JPH06220661A - Water quality regulator - Google Patents

Water quality regulator

Info

Publication number
JPH06220661A
JPH06220661A JP962493A JP962493A JPH06220661A JP H06220661 A JPH06220661 A JP H06220661A JP 962493 A JP962493 A JP 962493A JP 962493 A JP962493 A JP 962493A JP H06220661 A JPH06220661 A JP H06220661A
Authority
JP
Japan
Prior art keywords
oxygen
flow rate
water
signal
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP962493A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
晃 高橋
Masahiko Sanada
政彦 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP962493A priority Critical patent/JPH06220661A/en
Publication of JPH06220661A publication Critical patent/JPH06220661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Accessories For Mixers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To enable stable water quality regulation with the water quality regulator by determining an injected oxygen quantity in accordance with the suction flow rate and recirculation flow rate of a water feed pump. CONSTITUTION:An oxygen density signal is inputted from a detector 13 to an addition/ subtraction computing element in an oxygen injection computing element 15 and is corrected and computed to the signal from a target oxygen computing element at the time the operation pattern of the water feed pump 7 is changed. This target oxygen computing element calculates the target value of the injected oxygen quantity on the bases of the flow rate of the feed water to be substantially fed to a boiler from the signal of a flow rate detector 16 which detects the suction flow rate of the water feed pump 7 and the signal of a flow rate detector 12 which detects the recirculation flow rate of the water feed pump 7. The signal of the corrected target oxygen quantity in the addition/subtraction computing element is inputted to a relational computing element which computes the deviation in the actual inflow rate from the target oxygen quantity by the target oxygen quantity and the input signal from an injected oxygen detector 14. The result of the computation is subjected to [proportional + integral] computation in a PI computing element, by which an oxygen injection valve 17 is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発電プラント等における
水質調整装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality adjusting device in a power plant or the like.

【0002】[0002]

【従来の技術】国内火力発電所等においては、系統内復
水・給水・ボイラ水及び蒸気の水質の調節・処理を行な
い、系統内の腐食を最少にするとともに、ボイラ水管・
蒸気管及び給水ポンプ吸込みストレーナへのスケール付
着防止を計ってきた。
2. Description of the Related Art In domestic thermal power plants, the water quality of condensate / supply water / boiler water / steam is adjusted / treated to minimize corrosion in the system, and boiler water pipe /
We have been trying to prevent scale from adhering to the steam pipe and suction pump of the water feed pump.

【0003】ボイラ型式が貫流タイプの場合では、復水
・給水系統内にアンモニア(NH3)、ヒドラジン(N
2 4 )の揮発性薬品を注入する揮発性物質処理(以下
AVT法と称する)を行ない、PH値を9.0 〜9.5 及び
脱酸素となるように制御している。
When the boiler type is a once-through type, ammonia (NH 3 ) and hydrazine (N
A volatile substance treatment (hereinafter referred to as the AVT method) of injecting a volatile chemical of 2 H 4 ) is performed, and the PH value is controlled to be 9.0 to 9.5 and deoxidized.

【0004】しかしながら、AVT法に於いて、より高
い防食効果を得るには高いアンモニア濃度(PH>9.4
)を必要とするが、これはプラント内のアンモニア濃
縮部(例えば復水器の空気冷却部等)に於いて濃縮アン
モニアによる損傷(アンモニアタック)を発生する。こ
のため、高濃度アンモニアによる防食対策は行なえな
い。
However, in the AVT method, in order to obtain a higher anticorrosion effect, a high ammonia concentration (PH> 9.4
) Is required, which causes damage (ammonia tack) due to concentrated ammonia in the ammonia concentrating section in the plant (for example, the air cooling section of the condenser). Therefore, it is not possible to take anticorrosion measures with high-concentration ammonia.

【0005】この結果、還元剤であるヒドラジンによ
り、プラント内の炭素鋼より鉄が復水・給水系へ溶出
し、ボイラ水管・蒸気管や給水ポンプ吸込みストレーナ
等に付着し経年的に厚みを増す。このため、これを適切
な時期に除去しなければならず、プラント運用計画上大
きな支障となっている。又、この除去を行なわないと、
給水ポンプの過負荷運転、ボイラチューブの亀裂をまね
く恐れがある。
As a result, iron is leached from the carbon steel in the plant to the condensate / water supply system by the reducing agent hydrazine and adheres to the boiler water pipe / steam pipe or the feed water pump suction strainer to increase the thickness over time. . Therefore, this must be removed at an appropriate time, which is a great obstacle to the plant operation plan. If this removal is not done,
There is a risk of overload operation of the feed pump and cracks in the boiler tube.

【0006】これら従来のAVT法の欠点を改善するた
め、近年、復水・給水系へアンモニア(NH3 )と酸素
(O2 )を注入する複合中性水処理(以下、CWT法と
称する)の実施が段階的に行なわれている。
In order to improve these drawbacks of the conventional AVT method, in recent years, a complex neutral water treatment (hereinafter referred to as the CWT method) in which ammonia (NH 3 ) and oxygen (O 2 ) are injected into the condensate / water supply system. Is being implemented in stages.

【0007】このCWT法は系統内を従来の強アルカリ
から弱アルカリとし、かつ酸素を注入することにより、
ボイラ水管・蒸気管や給水ポンプ吸込みストレーナへの
鉄酸化物の付着・持ち込みを大幅に低減できる。
In the CWT method, the inside of the system is changed from a conventional strong alkali to a weak alkali, and oxygen is injected,
It is possible to greatly reduce the adhesion and carry-on of iron oxide to the boiler water pipe / steam pipe and the feed water pump suction strainer.

【0008】一般的な系統構成を図3に示す。復水器1
に集められた、タービン排気及びヒータドレン(いずれ
も図示せず)は、海水を冷却水とする循環水と熱交換さ
れ、復水化する。この復水は、復水ポンプ2、復水昇圧
ポンプ4により、低圧給水加熱器5を透過し、脱気器6
へ送水される。
A general system configuration is shown in FIG. Condenser 1
The turbine exhaust and the heater drain (both not shown) collected in (1) are heat-exchanged with the circulating water using seawater as cooling water to be condensed. This condensate is passed through the low-pressure feed water heater 5 by the condensate pump 2 and the condensate booster pump 4, and the deaerator 6
Sent to.

【0009】又、復水ポンプ2出口側には、水処理装置
として復水脱塩装置3(以下コンデミと称する)が設置
されており、復水中の酸化鉄等の懸濁固形物や塩素イオ
ン等の溶解固形物を除去し、系統再生を行なっている。
On the outlet side of the condensate pump 2, a condensate demineralizer 3 (hereinafter referred to as "condemi") is installed as a water treatment device, and suspended solids such as iron oxide and chlorine ions in the condensate are installed. Dissolved solids such as are removed to regenerate the system.

【0010】脱気器6へ送水された復水は高圧ヒータド
レン(図示せず)とともに、給水ポンプ7へ送られ、高
圧給水加熱器8、節炭器9を通過し、ボイラ10へ送水さ
れる。
Condensate sent to the deaerator 6 is sent to a water supply pump 7 together with a high-pressure heater drain (not shown), passes through a high-pressure feed water heater 8 and a economizer 9, and is sent to a boiler 10. .

【0011】一方、水質調整(酸素注入)は、復水系・
給水系各々に設置されている。復水系においては、コン
デミ3出口側より酸素を注入し、給水系は脱気器6出口
側より注入している。
On the other hand, water quality adjustment (oxygen injection)
It is installed in each water supply system. In the condensate system, oxygen is injected from the outlet side of the condemi 3 and the water supply system is injected from the outlet side of the deaerator 6.

【0012】その制御方法を図4により説明する。復水
系は脱気器6入口の復水流量検出器23による流量信号か
ら関数演算器25により、復水系酸素注入目標値を算出
し、更に補正演算とし節炭器9入口の酸素濃度検出器13
による酸素濃度信号を加減演算器26にて加減演算し注入
量の目標値とし、コンデミ3出口側より注入する酸素量
を検出する、復水側注入酸素検出器24の信号とを比較演
算器27にて偏差を求め、PI演算器28により「比例+積
分」演算を行い、注入弁29を制御し、復水系の酸素注入
量を制御している。
The control method will be described with reference to FIG. In the condensate system, the function calculator 25 calculates the target value of oxygen injection in the condensate system from the flow rate signal from the condensate flow rate detector 23 at the inlet of the deaerator 6, and further performs the correction calculation to make the oxygen concentration detector 13 at the inlet of the economizer 9
The oxygen concentration signal due to is calculated by the addition and subtraction calculator 26 as a target value of the injection amount, and the signal of the condensate side injection oxygen detector 24 that detects the amount of oxygen injected from the outlet side of the condemi 3 is compared with the calculator 27 Then, the PI calculator 28 calculates "proportional + integral" to control the injection valve 29 to control the oxygen injection amount of the condensate system.

【0013】給水系は節炭器9入口の給水流量検出器30
による流量信号から関数演算器により、給水系酸素注入
目標値を算出し、更に補正演算とし、節炭器9入口の酸
素濃度検出器13による酸素濃度信号を加減演算器20にて
加減演算し、注入量の目標値とし、脱気器6出口側より
注入する酸素量を検出する。給水側注入酸素検出器14の
信号とを比較演算器21にて偏差を求めPI演算器22によ
り「比例+積分」演算を行い、注入弁17を制御する。注
入弁の出口側は給水ポンプ7の設置台数分に分岐し各々
ON−OFF動作の止メ弁31,32,33が設置され、給水
ポンプ運転台数に応じ開閉させ給水系の酸素注入量を制
御している。このような系統構成にてCWT法による行
なった場合、給水系に於いては給水ポンプの運転パター
ンにより、給水系統での酸素濃度が変動する。
The water supply system is a water supply flow rate detector 30 at the inlet of the economizer 9.
From the flow rate signal by the function calculator, the feed water system oxygen injection target value is calculated, and further correction calculation is performed, and the oxygen concentration signal from the oxygen concentration detector 13 at the inlet of the economizer 9 is adjusted by the addition and subtraction calculator 20, The amount of oxygen injected from the outlet side of the deaerator 6 is detected by setting the target value of the amount of injection. The deviation is calculated by the comparison calculator 21 with the signal from the feed water injection oxygen detector 14, and the PI calculator 22 calculates “proportional + integral” to control the injection valve 17. The outlet side of the injection valve is branched into the number of installed water supply pumps 7, and stop valves 31, 32, 33 for ON-OFF operation are installed respectively, and the amount of oxygen injection of the water supply system is controlled by opening and closing according to the number of operating water supply pumps. is doing. When the CWT method is used in such a system configuration, the oxygen concentration in the water supply system varies depending on the operation pattern of the water supply pump in the water supply system.

【0014】これは、下記要因により発生する。すなわ
ち、注入酸素量は節炭器9入口の全給水量により決定さ
れ、分配は注入弁17出口の止メ弁31,32,33により行な
われているため、給水ポンプの吐出流量アンバランス状
態を考慮出来ない(例えばタービン駆動2台から1台へ
の切換、タービン駆動と電動駆動とのパララン運転)。
また、注入弁17出口の止メ弁31,32,33の動作がON−
OFFであるため、変動が大きい。
This is caused by the following factors. That is, the amount of injected oxygen is determined by the total amount of water supply at the inlet of the economizer 9, and the distribution is performed by the stop valves 31, 32, 33 at the outlet of the injection valve 17, so that the discharge flow rate unbalanced state of the water supply pump is adjusted. It cannot be taken into consideration (for example, switching from 2 turbine drives to 1 turbine, para-run operation of turbine drive and electric drive).
In addition, the operation of the stop valve 31, 32, 33 at the outlet of the injection valve 17 is ON-
Since it is OFF, the fluctuation is large.

【0015】[0015]

【発明が解決しようとする課題】ところがCWT法の一
般的方法では下記の問題点が残る。給水ポンプの運転パ
ターンが変更される際、各給水ポンプ吐出量はアンバラ
ンス状態となるが、酸素注入量は節炭器入口の全給水量
により決定され、その後注入弁出口均等分配されてい
る。
However, the following problems remain in the general method of the CWT method. When the operation pattern of the water supply pump is changed, the discharge amount of each water supply pump becomes unbalanced, but the oxygen injection amount is determined by the total water supply amount at the economizer inlet, and then the injection valve outlets are evenly distributed.

【0016】この結果、吐出量の多いポンプ側は酸素濃
度は低くなり吐出量の少ないポンプ側は酸素濃度は高く
なる。この両者は出口側で合流し均一化されるが、酸素
の溶解度は温度の影響を大きく受けるため特にポンプ1
台→2台起動時には、出口側での均一化が適性に行なわ
れず酸素濃度が変動する。又、注入弁出口の止メ弁の動
作ON−OFFであるため、更に濃度変動が助長され
る。
As a result, the oxygen concentration is low on the pump side with a large discharge amount, and the oxygen concentration is high on the pump side with a small discharge amount. Both of them merge at the outlet side and are made uniform, but the solubility of oxygen is greatly affected by the temperature, so that the pump 1
When starting from one to two units, the oxygen concentration fluctuates because the uniformity on the outlet side is not properly performed. Further, since the operation of the stop valve at the outlet of the injection valve is ON-OFF, the concentration fluctuation is further promoted.

【0017】[0017]

【課題を解決するための手段】本発明では、酸素注入制
御は各々のポンプにそれぞれ設置するとともに、酸素注
入目標値は、各々のポンプの吸込み流量を基準とし更に
各々ポンプの再循環流量も加味し決定する。
In the present invention, the oxygen injection control is installed in each pump, and the oxygen injection target value is based on the suction flow rate of each pump, and the recirculation flow rate of each pump is also taken into consideration. And decide.

【0018】[0018]

【作用】本発明の構成によれば、給水ポンプの運転パタ
ーンが変更される際の吐出量のアンバランスによる酸素
濃度の変動は酸素注入制御が各給水ポンプに、それぞれ
設置され、かつ酸素注入量が各々の給水ポンプ吸込み流
量より決定されるため変動は防止出来る。又、酸素注入
量はポンプ再循環運転での補正を行なうので、ポンプ起
動・停止の様な場合に於いても酸素濃度の変動を防止出
来る。この結果、プラント運用(給水ポンプ運転パター
ン)に応じた酸素注入制御が出来る。
According to the structure of the present invention, when the operation pattern of the water supply pump is changed, the oxygen concentration changes due to the imbalance of the discharge amount, the oxygen injection control is installed in each water supply pump, and the oxygen injection amount is set. The fluctuation can be prevented because it is determined by the intake flow rate of each water supply pump. Further, since the oxygen injection amount is corrected in the pump recirculation operation, it is possible to prevent the fluctuation of the oxygen concentration even when the pump is started and stopped. As a result, oxygen injection control can be performed according to plant operation (water supply pump operation pattern).

【0019】[0019]

【実施例】以下、添付図を参照しつつ本発明の一実施例
を説明する。図3と同一符号は、同一部分または相当部
分を示す。図1において給水系の酸素濃度は酸素濃度検
出器13により検出されその信号は酸素注入演算器15に入
力される。
An embodiment of the present invention will be described below with reference to the accompanying drawings. The same reference numerals as those in FIG. 3 indicate the same or corresponding portions. In FIG. 1, the oxygen concentration of the water supply system is detected by the oxygen concentration detector 13, and the signal is input to the oxygen injection calculator 15.

【0020】酸素注入演算器15は、他に注入酸素量を検
出する注入酸素量検出器14の信号、給水ポンプ7の吸込
み流量を検出する給水流量検出器16の信号給水ポンプ7
の再循環流量を検出する再循環流量検出器12の信号が入
力されている。酸素注入演算器15では、給水ポンプ7の
吸込み流量をベースとして、酸素濃度、再循環流量にて
補正演算し、注入弁17の開度を演算し出力する。このよ
うに構成された制御装置に於いて、給水ポンプ7の運転
パターンが変更される際の酸素濃度変動を防止する酸素
注入演算器15の構成を図2に示す。酸素濃度信号は酸素
注入演算器15内の加減演算器20に入力され、ここで目標
酸素演算器19からの信号に補正演算を行なう。
The oxygen injection calculator 15 also receives a signal from the injection oxygen amount detector 14 which detects the amount of injected oxygen, and a signal water supply pump 7 from the water supply flow rate detector 16 which detects the suction flow rate of the water supply pump 7.
The signal of the recirculation flow rate detector 12 for detecting the recirculation flow rate of is input. The oxygen injection calculator 15 corrects and calculates oxygen concentration and recirculation flow rate based on the suction flow rate of the water supply pump 7, and calculates and outputs the opening degree of the injection valve 17. FIG. 2 shows the configuration of the oxygen injection calculator 15 that prevents fluctuations in oxygen concentration when the operation pattern of the water supply pump 7 is changed in the control device configured as described above. The oxygen concentration signal is input to the addition / subtraction calculator 20 in the oxygen injection calculator 15, where the signal from the target oxygen calculator 19 is subjected to correction calculation.

【0021】目標酸素演算器19は給水ポンプ7吸込み流
量を検出する流量検出器16の信号と給水ポンプ7の再循
環流量を検出する流量検出器12の信号とから実質的にボ
イラーへ送水する給水流量をベースとした注入酸素量の
目標値を算出する。加減演算器20での補正目標酸素量の
信号は比較演算器21に入力される。
The target oxygen calculator 19 supplies water substantially to the boiler from the signal of the flow rate detector 16 which detects the suction flow rate of the water supply pump 7 and the signal of the flow rate detector 12 which detects the recirculation flow rate of the water supply pump 7. A target value of the amount of injected oxygen based on the flow rate is calculated. The signal of the corrected target oxygen amount in the adjusting calculator 20 is input to the comparing calculator 21.

【0022】比較演算器21では目標酸素量信号と注入酸
素検出器14からの信号が入力され、目標酸素量に対する
実流入量の偏差演算が行なわれる。この演算結果は、P
I演算器22にて「比例+積分」演算され、注入弁17を制
御する。
In the comparison calculator 21, the target oxygen amount signal and the signal from the injected oxygen detector 14 are input, and the deviation of the actual inflow amount from the target oxygen amount is calculated. The result of this operation is P
"Proportion + integration" is calculated by the I calculator 22 to control the injection valve 17.

【0023】これら、制御ループは給水ポンプ7の設置
台数分にそれぞれ設置されている。この結果、給水ポン
プ7の運転パターンにより各給水ポンプ間では流量アン
バランスが生じるものの、注入酸素量は各々の給水ポン
プのボイラー送水量に見合った注入量となり、結果とし
て変動が防止出来る。
These control loops are installed for each of the installed water supply pumps 7. As a result, although a flow rate imbalance occurs between the water supply pumps depending on the operation pattern of the water supply pump 7, the injected oxygen amount becomes an injection amount commensurate with the boiler water supply amount of each water supply pump, and as a result, fluctuation can be prevented.

【0024】以上の説明では給水ポンプのボイラー送水
量の補正として用いている給水ポンプ再循環流量を流量
検出器にて計測しているが、他の方法として給水ポンプ
再循環流量調節弁の実開度又は開度信号から流量を求め
る事も出来、同様の効果が得られる。
In the above description, the feedwater pump recirculation flow rate used to correct the boiler feedwater amount of the feedwater pump is measured by the flow rate detector. However, as another method, the feedwater pump recirculation flow rate control valve is actually opened. The flow rate can be obtained from the degree or opening signal, and the same effect can be obtained.

【0025】[0025]

【発明の効果】前記の如く、本発明によれば、CWT法
時の給水ポンプ運転パターン変更に伴い発生する節炭器
入口での酸素濃度の変動を防止出来、安定した水質調整
が可能となる。
As described above, according to the present invention, it is possible to prevent the fluctuation of the oxygen concentration at the inlet of the economizer at the inlet of the economizer, which is caused by the change of the operation pattern of the water supply pump in the CWT method, and the stable water quality adjustment becomes possible. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す系統図FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】本発明の演算器のブロック図FIG. 2 is a block diagram of an arithmetic unit according to the present invention.

【図3】従来例を示す系統図FIG. 3 is a system diagram showing a conventional example.

【図4】従来の復水給水系統への酸素注入の説明図FIG. 4 is an explanatory diagram of oxygen injection into a conventional condensate water supply system.

【符号の説明】[Explanation of symbols]

1…復水器、2…復水ポンプ、3…復水脱塩装置、4…
復水昇圧ポンプ、5…低圧給水加熱器、6…脱気器、7
…給水ポンプ、8…高圧給水加熱器、9…節炭器、10…
ボイラ、11…給水ポンプ再循環流量弁、12…給水ポンプ
再循環流量検出器、13…酸素濃度検出器、14…注入酸素
量検出器、15…酸素注入演算器、16…給水ポンプ吸込み
流量検出器、17…酸素注入弁、18…加減演算器、19…目
標酸素演算器、20…加減演算器、21…比較演算器、22…
PI演算器、23…復水流量検出器、24…復水側酸素注入
量検出器、25…目標酸素演算器、26…加減演算器、27…
比較演算器、28…PI演算器、29…復水側酸素注入弁、
30…給水流量検出器、31,32,33…止め弁。
1 ... Condenser, 2 ... Condensate pump, 3 ... Condensate demineralizer, 4 ...
Condensate booster pump, 5 ... Low-pressure feed water heater, 6 ... Deaerator, 7
… Water supply pump, 8… High pressure water heater, 9… Economizer, 10…
Boiler, 11 ... Water supply pump recirculation flow valve, 12 ... Water supply pump recirculation flow detector, 13 ... Oxygen concentration detector, 14 ... Oxygen injection detector, 15 ... Oxygen injection calculator, 16 ... Water pump suction flow detection Device, 17 ... Oxygen injection valve, 18 ... Adjusting calculator, 19 ... Target oxygen calculator, 20 ... Adjusting calculator, 21 ... Comparison calculator, 22 ...
PI calculator, 23 ... Condensate flow rate detector, 24 ... Condensate side oxygen injection amount detector, 25 ... Target oxygen calculator, 26 ... Adjusting calculator, 27 ...
Comparative calculator, 28 ... PI calculator, 29 ... Condensate side oxygen injection valve,
30… Water supply flow rate detector, 31, 32, 33… Stop valve.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発電プラント等における復水・給水系の
水質調整として、アンモニアと酸素を注入する複合中性
水処理を行う水質調整装置において、給水ポンプ吸込み
流量および再循環流量に基づいて注入酸素量を求めるよ
うにしたことを特徴とする水質調整装置。
1. In a water quality adjusting device for performing combined neutral water treatment in which ammonia and oxygen are injected as water quality adjustment of a condensate / water supply system in a power plant or the like, injecting oxygen on the basis of a feed water pump suction flow rate and a recirculation flow rate. A water quality adjusting device characterized in that the amount is obtained.
【請求項2】 前記給水ポンプの設置台数分それぞれに
設置することを特徴とする請求項1に記載の水質調整装
置。
2. The water quality adjusting device according to claim 1, wherein the water supply adjusting device is installed for each of the installed water supply pumps.
【請求項3】 前記再循環量の替わりに再循環ラインに
設置されている調節弁のリフトを用いるようにしたこと
を特徴とする請求項1に記載の水質調整装置。
3. The water quality adjusting device according to claim 1, wherein a lift of a control valve installed in a recirculation line is used instead of the recirculation amount.
JP962493A 1993-01-25 1993-01-25 Water quality regulator Pending JPH06220661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP962493A JPH06220661A (en) 1993-01-25 1993-01-25 Water quality regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP962493A JPH06220661A (en) 1993-01-25 1993-01-25 Water quality regulator

Publications (1)

Publication Number Publication Date
JPH06220661A true JPH06220661A (en) 1994-08-09

Family

ID=11725423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP962493A Pending JPH06220661A (en) 1993-01-25 1993-01-25 Water quality regulator

Country Status (1)

Country Link
JP (1) JPH06220661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113339779A (en) * 2021-04-21 2021-09-03 华能国际电力股份有限公司井冈山电厂 Feed water treatment method for supercritical generator set or supercritical generator set boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113339779A (en) * 2021-04-21 2021-09-03 华能国际电力股份有限公司井冈山电厂 Feed water treatment method for supercritical generator set or supercritical generator set boiler

Similar Documents

Publication Publication Date Title
US20100163399A1 (en) Water Treatment Process for Steam Plant
CN108380051B (en) Stable energy-saving reverse osmosis system and control method thereof
JPH06220661A (en) Water quality regulator
JPH11304992A (en) Turbine equipment for power generation
JP2672729B2 (en) Water quality adjustment device
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JP3199851B2 (en) Water quality adjustment device
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JP4442764B2 (en) Drum boiler and exhaust heat recovery boiler equipped with drum boiler
JP2718858B2 (en) Water quality adjustment device
JP2012255627A (en) Blow rate calculation method and blow control method for boiler
JPH1122909A (en) Detecting method of leakage in fine tube for heat exchanger
JPH0330761B2 (en)
JP2726697B2 (en) Water supply equipment and water supply control method thereof
JP2003260471A (en) Control apparatus for residual chlorine in treated water
JP2000265968A (en) Fluid feed pump recirculating control device
GB2083178A (en) Deaerator level control
JP2763178B2 (en) Feed water heater drain water level control device
JPH0128841B2 (en)
JPS6326801B2 (en)
CN112919648A (en) System and method for treating feed water and ozone of thermal generator set
JPH102507A (en) Apparatus and method for controlling oxygen gas supply pressure and method and apparatus for controlling oxygen gas introduction
JPH04128395A (en) Method for injecting gas to inhibit corrosion of boiler pipeline
JPH08105604A (en) Condensing blow device of boiler using electric conductivity in supply water
CN116293613A (en) Continuous drainage exhaust steam deep recycling system and control method