JPH06216231A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06216231A
JPH06216231A JP797193A JP797193A JPH06216231A JP H06216231 A JPH06216231 A JP H06216231A JP 797193 A JP797193 A JP 797193A JP 797193 A JP797193 A JP 797193A JP H06216231 A JPH06216231 A JP H06216231A
Authority
JP
Japan
Prior art keywords
electrode
region
conductivity type
type
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP797193A
Other languages
Japanese (ja)
Other versions
JP2883779B2 (en
Inventor
Hisakazu Miyajima
久和 宮島
Yukio Iitaka
幸男 飯高
Shuichiro Yamaguchi
山口周一郎
Yoshiyuki Sugiura
義幸 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP797193A priority Critical patent/JP2883779B2/en
Publication of JPH06216231A publication Critical patent/JPH06216231A/en
Application granted granted Critical
Publication of JP2883779B2 publication Critical patent/JP2883779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7812Vertical DMOS transistors, i.e. VDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes

Abstract

PURPOSE:To make it possible to prevent a decrease in breakdown strength due to the intersection of an electrode for contact led out to the outside of an isolated island and a first conductivity type high impurity concentration region, by installing a plurality of floating electrodes in a lower insulating layer at intervals in the conditions that the floating electrodes are wider than an electrode for second conductivity type semiconductor region and are projected out from the electrode. CONSTITUTION:In an insulating layer of the lower of an electrode 11 for p-type region 6, a plurality of floating electrodes 18, 18,... made of polysilicon are installed in the extending direction of the electrode 11 at intervals. Each floating electrode 18 is formed in the conditions that each floating electrode 18 is wider than the electrode 11 and is projected out from the electrode 11. Even if the intersection state of the electrode 11 for p-type region 6 and an electrode for n<+>-type region 13 not eliminated, a necessary electric field relaxation action is implemented when a voltage is applied so that the electrode 11 has a negative potential. As a result, an electric field distribution between the p-type region 6 and the n<+>-type region 13 directly below the electrode 11 in which an electric field is relaxed is made uniform and the breakdown strength is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、誘電体分離基板を利
用した半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device using a dielectric isolation substrate.

【0002】[0002]

【従来の技術】従来、図5にみるように、pn接合構造
の半導体装置51がある。半導体装置51のpn接合
は、誘電体分離基板(以下、適宜「DI基板」と言う)
52の単結晶シリコンからなるn型分離島(半導体分離
島)53に作り込まれている。DI基板は、通常、ポリ
シリコン層(支持体層)55上に絶縁膜54で電気的に
分離された複数のn型分離島53が形成されてなる基板
であり、異なるn型分離島に作り込まれた半導体素子同
士の間では相互干渉が起こり難いという利点がある。
2. Description of the Related Art Conventionally, as shown in FIG. 5, there is a semiconductor device 51 having a pn junction structure. The pn junction of the semiconductor device 51 is a dielectric isolation substrate (hereinafter, appropriately referred to as “DI substrate”).
52 is formed in an n-type isolation island (semiconductor isolation island) 53 made of single crystal silicon. The DI substrate is usually a substrate in which a plurality of n-type isolation islands 53 electrically separated by an insulating film 54 are formed on a polysilicon layer (support layer) 55, and they are formed on different n-type isolation islands. There is an advantage that mutual interference hardly occurs between the embedded semiconductor elements.

【0003】半導体装置51では、n型分離島53の表
面部分にはp型領域(第2導電型半導体領域)58が形
成されていて、n型分離島53の底面部分と全側面部分
にはn+ 型領域59が絶縁膜54沿いに分離島表面まで
延びて露出するように形成されており、かつ、n型分離
島53表面では、p型領域58にコンタクトする電極6
1とn+ 型領域59にコンタクトする電極62のそれぞ
れが絶縁層57を介して延びてゆき分離島外に引き出さ
れている。
In the semiconductor device 51, a p-type region (second conductivity type semiconductor region) 58 is formed on a surface portion of the n-type isolation island 53, and a bottom surface portion and an entire side surface portion of the n-type isolation island 53 are formed. The n + type region 59 is formed so as to extend along the insulating film 54 to the surface of the isolation island and exposed, and on the surface of the n type isolation island 53, the electrode 6 that contacts the p type region 58.
Each of the electrodes 62 contacting the 1 and n + type regions 59 extends through the insulating layer 57 and is drawn out to the outside of the isolation island.

【0004】しかしながら、この半導体装置51はpn
接合の耐圧が十分でない。これは、アルミニウム製の電
極61がn+ 型領域59の露出面(露出領域)と交差
(絶縁層を介して)しているからである。この状態だと
n型分離島53表面ではp型領域58用の電極61に沿
って空乏層がn+ 型領域59に達して電界が集中し、余
り高くない電圧でもブレークダウンが起こるからであ
る。
However, this semiconductor device 51 has a pn
The junction breakdown voltage is not sufficient. This is because the aluminum electrode 61 intersects with the exposed surface (exposed region) of the n + type region 59 (via the insulating layer). In this state, on the surface of the n-type isolation island 53, the depletion layer reaches the n + -type region 59 along the electrode 61 for the p-type region 58, the electric field is concentrated, and breakdown occurs even at a voltage that is not too high. .

【0005】このような電極61とn+ 型領域59の交
差状態は誘電体分離基板52の製造過程でn+ 型領域5
9を作り込むことに起因しているのであるが、電極61
とn + 型領域59の交差を回避することは中々困難であ
る。
Such electrodes 61 and n+Intersection of mold area 59
The difference state is n during the manufacturing process of the dielectric isolation substrate 52.+Mold area 5
It is due to the incorporation of 9 that the electrode 61
And n +It is difficult to avoid the intersection of the mold regions 59.
It

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記事情
に鑑み、分離島外に引き出されるコンタクト用の電極と
第1導電型不純物高濃度領域の交差に起因する耐圧低下
が交差解消を伴わずに回避できている高耐圧の半導体装
置を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention is such that the reduction in breakdown voltage due to the intersection of the contact electrode and the first-conductivity-type high-concentration region extracted outside the isolation island does not eliminate the intersection. It is an object to provide a high breakdown voltage semiconductor device that can be avoided.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するた
め、この発明にかかる半導体装置では、支持体層上に絶
縁膜で電気的に分離された第1導電型半導体分離島が形
成されてなる誘電体分離基板を備え、前記半導体分離島
の表面部分に第2導電型半導体領域が形成されていて、
前記半導体分離島の底面部分と側面部分には第1導電型
不純物高濃度領域が絶縁膜沿いに分離島表面まで延びて
露出するように形成されており、かつ、前記分離島表面
では、前記第2導電型半導体領域にコンタクトする電極
と前記第1導電型不純物高濃度領域にコンタクトする電
極のそれぞれが絶縁層を介して分離島外に引き出されて
いる半導体装置において、前記第2導電型半導体領域用
の電極の下方の絶縁層中に電極の引出方向に沿って複数
個のフローティング電極が飛び飛びに設けられていると
ともに、このフローティング電極は第2導電型半導体領
域用の電極よりも幅広で同電極の両縁からはみ出した状
態となっている構成を特徴とする。
In order to solve the above problems, in a semiconductor device according to the present invention, a first conductivity type semiconductor isolation island electrically isolated by an insulating film is formed on a support layer. A semiconductor substrate having a dielectric isolation substrate, a second conductivity type semiconductor region is formed on a surface portion of the semiconductor isolation island,
First conductivity type high-concentration impurity regions are formed on the bottom and side surfaces of the semiconductor isolation island so as to extend along the insulating film to the isolation island surface and are exposed. In the semiconductor device, each of the electrode contacting the second conductivity type semiconductor region and the electrode contacting the first conductivity type impurity high concentration region is drawn out of the isolation island through an insulating layer. A plurality of floating electrodes are provided in a scattered manner in the insulating layer below the electrodes for use in the direction of extraction of the electrodes, and the floating electrodes are wider than the electrodes for the second conductivity type semiconductor region. It is characterized by a structure that is protruding from both edges.

【0008】この発明の場合、第1導電型がn型である
場合は第2導電型がp型であり、第1導電型がp型であ
る場合は第2導電型がn型である。この発明の半導体装
置の具体的な種類としては、pn接合構造(ダイオー
ド)や絶縁ゲート型電界効果構造などが挙げられるが、
これ以外の種類のものであってもよいことは言うまでも
ない。この発明の半導体装置のフローティング電極用の
材料としては、例えば、ポリシリコンが挙げられるが、
これに限らない。
In the present invention, when the first conductivity type is n-type, the second conductivity type is p-type, and when the first conductivity type is p-type, the second conductivity type is n-type. Specific examples of the semiconductor device of the present invention include a pn junction structure (diode) and an insulated gate field effect structure.
It goes without saying that other types may be used. Examples of the material for the floating electrode of the semiconductor device of the present invention include polysilicon,
It is not limited to this.

【0009】この発明において、半導体装置が第2導電
型半導体領域をチャネル形成用とする絶縁ゲート型電界
効果半導体装置である場合、前記第2導電型半導体領域
の表面部分にソース領域用の第1導電型半導体領域が形
成されており、第1導電型不純物高濃度領域がドレイン
領域用であって、かつ、分離島表面では、ゲート電極が
絶縁層を介して設けられていて、第2導電型半導体領域
用の電極はソース領域用の第1導電型半導体領域にもコ
ンタクトしてソース電極となっており、かつ、前記ゲー
ト電極の引出電極が絶縁層を介して分離島外に引き出さ
れていて、前記引出電極の下方の絶縁膜中にも電極の引
出方向に沿って複数個のフローティング電極が飛び飛び
に設けられているとともに、このフローティング電極も
引出電極よりも幅広で引出電極の両縁からはみ出した状
態となっている形態が有用である。
In the present invention, when the semiconductor device is an insulated gate field effect semiconductor device in which the second conductivity type semiconductor region is used for channel formation, the first region for the source region is formed on the surface portion of the second conductivity type semiconductor region. The conductive type semiconductor region is formed, the first conductive type high-concentration impurity region is for the drain region, and the gate electrode is provided on the surface of the isolation island via the insulating layer. The electrode for the semiconductor region is also in contact with the first conductivity type semiconductor region for the source region to serve as a source electrode, and the extraction electrode of the gate electrode is extracted to the outside of the isolation island through the insulating layer. In the insulating film below the extraction electrode, a plurality of floating electrodes are provided in a scattered manner along the extraction direction of the electrode, and the floating electrode is also wider than the extraction electrode. Form in a state of protruding from both edges of the lead electrode in are useful.

【0010】[0010]

【作用】この発明の半導体装置では、第1導電型不純物
高濃度領域と交差している第2導電型半導体領域用の電
極の下方の絶縁層中には幅広のフローティング電極が飛
び飛びに設けられており、長く延びてゆく電極の各位置
に応じて電界が非常に旨く緩和されるためにブレークダ
ウンが起こり難くなる。フローティング電極は第2導電
型半導体領域用の電極よりも幅広で同電極の両縁からは
み出した状態でないと必要な電界緩和作用を発揮するこ
とができない。また、フローティング電極が飛び飛びで
なく全体でひとつの電極になっていたとすると、長く延
びてゆく電極の各位置に応じた適切な電界緩和作用を発
揮することができない。この結果、第1導電型不純物高
濃度領域と第2導電型半導体領域用の電極との交差が解
消されなくても耐圧が向上するようになる。
According to the semiconductor device of the present invention, wide floating electrodes are scatteredly provided in the insulating layer below the electrode for the second conductivity type semiconductor region which intersects the first conductivity type high concentration region. However, since the electric field is relieved very well in accordance with each position of the electrode that extends for a long time, the breakdown hardly occurs. The floating electrode is wider than the electrode for the second conductivity type semiconductor region, and the necessary electric field relaxation action cannot be exhibited unless it is in a state of protruding from both edges of the electrode. Further, if the floating electrodes are not scattered and become one electrode as a whole, it is not possible to exhibit an appropriate electric field relaxation action according to each position of the electrode that extends for a long time. As a result, the breakdown voltage can be improved even if the intersection between the first-conductivity-type high-concentration impurity region and the electrode for the second-conductivity-type semiconductor region is not eliminated.

【0011】この発明において半導体装置が第2導電型
半導体領域をチャネル形成用とする絶縁ゲート型電界効
果半導体装置である場合、ゲート電極用の引出電極もソ
ース電極と余り変わらない電位となる上に第1導電型不
純物高濃度領域と交差もしており、ゲート電極用の引出
電極の下方の絶縁層中にも幅広のフローティング電極が
飛び飛びに設けられていれば、ゲート電極用の引出電極
に関しても上の場合と同様にブレークダウンが起こり難
くなる。
In the present invention, when the semiconductor device is an insulated gate field effect semiconductor device in which the second conductivity type semiconductor region is used for forming a channel, the extraction electrode for the gate electrode also has a potential not much different from that of the source electrode. If a wide floating electrode is also provided in the insulating layer below the extraction electrode for the gate electrode, it also intersects with the high-concentration first-conductivity-type high-concentration region. Breakdown is less likely to occur as in the case of.

【0012】[0012]

【実施例】以下、この発明の半導体装置にかかる実施例
を図面を参照しながら詳しく説明する。勿論、この発明
は下記の実施例に限らない。 −実施例1− 図1は、実施例1の半導体装置の要部構成を断面した状
態であらわし、図2は、実施例1の半導体装置の要部構
成を上方より絶縁層は透視して見た状態であらわす。実
施例1はダイオード等に用いられるpn接合構造を有す
る半導体装置である。
Embodiments of the semiconductor device of the present invention will be described below in detail with reference to the drawings. Of course, the present invention is not limited to the following embodiments. -Embodiment 1- FIG. 1 shows a cross-sectional view of a main part structure of a semiconductor device of a first embodiment, and FIG. 2 shows a main part structure of a semiconductor device of the first embodiment as seen through an insulating layer from above. It is shown in the state. Example 1 is a semiconductor device having a pn junction structure used for a diode or the like.

【0013】実施例1の半導体装置1のpn接合は、D
I基板2の単結晶シリコンからなるn型分離島3に作り
込まれている。DI基板2は、ポリシリコン層(支持体
層)5上に絶縁膜4で電気的に分離された複数のn型分
離島3が形成されてなる基板である。半導体装置1にお
けるn型分離島3の表面部分にp型領域6が形成されて
いて、pn接合構造になっており、さらに、n型分離島
3の底面部分と側面部分には全面的にn+ 型領域(第1
導電型不純物高濃度領域)13が絶縁膜4沿いに分離島
表面まで延びて露出するように形成されている。一方、
n型分離島3表面では、p型領域(第2導電型半導体領
域)6にコンタクトするアルミニウム製の電極11とn
+ 型領域13にコンタクトするアルミニウム製の電極1
2とが絶縁層7を介して分離島外に引き出されている。
The pn junction of the semiconductor device 1 of the first embodiment is D
It is built in the n-type isolation island 3 made of single crystal silicon of the I substrate 2. The DI substrate 2 is a substrate in which a plurality of n-type isolation islands 3 electrically separated by an insulating film 4 are formed on a polysilicon layer (support layer) 5. A p-type region 6 is formed on the surface portion of the n-type isolation island 3 in the semiconductor device 1 to have a pn junction structure, and the bottom surface portion and the side surface portion of the n-type isolation island 3 are entirely n-type. + Type area (first
A high-conductivity-type impurity region 13 is formed so as to extend along the insulating film 4 to the surface of the isolation island and be exposed. on the other hand,
On the surface of the n-type isolation island 3, an n-type electrode 11 made of aluminum which contacts the p-type region (second conductivity type semiconductor region) 6 and n
Aluminum electrode 1 that contacts the + type region 13
2 and 2 are drawn out of the separated island through the insulating layer 7.

【0014】そして、図1にみるように、p型領域6用
の電極11の下方の絶縁層7中には電極の延びる方向に
沿って複数個のポリシリコン製のフローティング電極1
8,18・・が飛び飛びに設けられており、各フローテ
ィング電極18は、図2にみるように、電極11よりも
幅広で電極11の両縁からはみ出した状態となってい
て、p型領域6用の電極11とn+ 型領域13の交差状
態が解消されずとも、電極11が負の電位となるように
電圧が印加された場合、前述の如くに電界が緩和され電
極11の直下のp型領域6−n+ 型領域13の間の電界
分布が均一化されて耐圧が高まることになるのである。
As shown in FIG. 1, a plurality of floating electrodes 1 made of polysilicon are provided in the insulating layer 7 below the electrode 11 for the p-type region 6 along the extending direction of the electrode.
The floating electrodes 18 are wider than the electrode 11 and protrude from both edges of the electrode 11 as shown in FIG. without being eliminated crossed state of the electrode 11 and the n + -type region 13 in use, when the voltage to electrode 11 becomes a negative potential is applied, p just below the electrode 11 is relaxed electric field as described before The electric field distribution between the mold regions 6-n + type regions 13 is made uniform, and the breakdown voltage is increased.

【0015】−実施例2− 図3は、実施例2の半導体装置にかかるDMOS-FETの要部
構成を断面した状態であらわし、図4は実施例2のDMOS
-FETの要部構成を上方より絶縁層は透視して見た状態で
あらわす。DMOS-FET20は、DI基板2における単結晶
シリコンのn型分離島(半導体分離島)3に作り込まれ
ている。DI基板2は、通常、ポリシリコン層(支持体
層)5上に絶縁膜4で電気的に分離された複数のn型分
離島3が形成されてなる基板である。
-Embodiment 2- FIG. 3 shows a cross-sectional view of a main part of a DMOS-FET according to the semiconductor device of Embodiment 2, and FIG. 4 shows the DMOS of Embodiment 2.
-Indicates that the insulation layer is seen through from above, showing the essential parts of the FET. The DMOS-FET 20 is built in the n-type isolation island (semiconductor isolation island) 3 of single crystal silicon in the DI substrate 2. The DI substrate 2 is usually a substrate in which a plurality of n-type isolation islands 3 electrically separated by an insulating film 4 are formed on a polysilicon layer (support layer) 5.

【0016】DMOS-FET20は、DI基板2のn型分離島
3の表面部分にチャネル形成用のp型領域(第2導電型
半導体領域)21が形成され、このp型領域21の表面
部分にソース領域用のn型領域22が形成され、n型分
離島3の底面部分と側面部分にはドレイン領域用のn+
型領域(第1導電型不純物高濃度領域)24が絶縁膜4
沿いに分離島表面まで延びて露出するように形成されて
いる。一方、n型分離島3の表面では、p型領域21の
一部とソース領域であるn型領域22の両方にコンタク
トしているソース電極31とn+ 型領域24にコンタク
トするドレイン電極33とが絶縁層27を介して分離島
外に引き出された構成になっているのに加えて、ゲート
電極26がゲート絶縁膜27aを介して設けられている
とともにゲート電極26の引出電極33が絶縁層27を
介して分離島外に引き出されていいる。電極31〜33
はアルミニウム製である。
In the DMOS-FET 20, a p-type region (second conductivity type semiconductor region) 21 for forming a channel is formed on the surface of the n-type isolation island 3 of the DI substrate 2, and on the surface of the p-type region 21. An n-type region 22 for the source region is formed, and n + + for the drain region is formed on the bottom and side surfaces of the n-type isolation island 3.
The type region (first conductivity type impurity high concentration region) 24 is the insulating film 4
It is formed so as to extend along the surface of the isolated island and be exposed. On the other hand, on the surface of the n-type isolation island 3, a source electrode 31 that contacts both a part of the p-type region 21 and the n-type region 22 that is a source region, and a drain electrode 33 that contacts the n + -type region 24. In addition to the structure in which the gate electrode 26 is drawn out of the isolation island via the insulating layer 27, the gate electrode 26 is provided via the gate insulating film 27a, and the extraction electrode 33 of the gate electrode 26 is an insulating layer. It is pulled out to the outside of the island via 27. Electrodes 31-33
Is made of aluminum.

【0017】DMOS-FET20ではゲート電極26の電圧を
制御することにより、p型領域21の表面でチャネルの
生成・消滅が起こるようになっていることは従来の通り
である。そして、このDMOS-FET20の場合、図3にみる
ように、p型領域21用の電極であるソース電極31の
下方の絶縁層27中には電極の延びる方向に沿って複数
個のポリシリコン製のフローティング電極28,28・
・が飛び飛びに設けられており、このフローティング電
極28は、図4にみるように、ソース電極31よりも幅
広であってソース電極31の両縁からはみ出した状態と
なっていて、ソース電極31とn+ 型領域24が交差状
態であっても、ソース電極31が負の電位となるように
電圧が印加された場合、前述の如く電界が緩和されソー
ス電極31の直下のp型領域21−n+ 型領域24の間
の電界分布が均一化されて耐圧が高まる。さらに、この
DMOS-FET20の場合、図3にみるように、ゲート電極2
6用の引出電極33の下方の絶縁層27中にも電極の延
びる方向に沿って複数個のポリシリコン製のフローティ
ング電極29,29・・が飛び飛びに設けられており、
このフローティング電極29は、図4にみるように、引
出電極33よりも幅広であって引出電極33の両縁から
はみ出した状態となっていて、引出電極33とn+ 型領
域24が交差状態であっても、引出電極33が負の電位
となるように電圧が印加された場合、やはり電界が緩和
され引出電極33の直下のp型領域21−n+ 型領域2
4の間の電界分布が均一化されて耐圧低下の心配がない
のである。実施例2のように、フローティング電極29
がポリシリコ製である場合には、フローティング電極2
9ゲート電極26の同時形成が可能であるという利点が
ある。
In the DMOS-FET 20, it is conventional that the generation and disappearance of a channel occurs on the surface of the p-type region 21 by controlling the voltage of the gate electrode 26. In the case of this DMOS-FET 20, as shown in FIG. 3, a plurality of polysilicon layers are formed in the insulating layer 27 below the source electrode 31, which is an electrode for the p-type region 21, along the electrode extending direction. Floating electrodes 28, 28.
As shown in FIG. 4, the floating electrodes 28 are wider than the source electrode 31 and protrude from both edges of the source electrode 31, as shown in FIG. Even if the n + -type region 24 is in the intersecting state, when a voltage is applied so that the source electrode 31 has a negative potential, the electric field is relaxed as described above, and the p-type region 21-n immediately below the source electrode 31. The electric field distribution between the + type regions 24 is made uniform, and the breakdown voltage is increased. Furthermore, this
In the case of DMOS-FET 20, as shown in FIG.
In the insulating layer 27 below the extraction electrode 33 for 6, a plurality of polysilicon floating electrodes 29, 29 ... Are provided in a scattered manner along the direction in which the electrodes extend.
As shown in FIG. 4, the floating electrode 29 is wider than the extraction electrode 33 and protrudes from both edges of the extraction electrode 33, and the extraction electrode 33 and the n + -type region 24 intersect each other. However, when a voltage is applied so that the extraction electrode 33 has a negative potential, the electric field is also relaxed and the p-type region 21-n + -type region 2 immediately below the extraction electrode 33 is also provided.
Therefore, the electric field distribution between No. 4 and No. 4 is made uniform, and there is no fear of lowering the withstand voltage. As in the second embodiment, the floating electrode 29
If the electrode is made of poly silicon, the floating electrode 2
There is an advantage that the 9 gate electrodes 26 can be simultaneously formed.

【0018】[0018]

【発明の効果】以上に述べたように、この発明にかかる
半導体装置の場合、第1導電型不純物高濃度領域と交差
している第2導電型半導体領域用の電極やゲート電極用
の引出電極の下方の絶縁層中に飛び飛びに設けられた幅
広のフローティング電極により、長く延びてゆく電極の
各位置に合わせて電界がうまく緩和されるためにブレー
クダウンが起こり難くなり、第1導電型不純物高濃度領
域と第2導電型半導体領域用の電極やゲート電極用の引
出電極との交差を解消せずとも、耐圧向上が図れるの
で、この発明は非常に有用である。
As described above, in the case of the semiconductor device according to the present invention, the electrode for the second conductivity type semiconductor region and the extraction electrode for the gate electrode intersecting the first conductivity type impurity high concentration region. Due to the wide floating electrodes provided in the insulating layer below the electrode, the electric field is well relaxed in accordance with each position of the electrode that extends for a long time, so that breakdown is less likely to occur, and the first conductivity type impurity The present invention is very useful because the breakdown voltage can be improved without eliminating the intersection between the concentration region and the electrode for the second conductivity type semiconductor region or the extraction electrode for the gate electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の半導体装置の要部構成をあらわす断
面図。
FIG. 1 is a cross-sectional view showing the main configuration of a semiconductor device according to a first embodiment.

【図2】実施例1の半導体装置の要部構成をあらわす平
面図。
FIG. 2 is a plan view showing the main configuration of the semiconductor device according to the first embodiment.

【図3】実施例2の半導体装置の要部構成をあらわす断
面図。
FIG. 3 is a cross-sectional view showing the main configuration of a semiconductor device according to a second embodiment.

【図4】実施例2の半導体装置の要部構成をあらわす平
面図。
FIG. 4 is a plan view showing the main configuration of a semiconductor device according to a second embodiment.

【図5】従来の半導体装置の要部構成をあらわす断面
図。
FIG. 5 is a cross-sectional view showing a main part configuration of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体装置 2 DI基板(誘電体分離基板) 3 n型分離島(半導体分離島) 4 絶縁膜 5 ポリシリコン層(支持体層) 6 p型領域(第2導電型半導体領域) 7 絶縁層 11 電極 12 電極 13 n+ 型領域(第1導電型不純物高濃度領域) 18 フローティング電極 20 DMOS-FET(絶縁ゲート型電界効果半導体装置) 21 チャネル領域用のp型領域 22 ソース領域用のn型領域 24 ドレイン領域用のn+ 型領域(第1導電型不純物
高濃度領域) 26 ゲート電極 28 フローティング電極 29 フローティング電極 31 ソース電極 32 ドレイン電極 33 引出電極
1 semiconductor device 2 DI substrate (dielectric isolation substrate) 3 n-type isolation island (semiconductor isolation island) 4 insulating film 5 polysilicon layer (support layer) 6 p-type region (second conductivity type semiconductor region) 7 insulating layer 11 Electrode 12 Electrode 13 n + type region (first conductivity type impurity high concentration region) 18 floating electrode 20 DMOS-FET (insulated gate type field effect semiconductor device) 21 p type region for channel region 22 n type region for source region 24 n + type region for drain region (first conductivity type impurity high concentration region) 26 gate electrode 28 floating electrode 29 floating electrode 31 source electrode 32 drain electrode 33 extraction electrode

フロントページの続き (72)発明者 杉浦 義幸 大阪府門真市大字門真1048番地松下電工株 式会社内Front page continuation (72) Inventor Yoshiyuki Sugiura 1048, Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Works Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 支持体層上に絶縁膜で電気的に分離され
た第1導電型半導体分離島が形成されてなる誘電体分離
基板を備え、前記半導体分離島の表面部分に第2導電型
半導体領域が形成されていて、前記半導体分離島の底面
部分と側面部分には第1導電型不純物高濃度領域が絶縁
膜沿いに分離島表面まで延びて露出するように形成され
ており、かつ、前記分離島表面では、前記第2導電型半
導体領域にコンタクトする電極と前記第1導電型不純物
高濃度領域にコンタクトする電極のそれぞれが絶縁層を
介して分離島外に引き出されている半導体装置におい
て、前記第2導電型半導体領域用の電極の下方の絶縁層
中に電極の引出方向に沿って複数個のフローティング電
極が飛び飛びに設けられているとともに、このフローテ
ィング電極は第2導電型半導体領域用の電極よりも幅広
で同電極の両縁からはみ出した状態となっていることを
特徴とする半導体装置。
1. A dielectric isolation substrate having a first conductivity type semiconductor isolation island electrically isolated by an insulating film on a support layer, and a second conductivity type on a surface portion of the semiconductor isolation island. A semiconductor region is formed, and a first-conductivity-type high-concentration impurity region is formed on the bottom surface and the side surface of the semiconductor isolation island so as to extend along the insulating film to the isolation island surface and be exposed; In the semiconductor device, on the surface of the isolation island, an electrode contacting the second conductivity type semiconductor region and an electrode contacting the first conductivity type impurity high-concentration region are respectively drawn out of the isolation island through an insulating layer. A plurality of floating electrodes are provided in a scattered manner in the insulating layer below the electrode for the second conductivity type semiconductor region along the extraction direction of the electrode. A semiconductor device characterized in that it is wider than the electrodes for the type semiconductor region and protrudes from both edges of the electrodes.
【請求項2】 半導体装置が第2導電型半導体領域をチ
ャネル形成用とする絶縁ゲート型電界効果半導体装置で
あり、前記第2導電型半導体領域の表面部分にソース領
域用の第1導電型半導体領域が形成されており、第1導
電型不純物高濃度領域がドレイン領域用であって、か
つ、分離島表面では、ゲート電極が絶縁層を介して設け
られていて、第2導電型半導体領域用の電極はソース領
域用の第1導電型半導体領域にもコンタクトしてソース
電極となっており、かつ、前記ゲート電極の引出電極が
絶縁層を介して分離島外に引き出されていて、前記引出
電極の下方の絶縁膜中にも電極の引出方向に沿って複数
個のフローティング電極が飛び飛びに設けられていると
ともに、このフローティング電極も引出電極よりも幅広
で引出電極の両縁からはみ出した状態となっている請求
項1記載の半導体装置。
2. A semiconductor device is an insulated gate field effect semiconductor device in which a second conductivity type semiconductor region is used for forming a channel, and a first conductivity type semiconductor for a source region is provided on a surface portion of the second conductivity type semiconductor region. Regions are formed, the first-conductivity-type impurity high-concentration region is for the drain region, and the gate electrode is provided on the surface of the isolation island via the insulating layer, and for the second-conductivity-type semiconductor region. Of the gate electrode is also in contact with the first conductivity type semiconductor region for the source region to serve as a source electrode, and the extraction electrode of the gate electrode is extracted to the outside of the isolation island through the insulating layer. In the insulating film below the electrodes, a plurality of floating electrodes are provided in a scattered manner along the electrode extraction direction, and these floating electrodes are also wider than the extraction electrodes and are separated from both edges of the extraction electrodes. The semiconductor device according to claim 1, which is in a protruding state.
JP797193A 1993-01-20 1993-01-20 Semiconductor device Expired - Lifetime JP2883779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP797193A JP2883779B2 (en) 1993-01-20 1993-01-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP797193A JP2883779B2 (en) 1993-01-20 1993-01-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH06216231A true JPH06216231A (en) 1994-08-05
JP2883779B2 JP2883779B2 (en) 1999-04-19

Family

ID=11680356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP797193A Expired - Lifetime JP2883779B2 (en) 1993-01-20 1993-01-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2883779B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310719A (en) * 2005-03-30 2006-11-09 Sanyo Electric Co Ltd Semiconductor device
DE102011086761A1 (en) 2010-12-29 2012-07-05 Mitsubishi Electric Corp. Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310719A (en) * 2005-03-30 2006-11-09 Sanyo Electric Co Ltd Semiconductor device
DE102011086761A1 (en) 2010-12-29 2012-07-05 Mitsubishi Electric Corp. Semiconductor device
US8772903B2 (en) 2010-12-29 2014-07-08 Mitsubishi Electric Corporation Semiconductor device with reduced potential between adjacent floating regions

Also Published As

Publication number Publication date
JP2883779B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
JP2001244461A (en) Vertical semiconductor device
JP4145352B2 (en) Lateral thin film SOI device with linearly graded field oxide and linear doping profile
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
US6198129B1 (en) Vertical type insulated gate transistor
JPH0457111B2 (en)
JP3393149B2 (en) High voltage structure with oxide insulating source and RESURF drift region in bulk silicon
JPH07335888A (en) Silicon insulator transistor
US4430663A (en) Prevention of surface channels in silicon semiconductor devices
KR100360416B1 (en) Power semiconductor device having high breakdown voltage and method for fabricating the same
JP2000260990A (en) High-voltage element and its manufacture
JPH06216231A (en) Semiconductor device
JPS63194367A (en) Semiconductor device
KR920010962A (en) Semiconductor device and method of forming the same
KR20050009797A (en) Structure of high voltage transistor with shallow trench isolation layer
JPH10242454A (en) Semiconductor device
JP3217484B2 (en) High voltage semiconductor device
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP3217488B2 (en) High voltage semiconductor device
JP3160544B2 (en) Semiconductor device
JPH06216232A (en) Semiconductor device
JPH10190011A (en) High-withstand voltage diode
JPH02249276A (en) Semiconductor device
JP3233002B2 (en) Field effect transistor
JPH0653490A (en) Semiconductor device
KR100247814B1 (en) Semiconductor device and method for manufacturing the same