP 4015591 A JP4015591 A JP 4015591A JP H04278153 A JPH04278153 A JP H04278153A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
refrigerant
indoor heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4015591A
Other languages
Japanese (ja)
Inventor
Kazuo Saito
和夫 齊藤
Katsuyoshi Kumazawa
熊澤 克義
Tetsuo Sano
哲夫 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4015591A priority Critical patent/JPH04278153A/en
Publication of JPH04278153A publication Critical patent/JPH04278153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To carry out a continuous operation without stopping any heating operation even under a defrosting state. CONSTITUTION:In the case that an outdoor heat exchanger 61 is frosted during a heating operation, a frosting sensor 62 detects this state, a control devices 45 causes an air blowing fan to decrease an amount of blowing air for an indoor heat exchanger 29 and to decrease its amount of thermal radiation. Concurrently, throttling of an expansion valve 67 is released. With such an arrangement, refrigerant discharged out of the indoor heat exchanger 29 becomes two gas-liquid phases and is not adjusted and then the refrigerant is sent to an outdoor heat exchanger 61 as it is and then its defrosting operation is carried out.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】この発明は、冷凍サイクルと冷媒
加熱器とを組み合わせた冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a heating and cooling system that combines a refrigeration cycle and a refrigerant heater.

【0003】0003

【従来の技術】一般に、圧縮機,室内熱交換器,室外熱
交換器,膨脹弁などより冷凍サイクルを構成したヒート
ポンプ式の冷暖房装置は、暖房時には室内熱交換器にて
放熱後の冷媒を、膨脹弁にて減圧した後、室外熱交換器
にて大気の熱を吸収させて気化させ、圧縮機に送る構成
となっている。このようなヒートポンプ式における冷媒
は、室外熱交換器で大気から受熱して気化させるため、
外気温度が低いと、本来は暖房能力を大きくする必要が
あるにも拘らず暖房能力が低下する欠点がある。このた
め従来では、上記ヒートポンプ式の冷凍サイクルに冷媒
加熱器を付加して暖房能力を向上させた冷媒加熱式冷暖
房装置がある。冷媒加熱とヒートポンプとを同時に運転
する冷暖房機では、図6にその冷凍サイクル構成を示す
ように、二シリンダ式の圧縮機1を使用した例がある。 主要な構成要素としては二シリンダ式圧縮機1,四方弁
3,室内熱交換器5,室外熱交換器7,冷媒加熱器9,
そして各種バルブとして膨張弁11,二方弁13,流量
制御弁15,チェック弁17等である。この圧縮機1は
第1シリンダ19及び第2シリンダ21を備え、各シリ
ンダ19,21は一つのモータ23によって同時に作動
する。
[Prior Art] In general, a heat pump type air-conditioning system, which has a refrigeration cycle composed of a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion valve, etc., uses a refrigerant after heat radiation in an indoor heat exchanger during heating. After reducing the pressure with an expansion valve, the outdoor heat exchanger absorbs atmospheric heat, vaporizes it, and sends it to the compressor. In such a heat pump type, the refrigerant receives heat from the atmosphere in an outdoor heat exchanger and vaporizes it.
When the outside air temperature is low, there is a drawback that the heating capacity decreases even though it is originally necessary to increase the heating capacity. For this reason, conventionally, there is a refrigerant-heating type air-conditioning/heating device in which a refrigerant heater is added to the heat pump type refrigeration cycle to improve the heating capacity. In an air-conditioning/heating machine that operates refrigerant heating and a heat pump at the same time, there is an example in which a two-cylinder compressor 1 is used, as shown in the refrigeration cycle configuration shown in FIG. The main components are a two-cylinder compressor 1, a four-way valve 3, an indoor heat exchanger 5, an outdoor heat exchanger 7, a refrigerant heater 9,
Various valves include an expansion valve 11, a two-way valve 13, a flow control valve 15, a check valve 17, and the like. This compressor 1 includes a first cylinder 19 and a second cylinder 21, each cylinder 19, 21 being operated simultaneously by one motor 23.

【0004】このような構成の冷暖房装置においては、
暖房時には、冷媒加熱とヒートポンプとの同時運転を行
っているとき、冷媒は圧縮機1→四方弁3→室内熱交換
器5と流れ、室内熱交換器5を出た後は二つに分岐し、
一方は冷媒加熱器9を通って圧縮機1の第1シリンダ1
9へ、他方は膨張弁11,室外熱交換器7を通って第2
シリンダ21へと流れる。このとき二方弁13は開いた
状態、流量制御弁15は大きく開いた状態で、実質的に
圧損がほとんどない。また冷媒加熱器9を動作させずヒ
ートポンプ運転だけの時には二方弁13を閉止する。こ
のとき冷媒加熱器9には冷媒は循環しない。冷房時には
、冷媒は圧縮機1→四方弁3→室外熱交換器7→膨張弁
11→室内熱交換器5→四方弁3→圧縮機1の順に流れ
る。このときも二方弁11は閉じられており、冷媒加熱
器9に冷媒は流れない。
[0004] In a heating and cooling system having such a configuration,
During heating, when refrigerant heating and heat pump are operated simultaneously, the refrigerant flows from the compressor 1 to the four-way valve 3 to the indoor heat exchanger 5, and after leaving the indoor heat exchanger 5, it branches into two. ,
One side passes through the refrigerant heater 9 to the first cylinder 1 of the compressor 1.
9, and the other passes through the expansion valve 11 and the outdoor heat exchanger 7 to the second
It flows into the cylinder 21. At this time, the two-way valve 13 is in an open state, the flow control valve 15 is in a wide open state, and there is virtually no pressure loss. Further, when only the heat pump is operated without operating the refrigerant heater 9, the two-way valve 13 is closed. At this time, the refrigerant does not circulate through the refrigerant heater 9. During cooling, the refrigerant flows in the order of compressor 1 → four-way valve 3 → outdoor heat exchanger 7 → expansion valve 11 → indoor heat exchanger 5 → four-way valve 3 → compressor 1. At this time as well, the two-way valve 11 is closed, and no refrigerant flows into the refrigerant heater 9.

【0005】このような構成では、冷媒加熱器9が動作
状態にあるときは、冷媒加熱器9側の吸い込みラインが
高圧となるので第1シリンダ19は冷媒加熱器9用に、
第2シリンダ21は室外熱交換器7用つまりヒートポン
プ運転用に用いられる。また、二方弁11を閉止し冷媒
加熱器9を動作させない場合には、冷媒加熱器9側の吸
い込みラインが室外熱交換器7側よりも低くなるためチ
ェック弁17を冷媒が通過するようになる。すなわち、
ヒートポンプ運転を2つのシリンダ19,21を用いて
行っていることになる。
In such a configuration, when the refrigerant heater 9 is in operation, the suction line on the refrigerant heater 9 side is at high pressure, so the first cylinder 19 is used for the refrigerant heater 9.
The second cylinder 21 is used for the outdoor heat exchanger 7, that is, for operating the heat pump. Furthermore, when the two-way valve 11 is closed and the refrigerant heater 9 is not operated, the suction line on the refrigerant heater 9 side is lower than the outdoor heat exchanger 7 side, so that the refrigerant passes through the check valve 17. Become. That is,
This means that the heat pump operation is performed using two cylinders 19 and 21.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記のよう
に構成された冷暖房装置では、暖房時はどの運転モード
でも室外熱交換器7を使用したヒートポンプ運転を行う
ため、外気の条件によっては室外熱交換器7に着霜する
ので、その場合には除霜をする必要がある。除霜運転を
行うためには、四方弁3を切り換えて圧縮機1の高温の
吐出ガスを四方弁3を介して室外熱交換器7に直接送る
[Problems to be Solved by the Invention] By the way, in the air conditioning system configured as described above, the heat pump operation using the outdoor heat exchanger 7 is performed in any operation mode during heating, so depending on the outdoor air conditions, the outdoor heat Since frost forms on the exchanger 7, it is necessary to defrost it in that case. In order to perform the defrosting operation, the four-way valve 3 is switched to send the high-temperature discharge gas of the compressor 1 directly to the outdoor heat exchanger 7 via the four-way valve 3.

【0007】ところがこの場合、四方弁3を切り換える
ことから、高温の冷媒蒸気が室内熱交換器5に送られな
いので、暖房運転が一次的に停止することとなり、使用
者にとっては快適な暖房感を得にくいものとなっている
However, in this case, since the four-way valve 3 is switched, high-temperature refrigerant vapor is not sent to the indoor heat exchanger 5, so the heating operation is temporarily stopped, resulting in a comfortable heating sensation for the user. This makes it difficult to obtain.

【0008】そこでこの発明は、除霜時においても暖房
運転を停止することなく継続して運転できるようにする
ことを目的としている。
[0008] Therefore, an object of the present invention is to enable the heating operation to continue without stopping even during defrosting.

【0009】[発明の構成][Configuration of the invention]

【0010】0010

【課題を解決するための手段】前記目的を達成するため
にこの発明は、吸入口を2つ吐出口を1つそれぞれ備え
各吸入口に対応して同時に動作するシリンダ部が2つ設
けられた圧縮機と、室内に設置される室内熱交換器と、
室外に設置される室外熱交換器と、この各室内熱交換器
及び室外熱交換器と前記圧縮機の吐出口及び一方の吸入
口とを接続する切換弁と、前記室内熱交換器と室外熱交
換器とを接続する配管に設けた膨脹弁と、前記配管と前
記圧縮機の他方の吸入口との間に設けた冷媒加熱器と、
暖房時に前記室外熱交換器に着霜したことを検出する着
霜検出手段と、この着霜検出手段が着霜を検出したとき
前記室内熱交換器の放熱量を所定量低下させる制御手段
とを有する構成としてある。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention has two cylinder parts each having two suction ports and one discharge port, and two cylinder parts that operate simultaneously corresponding to each suction port. A compressor, an indoor heat exchanger installed indoors,
an outdoor heat exchanger installed outdoors, a switching valve that connects each of the indoor heat exchangers and the outdoor heat exchanger to the discharge port and one suction port of the compressor, and a switching valve that connects the indoor heat exchanger and the outdoor heat an expansion valve provided in a pipe connecting the exchanger; a refrigerant heater provided between the pipe and the other suction port of the compressor;
A frost formation detection means for detecting frost formation on the outdoor heat exchanger during heating, and a control means for reducing the heat radiation amount of the indoor heat exchanger by a predetermined amount when the frost formation detection means detects frost formation. There is a configuration that has.

【0011】また、この発明は、吸入口を2つ吐出口を
1つそれぞれ備え各吸入口に対応して同時に動作するシ
リンダ部が2つ設けられた圧縮機と、室内に設置される
室内熱交換器と、室外に設置される室外熱交換器と、こ
の各室内熱交換器及び室外熱交換器と前記圧縮機の吐出
口及び一方の吸入口とを接続する切換弁と、前記室内熱
交換器と室外熱交換器とを接続する配管に設けた膨脹弁
と、前記配管と前記圧縮機の他方の吸入口との間に設け
た冷媒加熱器と、暖房時に前記室外熱交換器に着霜した
ことを検出する着霜検出手段と、この着霜検出手段が着
霜を検出したとき前記冷媒加熱器の能力を所定量増大さ
せる制御手段とを有する構成としてもよい。
[0011] The present invention also provides a compressor having two suction ports and one discharge port, and two cylinder sections that operate simultaneously corresponding to each suction port, and an indoor heating system installed indoors. an exchanger, an outdoor heat exchanger installed outdoors, a switching valve connecting each of the indoor heat exchangers and the outdoor heat exchanger to a discharge port and one suction port of the compressor, and the indoor heat exchanger. frost builds up on the expansion valve provided in the piping connecting the outdoor heat exchanger and the refrigerant heater provided between the piping and the other suction port of the compressor, and on the outdoor heat exchanger during heating. The refrigerant heater may be configured to include a frost detection means for detecting frost formation, and a control means for increasing the capacity of the refrigerant heater by a predetermined amount when the frost formation detection means detects frost formation.

【0012】0012

【作用】暖房時に室外熱交換器に着霜すると、これを着
霜検出手段が検出し、この検出信号は制御手段に入力さ
れる。これにより、制御手段は室内熱交換器に対し放熱
量を所定量低下させるよう制御する。室内熱交換器の放
熱量が低下すると、室内熱交換器を出た冷媒は完全に凝
縮しない気液2相状態となり、この冷媒が室外熱交換器
に送られることで付着した霜を除去する。この除霜時に
は、室内熱交換器の放熱量を低下させるだけであり、切
換弁の切り換えはなく暖房運転は継続して行われ、快適
な暖房感が得られる。
[Operation] When frost forms on the outdoor heat exchanger during heating, the frost formation detection means detects this, and this detection signal is input to the control means. Thereby, the control means controls the indoor heat exchanger to reduce the amount of heat released by a predetermined amount. When the amount of heat released by the indoor heat exchanger decreases, the refrigerant leaving the indoor heat exchanger becomes completely uncondensed and becomes a gas-liquid two-phase state, and this refrigerant is sent to the outdoor heat exchanger to remove accumulated frost. During defrosting, the amount of heat dissipated from the indoor heat exchanger is only reduced, and the switching valve is not switched, and the heating operation continues, providing a comfortable feeling of heating.

【0013】またこの発明は、暖房時に室外熱交換器に
着霜すると、これを着霜検出手段が検出し、この検出信
号は制御手段に入力される。これにより、制御手段は冷
媒加熱器に対し所定量能力を増大させるよう制御する。 冷媒加熱器の能力が増大すると、圧縮機から吐出された
のち室内熱交換器を出た冷媒は完全に凝縮しない気液2
相状態となり、この冷媒が室外熱交換器に送られること
で付着した霜を除去する。この除霜時には、冷媒加熱器
の能力を増大させるだけであり、切換弁の切り換えはな
く暖房運転は継続して行われ、しかも室内熱交換器の放
熱量の低下はないので、より快適な暖房感が得られる。
Further, in the present invention, when frost forms on the outdoor heat exchanger during heating, the frost formation detection means detects this, and this detection signal is inputted to the control means. Thereby, the control means controls the refrigerant heater to increase its capacity by a predetermined amount. As the capacity of the refrigerant heater increases, the refrigerant that exits the indoor heat exchanger after being discharged from the compressor becomes a gas-liquid that does not completely condense.
This refrigerant is sent to the outdoor heat exchanger to remove the frost that has adhered to it. During defrosting, the capacity of the refrigerant heater is simply increased, and heating operation continues without switching the switching valve.Furthermore, there is no decrease in the amount of heat released by the indoor heat exchanger, resulting in more comfortable heating. You can feel it.

【0014】[0014]

【実施例】以下、この発明の実施例を図面に基づき説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.

【0015】図1は、この発明の第1実施例に係わる冷
暖房装置の冷凍サイクル構成を示している。暖房時に冷
媒が流れる順番に構成要素を述べると、二シリンダ式の
圧縮機25,切換弁としての四方弁27,室内熱交換器
29である。圧縮機25は、シリンダ部として2つの第
1シリンダ31及び第2シリンダ33が収納され、一つ
の吐出口35と二つの吸入口37,39とを備えている
。これら両シリンダ31,33は、図示しないモータに
よって同時に作動するものとする。室内熱交換器29は
、図示しない室内ユニットに内蔵され、室内ユニットに
は室内熱交換器29に対し空気を送る送風ファン41が
設けられている。送風ファン41は、モータ43によっ
て回転し、モータ43は例えばマイクロコンピュータか
ら構成される制御手段としてのコントロールユニット4
5により回転数が制御される。
FIG. 1 shows a refrigeration cycle configuration of a heating and cooling system according to a first embodiment of the present invention. The components are described in the order in which the refrigerant flows during heating: a two-cylinder compressor 25, a four-way valve 27 as a switching valve, and an indoor heat exchanger 29. The compressor 25 houses two first cylinders 31 and a second cylinder 33 as cylinder parts, and includes one discharge port 35 and two suction ports 37 and 39. It is assumed that both cylinders 31 and 33 are operated simultaneously by a motor (not shown). The indoor heat exchanger 29 is built into an indoor unit (not shown), and the indoor unit is provided with a blower fan 41 that sends air to the indoor heat exchanger 29. The blower fan 41 is rotated by a motor 43, and the motor 43 is connected to a control unit 4 as a control means composed of, for example, a microcomputer.
5 controls the rotation speed.

【0016】圧縮機25の吐出口35と四方弁27とは
配管47で接続され、四方弁27と室内熱交換器29と
は配管49で接続されている。室内熱交換器29を出た
冷媒は配管51を流れた後、分岐部53にて二系統に分
岐し、一方は配管55により冷媒加熱器57側へ、他方
は配管59により室外熱交換器61側へと流れる。冷媒
加熱器57は、冷媒加熱熱交換器63とバ―ナ部65と
から構成されている。配管59には膨脹弁67が設けら
れ、この膨脹弁67は、ヒートポンプ運転時に大気から
熱を吸収できる蒸発圧力まで冷媒の圧力を下げる働きを
し、前記コントロールユニット45により弁開度が制御
される。
The discharge port 35 of the compressor 25 and the four-way valve 27 are connected by a pipe 47, and the four-way valve 27 and the indoor heat exchanger 29 are connected by a pipe 49. The refrigerant that has exited the indoor heat exchanger 29 flows through a pipe 51 and is then branched into two systems at a branching part 53, one of which goes to the refrigerant heater 57 through a pipe 55, and the other goes to the outdoor heat exchanger 61 through a pipe 59. flows to the side. The refrigerant heater 57 includes a refrigerant heating heat exchanger 63 and a burner section 65. The piping 59 is provided with an expansion valve 67, which functions to lower the pressure of the refrigerant to an evaporation pressure that can absorb heat from the atmosphere during heat pump operation, and the valve opening degree is controlled by the control unit 45. .

【0017】また、上記室外熱交換器61には、暖房運
転時に室外熱交換器61の表面に霜が付着したことを検
出する着霜検出手段としての着霜センサ62が設けられ
ている。着霜センサ62の検出信号は前記コントロール
ユニット45に出力され、この信号入力を受けたときコ
ントロールユニット45は、前記送風ファン41のモー
タ43の回転数を下げて室内熱交換器29の放熱量を所
定量低下させると同時に、膨脹弁67の絞り開度を緩め
る。放熱量を低下させる量は、室内熱交換器29を出る
冷媒が、完全に凝縮しない気相と液相の2相状態となる
程度とする。
Further, the outdoor heat exchanger 61 is provided with a frost sensor 62 as a frost detection means for detecting frost adhering to the surface of the outdoor heat exchanger 61 during heating operation. The detection signal of the frost sensor 62 is output to the control unit 45, and upon receiving this signal input, the control unit 45 lowers the rotation speed of the motor 43 of the blower fan 41 to reduce the heat radiation amount of the indoor heat exchanger 29. At the same time, the throttle opening degree of the expansion valve 67 is loosened. The amount by which the amount of heat radiation is reduced is such that the refrigerant exiting the indoor heat exchanger 29 is in a two-phase state of a gas phase and a liquid phase without being completely condensed.

【0018】冷媒加熱器57の上流側の配管55には二
方弁69が設けられ、この二方弁69は、暖房時ヒート
ポンプ運転のみで冷媒加熱器57を用いない場合や、冷
房時に冷媒加熱器57を用いない場合に流路を閉じる。 冷媒加熱器57を出た冷媒は配管71に流れ、この配管
71は圧縮機25の第1シリンダ31と吸入口37を介
して接続されている。室外熱交換器61と四方弁27と
は配管73により接続され、四方弁27と、圧縮機25
の第2シリンダ33の吸入口39とは配管75により接
続されている。
A two-way valve 69 is provided in the piping 55 on the upstream side of the refrigerant heater 57, and this two-way valve 69 is used when the refrigerant heater 57 is not used when the heat pump is operated only during heating, or when the refrigerant is heated during cooling. The flow path is closed when the vessel 57 is not used. The refrigerant that has exited the refrigerant heater 57 flows into a pipe 71 , and this pipe 71 is connected to the first cylinder 31 of the compressor 25 via the suction port 37 . The outdoor heat exchanger 61 and the four-way valve 27 are connected by a pipe 73, and the four-way valve 27 and the compressor 25
It is connected to the suction port 39 of the second cylinder 33 by a pipe 75.

【0019】以上の構成において、暖房能力が大きいと
きは冷媒加熱とヒートポンプとの同時運転となるが、そ
の場合二方弁69は開いた状態である。冷媒加熱器57
を出た冷媒蒸気は高圧となっており、配管71を経て第
1シリンダ31へ送り込まれる。一方、室外熱交換器6
1を出た冷媒蒸気は低圧となっており、配管73,四方
弁27,配管75を経て第2シリンダ33へ送り込まれ
る。また、暖房能力が小さいときはヒートポンプのみの
運転となり、この場合には二方弁69は閉じた状態とな
る。
In the above configuration, when the heating capacity is large, the refrigerant heating and the heat pump operate simultaneously, but in this case, the two-way valve 69 is in an open state. Refrigerant heater 57
The refrigerant vapor that exits is under high pressure and is sent to the first cylinder 31 via the pipe 71. On the other hand, outdoor heat exchanger 6
The refrigerant vapor exiting the refrigerant 1 is at a low pressure and is sent to the second cylinder 33 via the pipe 73, the four-way valve 27, and the pipe 75. Further, when the heating capacity is small, only the heat pump is operated, and in this case, the two-way valve 69 is closed.

【0020】このような暖房運転時に、外気温度が低下
し室外熱交換器61に霜が付着した場合には、除霜運転
がスタートする。このときのコントロールユニット45
の制御動作を示すフローチャートを図2に示す。まず、
着霜センサ62が室外熱交換器61に対する霜の付着を
検出したかどうかを判断する(ステップ201)。ここ
で、着霜センサ62が霜の付着を検出した場合には、モ
ータ43の回転数を所定量下げて送風ファン41の送風
量を低下させ、室内熱交換器29の放熱量を所定量低下
させる(ステップ203)とともに、膨脹弁67の絞り
開度を増加させる(ステップ205)。室内熱交換器2
9の放熱量が所定量低下すると、冷媒は室内熱交換器2
9内で完全に凝縮せずに気体と液体との気液2相状態と
なって配管51に流出する。そして、気相の冷媒は膨脹
弁67で絞られることなくそのまま室外熱交換器61に
送られ、その高圧の冷媒蒸気が持つ潜熱によって室外熱
交換器61の表面に付着した霜を溶かす。上記ステップ
201で、着霜センサ62が霜の付着を検出しないとき
には、そのまま通常運転を継続する(ステップ207)
During such a heating operation, if the outside air temperature drops and frost forms on the outdoor heat exchanger 61, a defrosting operation is started. Control unit 45 at this time
A flowchart showing the control operation is shown in FIG. first,
It is determined whether the frost sensor 62 detects frost adhesion to the outdoor heat exchanger 61 (step 201). Here, if the frost formation sensor 62 detects the adhesion of frost, the rotation speed of the motor 43 is lowered by a predetermined amount to reduce the amount of air blown by the ventilation fan 41, and the amount of heat dissipated from the indoor heat exchanger 29 is reduced by a predetermined amount. (Step 203), and the opening degree of the expansion valve 67 is increased (Step 205). Indoor heat exchanger 2
When the heat radiation amount of 9 decreases by a predetermined amount, the refrigerant is transferred to the indoor heat exchanger 2.
The gas is not completely condensed in the tube 9 and becomes a gas-liquid two-phase state of gas and liquid, and flows out into the pipe 51. Then, the gas phase refrigerant is sent as it is to the outdoor heat exchanger 61 without being throttled by the expansion valve 67, and the frost attached to the surface of the outdoor heat exchanger 61 is melted by the latent heat of the high-pressure refrigerant vapor. In step 201, if the frost sensor 62 does not detect frost, normal operation continues (step 207).
.

【0021】上記のような除霜運転の際には、切換弁2
7を切り換えず圧縮機25から吐出される冷媒ガスは、
暖房運転時と同様室内熱交換器29に送られるので、暖
房運転が停止されることはなく、使用者にとっては快適
な暖房感を継続して得ることができる。
During the defrosting operation as described above, the switching valve 2
The refrigerant gas discharged from the compressor 25 without switching the
Since the heat is sent to the indoor heat exchanger 29 in the same way as during the heating operation, the heating operation is not stopped and the user can continue to enjoy a comfortable feeling of heating.

【0022】なお、上記実施例では、室内熱交換器29
の放熱量を低下させるために、送風ファン41の回転数
を低下させているが、室内熱交換器29の図示しない室
内ユニットの送風口に設けられているルーバの動作を制
御することによって送風量を落とし、放熱量を低下させ
るようにしてもよい。
[0022] In the above embodiment, the indoor heat exchanger 29
In order to reduce the amount of heat dissipated, the rotation speed of the ventilation fan 41 is lowered. It is also possible to reduce the amount of heat dissipated by reducing the amount of heat dissipated.

【0023】図3は、この発明の第2実施例に係わる冷
暖房装置の冷凍サイクル構成を示している。この実施例
は、除霜運転の際に冷媒加熱器57の能力を、室内熱交
換器29での冷媒のもつ潜熱をすべて放熱しきれない状
態となるまで所定量増大させることによって、圧縮機2
5から吐出される冷媒ガスが室内熱交換器29にて完全
に凝縮しないようにしたものである。この場合、除霜セ
ンサ62の信号入力を受けるコントロールユニット77
は、バーナ部65に対する燃焼空気供給用ファン79を
回転させるモータ81、及びバーナ部65に対する燃料
供給装置83の動作を、それぞれ制御すると同時に、膨
脹弁67の弁開度を制御する。その他の構成は、前記図
1に示した第1実施例と同様であり、図1と同一構成要
素には同一符号を付してある。
FIG. 3 shows a refrigeration cycle configuration of a heating and cooling system according to a second embodiment of the present invention. In this embodiment, during defrosting operation, the capacity of the refrigerant heater 57 is increased by a predetermined amount until all of the latent heat of the refrigerant in the indoor heat exchanger 29 can be radiated.
This prevents the refrigerant gas discharged from the indoor heat exchanger 29 from being completely condensed. In this case, the control unit 77 receives the signal input from the defrosting sensor 62.
controls the operation of the motor 81 that rotates the combustion air supply fan 79 to the burner section 65 and the operation of the fuel supply device 83 to the burner section 65, and at the same time controls the valve opening degree of the expansion valve 67. The rest of the structure is the same as that of the first embodiment shown in FIG. 1, and the same components as in FIG. 1 are given the same reference numerals.

【0024】上記構成における冷暖房装置において、冷
媒加熱とヒートポンプとの同時暖房運転、あるいはヒー
トポンプのみの暖房運転の際に、外気温度が低下し室外
熱交換器61に霜が付着した場合のコントロールユニッ
ト77の制御動作を図4のフローチャートに基づき説明
する。
In the air conditioning system having the above configuration, the control unit 77 is used when the outside air temperature drops and frost forms on the outdoor heat exchanger 61 during simultaneous heating operation using refrigerant heating and the heat pump, or during heating operation using only the heat pump. The control operation will be explained based on the flowchart of FIG.

【0025】まず、着霜センサ62が室外熱交換器61
に対する霜の付着を検出したかどうかを判断する(ステ
ップ301)。ここで、着霜センサ62が霜の付着を検
出した場合には、燃料供給装置83による燃料供給量を
増加させると同時にモータ81の回転数を高めて燃焼空
気供給ファン79による送風空気量を増大させ、これに
より冷媒加熱器57の能力を増大させる(ステップ30
3)。さらに、膨脹弁67の絞り開度を増加させる(ス
テップ305)。冷媒加熱器57の能力が所定量増大す
ると、圧縮機25から吐出された冷媒は室内熱交換器2
9内で、能力増大分だけ放熱しきれず、完全に凝縮せず
に気体と液体との気液2相状態となって配管51に流出
する。そして、気相の冷媒は膨脹弁67で絞られること
なくそのまま室外熱交換器61に送られ、その高圧の冷
媒蒸気が持つ潜熱によって室外熱交換器61の表面に付
着した霜を溶かす。上記ステップ301で、着霜センサ
62が霜の付着を検出しないときには、そのまま通常運
転を継続する(ステップ307)。
First, the frost sensor 62 is connected to the outdoor heat exchanger 61.
It is determined whether frost has been detected (step 301). Here, if the frost sensor 62 detects the adhesion of frost, the amount of fuel supplied by the fuel supply device 83 is increased, and at the same time, the rotation speed of the motor 81 is increased to increase the amount of air blown by the combustion air supply fan 79. and thereby increase the capacity of the refrigerant heater 57 (step 30
3). Furthermore, the throttle opening degree of the expansion valve 67 is increased (step 305). When the capacity of the refrigerant heater 57 increases by a predetermined amount, the refrigerant discharged from the compressor 25 is transferred to the indoor heat exchanger 2.
9, the heat cannot be dissipated by the increased capacity, and the gas and liquid become a gas-liquid two-phase state without being completely condensed and flow out into the pipe 51. Then, the gas phase refrigerant is sent as it is to the outdoor heat exchanger 61 without being throttled by the expansion valve 67, and the frost attached to the surface of the outdoor heat exchanger 61 is melted by the latent heat of the high-pressure refrigerant vapor. If the frost formation sensor 62 does not detect the adhesion of frost in step 301, normal operation continues (step 307).

【0026】上記のような除霜運転の際には、第1実施
例と同様に、切換弁27を切り換えず圧縮機25から吐
出される冷媒ガスは、暖房運転時と同様室内熱交換器2
9に送られるので、暖房運転が停止されることはなく、
しかも室内熱交換器29の放熱量は通常の暖房運転時と
変わらないので、使用者にとってはより快適な暖房感を
継続して得ることができる。
During the defrosting operation as described above, the switching valve 27 is not switched and the refrigerant gas discharged from the compressor 25 is passed through the indoor heat exchanger 2 as in the heating operation.
9, the heating operation will not be stopped.
Moreover, since the amount of heat released by the indoor heat exchanger 29 is the same as during normal heating operation, the user can continue to enjoy a more comfortable feeling of heating.

【0027】図5は、この発明の第3実施例に係わる冷
暖房装置の冷凍サイクル構成を示している。この実施例
は、前記図1及び図3に示した冷凍サイクルにおいて、
冷媒加熱とヒートポンプとの同時暖房運転の際に室内熱
交換器29を出た冷媒が分岐する分岐部53に、気液分
離器85を設けたものである。この気液分離器85は、
除霜運転時に室内熱交換器29を出た気液2相状態の冷
媒のうち、気相分を室外熱交換器61に流す働きをする
。その他の構成は前記図1あるいは図3と同様であり、
図1及び図3と同一構成要素には同一符号を付してある
。但し、ここでは除霜センサやコントロールユニットな
どから構成される除霜制御回路は省略してある。
FIG. 5 shows a refrigeration cycle configuration of a heating and cooling system according to a third embodiment of the present invention. In this embodiment, in the refrigeration cycle shown in FIGS. 1 and 3,
A gas-liquid separator 85 is provided at a branch section 53 where the refrigerant exiting the indoor heat exchanger 29 branches during simultaneous heating operation of the refrigerant heating and the heat pump. This gas-liquid separator 85 is
It functions to flow the gas phase portion of the gas-liquid two-phase refrigerant that exits the indoor heat exchanger 29 during defrosting operation to the outdoor heat exchanger 61. The other configurations are the same as those in FIG. 1 or 3,
The same components as in FIGS. 1 and 3 are given the same reference numerals. However, the defrost control circuit comprised of a defrost sensor, a control unit, etc. is omitted here.

【0028】このような構成の冷暖房装置においては、
除霜運転時に室内熱交換器29を出た気液2相状態の冷
媒が、気液分離器85にて気相分だけが室内熱交換器6
1に送られて効率よく霜を除去し、一方液相分は冷媒加
熱器57に送られる。これにより、室外熱交換器61か
ら出る液冷媒の量を最小限に抑えることができ、圧縮器
25に液冷媒が流入する、いわゆる液バックを抑えるこ
とができる。
[0028] In the air-conditioning device having such a configuration,
During defrosting operation, the gas-liquid two-phase refrigerant that exits the indoor heat exchanger 29 passes through the gas-liquid separator 85, and only the gas phase is transferred to the indoor heat exchanger 6.
1 to efficiently remove frost, while the liquid phase is sent to a refrigerant heater 57. Thereby, the amount of liquid refrigerant coming out of the outdoor heat exchanger 61 can be minimized, and so-called liquid back, in which the liquid refrigerant flows into the compressor 25, can be suppressed.

【0029】[0029]

【発明の効果】以上説明してきたようにこの発明によれ
ば、室外熱交換器に霜が付着したときに、室内熱交換器
の放熱量を所定量低下させるか、あるいは冷媒加熱器の
能力を所定量増大させるようにすることで、室内熱交換
器を出た冷媒が完全に凝縮していない気液2相状態とな
り、この状態の気相分の潜熱によって室外熱交換器に付
着した霜を除去できる。このとき、室内熱交換器には圧
縮機から吐出された冷媒が流入しており、暖房運転は停
止することなく継続したまま除霜がなされ、使用者にと
って快適な暖房感が得られるようになる。また、冷媒加
熱器の能力を所定量増大させた場合には、室内熱交換器
による暖房能力が低下せず、より快適な暖房感が得られ
る。
[Effects of the Invention] As explained above, according to the present invention, when frost adheres to the outdoor heat exchanger, the heat radiation amount of the indoor heat exchanger is reduced by a predetermined amount, or the capacity of the refrigerant heater is reduced. By increasing the amount by a predetermined amount, the refrigerant leaving the indoor heat exchanger enters a gas-liquid two-phase state that is not completely condensed, and the latent heat of the gas phase in this state removes the frost that has adhered to the outdoor heat exchanger. Can be removed. At this time, the refrigerant discharged from the compressor is flowing into the indoor heat exchanger, and defrosting is performed while the heating operation continues without stopping, providing a comfortable feeling of heating for the user. . Further, when the capacity of the refrigerant heater is increased by a predetermined amount, the heating capacity of the indoor heat exchanger does not decrease, and a more comfortable feeling of heating can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の第1実施例を示す冷凍サイクル構成
図である。
FIG. 1 is a configuration diagram of a refrigeration cycle showing a first embodiment of the present invention.

【図2】図1の冷凍サイクルにおけるコントロールユニ
ットの制御動作を示すフローチャートである。
FIG. 2 is a flowchart showing a control operation of a control unit in the refrigeration cycle of FIG. 1;

【図3】この発明の第2実施例を示す冷凍サイクル構成
図である。
FIG. 3 is a configuration diagram of a refrigeration cycle showing a second embodiment of the present invention.

【図4】図3の冷凍サイクルにおけるコントロールユニ
ットの制御動作を示すフローチャートである。
FIG. 4 is a flowchart showing the control operation of the control unit in the refrigeration cycle of FIG. 3;

【図5】この発明の第3実施例を示す冷凍サイクル構成
図である。
FIG. 5 is a configuration diagram of a refrigeration cycle showing a third embodiment of the present invention.

【図6】従来例を示す冷凍サイクル構成図である。FIG. 6 is a configuration diagram of a refrigeration cycle showing a conventional example.

【符号の説明】[Explanation of symbols]

25  二シリンダ式圧縮機 27  四方弁(切換弁) 29  室内熱交換器 31  第1シリンダ(シリンダ部) 33  第2シリンダ(シリンダ部) 35  吐出口 37,39  吸入口 45,77  コントロールユニット(制御手段)57
  冷媒加熱器 59  配管 61  室外熱交換器 67  膨脹弁 62  着霜センサ(着霜検出手段)
25 Two-cylinder compressor 27 Four-way valve (switching valve) 29 Indoor heat exchanger 31 First cylinder (cylinder part) 33 Second cylinder (cylinder part) 35 Discharge ports 37, 39 Suction ports 45, 77 Control unit (control means )57
Refrigerant heater 59 Piping 61 Outdoor heat exchanger 67 Expansion valve 62 Frost sensor (frost detection means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  吸入口を2つ吐出口を1つそれぞれ備
え各吸入口に対応して同時に動作するシリンダ部が2つ
設けられた圧縮機と、室内に設置される室内熱交換器と
、室外に設置される室外熱交換器と、この各室内熱交換
器及び室外熱交換器と前記圧縮機の吐出口及び一方の吸
入口とを接続する切換弁と、前記室内熱交換器と室外熱
交換器とを接続する配管に設けた膨脹弁と、前記配管と
前記圧縮機の他方の吸入口との間に設けた冷媒加熱器と
、暖房時に前記室外熱交換器に着霜したことを検出する
着霜検出手段と、この着霜検出手段が着霜を検出したと
き前記室内熱交換器の放熱量を所定量低下させる制御手
段とを有することを特徴とする冷暖房装置。
[Claim 1] A compressor having two suction ports and one discharge port, and two cylinder sections that operate simultaneously corresponding to each suction port, and an indoor heat exchanger installed indoors; an outdoor heat exchanger installed outdoors, a switching valve that connects each of the indoor heat exchangers and the outdoor heat exchanger to the discharge port and one suction port of the compressor, and a switching valve that connects the indoor heat exchanger and the outdoor heat Detecting frost formation on an expansion valve provided in a pipe connecting the exchanger, a refrigerant heater provided between the pipe and the other suction port of the compressor, and the outdoor heat exchanger during heating. 1. A heating and cooling system comprising: a frost detection means for detecting frost formation; and a control means for reducing the heat radiation amount of the indoor heat exchanger by a predetermined amount when the frost formation detection means detects frost formation.
【請求項2】  吸入口を2つ吐出口を1つそれぞれ備
え各吸入口に対応して同時に動作するシリンダ部が2つ
設けられた圧縮機と、室内に設置される室内熱交換器と
、室外に設置される室外熱交換器と、この各室内熱交換
器及び室外熱交換器と前記圧縮機の吐出口及び一方の吸
入口とを接続する切換弁と、前記室内熱交換器と室外熱
交換器とを接続する配管に設けた膨脹弁と、前記配管と
前記圧縮機の他方の吸入口との間に設けた冷媒加熱器と
、暖房時に前記室外熱交換器に着霜したことを検出する
着霜検出手段と、この着霜検出手段が着霜を検出したと
き前記冷媒加熱器の能力を所定量増大させる制御手段と
を有することを特徴とする冷暖房装置。
2. A compressor having two inlets and one outlet, and two cylinder parts that operate simultaneously corresponding to each inlet, and an indoor heat exchanger installed indoors; an outdoor heat exchanger installed outdoors, a switching valve that connects each of the indoor heat exchangers and the outdoor heat exchanger to the discharge port and one suction port of the compressor, and a switching valve that connects the indoor heat exchanger and the outdoor heat Detecting frost formation on an expansion valve provided in a pipe connecting the exchanger, a refrigerant heater provided between the pipe and the other suction port of the compressor, and the outdoor heat exchanger during heating. 1. A heating and cooling device comprising: a frost detection means for detecting frost formation; and a control means for increasing the capacity of the refrigerant heater by a predetermined amount when the frost formation detection means detects frost formation.
JP4015591A 1991-03-06 1991-03-06 Cooling and heating device Pending JPH04278153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4015591A JPH04278153A (en) 1991-03-06 1991-03-06 Cooling and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4015591A JPH04278153A (en) 1991-03-06 1991-03-06 Cooling and heating device

Publications (1)

Publication Number Publication Date
JPH04278153A true JPH04278153A (en) 1992-10-02

Family

ID=12572876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4015591A Pending JPH04278153A (en) 1991-03-06 1991-03-06 Cooling and heating device

Country Status (1)

Country Link
JP (1) JPH04278153A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788910A2 (en) * 1995-09-22 1997-08-13 Denso Corporation Air conditioner for vehicle, improved for frost deposition
US7003975B2 (en) 2002-01-14 2006-02-28 Behr Gmbh & Co. Heating/cooling circuit for an air-conditioning system of a motor vehicle, air-conditioning system and a method for controlling the same
WO2015019612A1 (en) * 2013-08-09 2015-02-12 株式会社日本クライメイトシステムズ Vehicle air-conditioning device
DE10145951B4 (en) 2000-09-27 2018-07-26 Denso Corporation Vehicle air conditioning with defroster operation by external heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788910A2 (en) * 1995-09-22 1997-08-13 Denso Corporation Air conditioner for vehicle, improved for frost deposition
US5704217A (en) * 1995-09-22 1998-01-06 Nippondenso Co., Ltd. Air conditioner for vehicle, improved for frost deposition
EP0788910A3 (en) * 1995-09-22 1999-01-07 Denso Corporation Air conditioner for vehicle, improved for frost deposition
DE10145951B4 (en) 2000-09-27 2018-07-26 Denso Corporation Vehicle air conditioning with defroster operation by external heat exchanger
US7003975B2 (en) 2002-01-14 2006-02-28 Behr Gmbh & Co. Heating/cooling circuit for an air-conditioning system of a motor vehicle, air-conditioning system and a method for controlling the same
WO2015019612A1 (en) * 2013-08-09 2015-02-12 株式会社日本クライメイトシステムズ Vehicle air-conditioning device
JP2015033930A (en) * 2013-08-09 2015-02-19 株式会社日本クライメイトシステムズ Vehicle air conditioner
CN105452027A (en) * 2013-08-09 2016-03-30 日本空调系统股份有限公司 Vehicle air-conditioning device
CN105452027B (en) * 2013-08-09 2017-07-21 日本空调系统股份有限公司 Air conditioner for vehicles
US10018401B2 (en) 2013-08-09 2018-07-10 Japan Climate Systems Corporation Vehicle heat pump with defrosting mode

Similar Documents

Publication Publication Date Title
US7770411B2 (en) System and method for using hot gas reheat for humidity control
EP1659348B1 (en) Freezing apparatus
JPH04295568A (en) Air-conditioning machine, indoor unit for said air-conditioning machine and operating method of air-conditioning machine
CN110050162B (en) Air conditioner
US6321558B1 (en) Water source heat pump with hot gas reheat
JPH06101894A (en) Air-conditioning system
JPH10339513A (en) Air conditioning system
JPH06185822A (en) Air conditioner
JPH04278153A (en) Cooling and heating device
JP2525338B2 (en) Defrost mechanism of heat pump type air conditioner
JPH06147690A (en) Air conditioning apparatus
JPH1053022A (en) Air-conditioning device for vehicle
JPH07132729A (en) Air conditioner
JP2002213839A (en) Multichamber air conditioner
JPH0814685A (en) Air-conditioner
JP3133647B2 (en) Air conditioner
JPH1038421A (en) Refrigerating cycle
JP2839066B2 (en) Heat pump defrost system
JP2003028525A (en) Multiroom type air conditioner
JP3009481B2 (en) Heat pump type air conditioner
JP2000337720A (en) Air conditioner
JPH07120092A (en) Air conditioner
JPH06337186A (en) Defrosting controller for air-conditioning machine
JP2001280744A (en) Air conditioner
JPH04194558A (en) Cooling and heating apparatus