JPH06215778A - Solid electrolyte-type fuel cell - Google Patents

Solid electrolyte-type fuel cell

Info

Publication number
JPH06215778A
JPH06215778A JP5006048A JP604893A JPH06215778A JP H06215778 A JPH06215778 A JP H06215778A JP 5006048 A JP5006048 A JP 5006048A JP 604893 A JP604893 A JP 604893A JP H06215778 A JPH06215778 A JP H06215778A
Authority
JP
Japan
Prior art keywords
power generation
fuel cell
oxygen
fuel
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5006048A
Other languages
Japanese (ja)
Other versions
JP3145522B2 (en
Inventor
Tokumi Satake
徳己 佐竹
Kiyoshi Watanabe
潔 渡辺
Fusayuki Nanjo
房幸 南條
Hitoshi Miyamoto
均 宮本
Koichi Takenobu
弘一 武信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP00604893A priority Critical patent/JP3145522B2/en
Publication of JPH06215778A publication Critical patent/JPH06215778A/en
Application granted granted Critical
Publication of JP3145522B2 publication Critical patent/JP3145522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To lower the electric resistance, lessen the quantities of oxygen electrodes and a fuel cell, improve electricity generation efficiency, and lower the cost. CONSTITUTION:A hollow part 25 is formed in both sides of an electricity generating layer 21 consisting of a fuel electrode 23, a solid electrolyte 22, and an oxygen electrode 24. The projected part 26a in the outer side of the hollow part 25 in the fuel electrode side and an inter connector layer 28 are electrically joined with a first conductive adhesive 27 and at the same time a projected part 26b in the outer side of a hollow part 25 in the oxygen electrode side of another electricity generating layer 21 and the projected part 26a are set face to face and joined with a second conductive adhesive 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池
(SOFC)に関し、特に発電の他,水電解やCO2
解等の電解セルにも使用可能なSOFCに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell (SOFC), and more particularly to an SOFC which can be used not only for power generation but also for electrolytic cells such as water electrolysis and CO 2 electrolysis.

【0002】[0002]

【従来の技術】図3は、従来のSOFCの概略図を示す
(実願平2−48031号)。
2. Description of the Related Art FIG. 3 is a schematic view of a conventional SOFC (Japanese Patent Application No. 2-48031).

【0003】図中の符号1は発電層であり、固体電解質
2の両側に酸素電極3と燃料電極4を夫々配置した構成
となっている。前記発電層1の上下には、インタコネク
タ材5の両側に酸素電極層6と燃料電極層7を積層した
積層体8a,8bが配置されている。前記発電層1の上
側の外側頂部9は上方の積層体8aと接合し、それによ
り生じた空間で燃料通路10を形成している。一方、前記
発電層1の下側の外側頂部11は下方の積層体8bと接合
し、それにより生じた空間で酸化材通路12を形成してい
る。
Reference numeral 1 in the drawing denotes a power generation layer, which has a structure in which an oxygen electrode 3 and a fuel electrode 4 are arranged on both sides of a solid electrolyte 2, respectively. Laminated bodies 8a and 8b in which the oxygen electrode layer 6 and the fuel electrode layer 7 are laminated on both sides of the interconnector material 5 are arranged above and below the power generation layer 1. The outer top portion 9 on the upper side of the power generation layer 1 is joined to the upper laminated body 8a, and the fuel passage 10 is formed in the space created thereby. On the other hand, the lower outer top portion 11 of the power generation layer 1 is joined to the lower laminated body 8b, and an oxidant passage 12 is formed in the space created thereby.

【0004】これは、本願発明でも明らかとしている通
り、それ以前の主流で考えられていた構造に対し、支持
部材等,直接発電に関与しない部材を不要としたこと
で、この分野にあっては実に重要な考案である。
As is clear from the invention of the present application, this is because in the field, the members that are not directly involved in power generation, such as a supporting member, are unnecessary in the structure that was considered in the mainstream before that. This is a really important idea.

【0005】[0005]

【発明が解決しようとする課題】ところで、SOFCは
発電効率が60%を越え、エネルギー対策上重要な位置
付けにあるものであるが、製造コスト等の対策が必要と
されている。この点から図3の従来技術は重要なポイン
トを突いたものであるが、発電そのものに直接関与しな
い酸素電極層6と燃料電極層7を必要としていた。
The SOFC has a power generation efficiency of more than 60% and is positioned as an important energy measure, but measures such as manufacturing cost are required. From this point, the prior art of FIG. 3 has an important point, but it requires the oxygen electrode layer 6 and the fuel electrode layer 7 which are not directly involved in the power generation itself.

【0006】この理由は、発電層1にディンプル構造を
採用した為、発生した電子がディンプル部(窪み部)に
集中し、そのままインタコネクタ材と接合すると、電気
的抵抗が大きくなる為、電子を拡散し電子の横流れをで
きるようにディンプル部に夫々電極材と接するようにし
たためである。
The reason for this is that since the power generation layer 1 has a dimple structure, the generated electrons are concentrated in the dimple portion (recessed portion), and if they are directly joined to the interconnector material, the electrical resistance increases, so that electrons are generated. This is because each of the dimples is in contact with the electrode material so as to diffuse and allow a lateral flow of electrons.

【0007】本発明は上記事情を鑑みてなされたもの
で、夫々の特性を生かし、極力電気抵抗を減らすことを
目的とし、併せ電池としての構成を部材を減じるように
した固体電解質型燃料電池を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and aims to reduce the electric resistance as much as possible by making the best use of the respective characteristics, and also to provide a solid electrolyte fuel cell in which the number of members is reduced in the structure as a battery. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、燃料電極,固
体電解質,酸素電極の3層からなる発電層の両面に窪み
部を設け、燃料電極側の前記窪み部の外側の凸部に第1
導電性接着剤を介してインタコネクタ層と電気的接合を
行うと共に、前記凸部に対向して他の発電膜の酸素電極
側の窪み部の外側の凸部を第2導電性接着剤を介して接
合したことを特徴とする固体電解質型燃料電池である。
According to the present invention, a recess is provided on both surfaces of a power generation layer composed of three layers of a fuel electrode, a solid electrolyte and an oxygen electrode, and a protrusion on the outer side of the recess on the fuel electrode side has a first structure. 1
The electrical connection is made with the interconnector layer via a conductive adhesive, and the convex portion on the outer side of the concave portion on the oxygen electrode side of the other power generation film facing the convex portion is interposed with the second conductive adhesive. It is a solid oxide fuel cell characterized by being joined together.

【0009】[0009]

【作用】SOFCは、電解質にセラミックスであるYS
Zを用いる為、夫々の電池構成部材の熱膨脹率を一致化
させて、電解質が熱膨脹差によって互いが拘束されてい
ることから来る変形による割れを防ぐよう工夫されてい
る。
[Function] SOFC is a ceramic electrolyte YS
Since Z is used, the thermal expansion coefficients of the respective battery constituent members are made equal to prevent cracking due to deformation caused by the fact that the electrolytes are constrained by the difference in thermal expansion.

【0010】このことから、電解質に合わせた熱膨脹率
の燃料電極・酸素電極・インタコネクタ材が求められ、
材料自信の持つ電気抵抗はある程度無視され用いられ
る。この場合の代表的な材料事例として、本発明者らの
実験の結果から次のように求めた。 インタコネクタ材:LaSrCrO3 (厚さ1mm) 水素側:導電率1s/cm、抵抗0.1Ω・cm2 酸素側:導電率30s/cm、抵抗0.03Ω・cm2 平均:導電率10s/cm、抵抗0.01Ω・cm2 酸素電極材:LaSrMnO3 (厚み50μm) 導電率20s/cm、抵抗2.5×10-4Ω・cm2 燃料電極材:Ni/YSZ(60:40)(厚み50μm) 導電率500 〜1000s/cm、抵抗1×10-5Ω・cm2
From this, the coefficient of thermal expansion matched to the electrolyte
Fuel electrodes, oxygen electrodes and interconnector materials of
The electric resistance of the material is neglected to some extent
It As a typical material example in this case, the present inventors
The following was obtained from the experimental results. Interconnector material: LaSrCrO3(Thickness 1 mm) Hydrogen side: conductivity 1 s / cm, resistance 0.1 Ω · cm2  Oxygen side: conductivity 30s / cm, resistance 0.03Ω · cm2  Average: conductivity 10s / cm, resistance 0.01Ω · cm2  Oxygen electrode material: LaSrMnO3(Thickness 50 μm) conductivity 20 s / cm, resistance 2.5 × 10-FourΩ ・ cm2  Fuel electrode material: Ni / YSZ (60:40) (thickness 50 μm) conductivity 500 to 1000 s / cm, resistance 1 × 10-FiveΩ ・ cm2

【0011】抵抗はいずれも縦流れ方向であるが、この
ことからも明らかな通り、構造部材として独自に強度を
保有するべき程度の厚みを必要とすることを含めインタ
コネクタ層が圧倒的に電気抵抗が大きく、この電気的流
れを極力短くしてやる必要がある。
Although all the resistances are in the longitudinal flow direction, as is clear from this, the interconnector layer is overwhelmingly electrically conductive, including the fact that the structural member needs to have such a thickness as to have its own strength. Since the resistance is large, it is necessary to make this electrical flow as short as possible.

【0012】また、これらを模式的な電気流れで示す図
4を当てはめてみると、ディンプルのピッチを3mmとし
たとき、電子の横流れは1.5mm、このときインタコネ
クタをLaSrCrO3 として厚さ2mmのときの燃料電
極(Ni/YSZ)と酸素電極(LaSrCrO3 )の
厚みを変えたときのこれら三相全体の抵抗は下記「表
1」の通りである。
Further, when applying FIG. 4 which shows these in a schematic electric flow, when the pitch of the dimples is 3 mm, the lateral flow of electrons is 1.5 mm, and at this time, the interconnector is LaSrCrO 3 and the thickness is 2 mm. When the thicknesses of the fuel electrode (Ni / YSZ) and the oxygen electrode (LaSrCrO 3 ) are changed, the resistances of these three phases as a whole are shown in "Table 1" below.

【0013】[0013]

【表1】 [Table 1]

【0014】この表1から明らかのように、燃料電極側
は精々50μmの厚みとすればよいが、酸素電極側は電
気抵抗を減じるには厚さに大きく依存している。本発明
では、こうした横流れによる抵抗が生じないので、発電
層の酸素電極とインタコネクタの接続にあっても、比較
的薄い接着材(通常は酸素電極と同材を用いる)を電気
的に結合し得る程度に塗布すればよいことが分かる。
As is clear from Table 1, the thickness of the fuel electrode side should be at most 50 μm, but the oxygen electrode side greatly depends on the thickness to reduce the electric resistance. In the present invention, since resistance due to such a lateral flow does not occur, a relatively thin adhesive material (usually the same material as the oxygen electrode is used) is electrically coupled even when connecting the oxygen electrode of the power generation layer and the interconnector. It is understood that it is sufficient to apply as much as possible.

【0015】[0015]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG.

【0016】図中の符号21は発電層を示し、固体電解質
22の上下面に燃料電極23と酸素電極24を夫々形成した構
成になっている。前記発電層21の両面には多数のディン
プル(窪み部)25が形成され、そのディンプル25の反対
側は凸部26a,26bが形成されている。前記発電層21の
燃料電極側の凸部26aは、前記燃料電極23と共材の接着
剤27を介してインタコネクタ材28に接続されている。一
方、前記発電層21の酸素電極側の凸部26bは、前記酸素
電極23と共材の接着剤29を介してインタコネクタ材28が
接続されている。なお、図中の符号30は、発電層21と接
着剤27とインタコネクタ材28で囲まれた領域,つまり燃
料電極23に燃料ガスを供給する燃料通路である。また、
図中の符号31は、発電層21と接着剤29とインタコネクタ
材28で囲まれた領域,つまり酸素電極24に酸素を供給す
る酸化材通路である。
Reference numeral 21 in the figure denotes a power generation layer, which is a solid electrolyte.
A fuel electrode 23 and an oxygen electrode 24 are respectively formed on the upper and lower surfaces of 22. A large number of dimples (concave portions) 25 are formed on both surfaces of the power generation layer 21, and convex portions 26a and 26b are formed on the opposite side of the dimples 25. The fuel electrode-side convex portion 26a of the power generation layer 21 is connected to an interconnector material 28 via an adhesive 27 that is a common material with the fuel electrode 23. On the other hand, the convex portion 26b on the oxygen electrode side of the power generation layer 21 is connected to the oxygen electrode 23 by an interconnector material 28 via an adhesive 29 which is a common material. Reference numeral 30 in the figure is a region surrounded by the power generation layer 21, the adhesive 27, and the interconnector material 28, that is, a fuel passage for supplying the fuel gas to the fuel electrode 23. Also,
Reference numeral 31 in the figure denotes an area surrounded by the power generation layer 21, the adhesive 29 and the interconnector material 28, that is, an oxidant passage for supplying oxygen to the oxygen electrode 24.

【0017】このように、この実施例に係るSOFC
は、固体電解質22の上下面に燃料電極23と酸素電極24を
夫々形成した構成した発電層21を一段置きに構成し、か
つ前記発電層21の燃料電極側の凸部26aを前記燃料電極
23と共材の接着剤27を介してインタコネクタ材28に接続
するとともに、発電層21の酸素電極側の凸部26bを前記
酸素電極23と共材の接着剤29を介してインタコネクタ材
28が接続させた構成になっているため、抵抗の大きなイ
ンタコネクタ材における電子の横流れが生じることを抑
制できる。
Thus, the SOFC according to this embodiment
Comprises a power generation layer 21 in which a fuel electrode 23 and an oxygen electrode 24 are respectively formed on the upper and lower surfaces of a solid electrolyte 22, and the convex portions 26a on the fuel electrode side of the power generation layer 21 are formed on the fuel electrode side.
23 is connected to the interconnector material 28 through an adhesive 27 which is a common material with the oxygen electrode 23, and the convex portion 26b on the oxygen electrode side of the power generation layer 21 is connected through an adhesive 29 which is a common material with the oxygen electrode 23.
Since 28 is connected, it is possible to suppress the lateral flow of electrons in the interconnector material having a large resistance.

【0018】[0018]

【発明の効果】以上詳述した如く本発明によれば、電気
抵抗を小さくできると共に、酸素電極及び燃料電池の量
を少なくすることができ、発電効率を高めるとともにコ
スト低減をなし得る固体電解質型燃料電池を提供でき
る。
As described above in detail, according to the present invention, the electric resistance can be reduced, the oxygen electrodes and the fuel cells can be reduced in amount, and the power generation efficiency can be improved and the cost can be reduced. A fuel cell can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る固体電解質型燃料電池
の説明図。
FIG. 1 is an explanatory view of a solid oxide fuel cell according to an embodiment of the present invention.

【図2】図1の固体電解質型燃料電池の一構成である発
電層の概略的な斜視図。
FIG. 2 is a schematic perspective view of a power generation layer that is one configuration of the solid oxide fuel cell of FIG.

【図3】従来の固体電解質型燃料電池の説明図。FIG. 3 is an explanatory view of a conventional solid oxide fuel cell.

【図4】図3の固体電解質型燃料電池における電子の流
れを示す模式図。
4 is a schematic diagram showing a flow of electrons in the solid oxide fuel cell of FIG.

【符号の説明】[Explanation of symbols]

21…発電層、 22…固体電解質、 23
…燃料電極、24…酸素電極、 25…ディンプル、
26a,26b…凸部、27,29…接着剤、
30…燃料通路、 31…酸化剤通路。
21 ... Power generation layer, 22 ... Solid electrolyte, 23
… Fuel electrode, 24… Oxygen electrode, 25… Dimples,
26a, 26b ... convex portion, 27, 29 ... adhesive,
30 ... Fuel passage, 31 ... Oxidant passage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 均 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 武信 弘一 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Miyamoto 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Prefecture Takasago Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Koichi Takenobu, Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo No. 1-1, Mitsubishi Heavy Industries, Ltd. Kobe Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料電極,固体電解質,酸素電極の3層
からなる発電層の両面に窪み部を設け、燃料電極側の前
記窪み部の外側の凸部に第1導電性接着剤を介してイン
タコネクタ層と電気的接合を行うと共に、前記凸部に対
向して他の発電膜の酸素電極側の窪み部の外側の凸部を
第2導電性接着剤を介して接合したことを特徴とする固
体電解質型燃料電池。
1. A dent is provided on both surfaces of a power generation layer composed of three layers of a fuel electrode, a solid electrolyte and an oxygen electrode, and a convex portion outside the dent on the fuel electrode side is provided with a first conductive adhesive agent. In addition to electrically connecting with the interconnector layer, a convex portion outside the concave portion on the oxygen electrode side of another power generation film facing the convex portion is joined via a second conductive adhesive. Solid oxide fuel cell.
JP00604893A 1993-01-18 1993-01-18 Solid oxide fuel cell Expired - Lifetime JP3145522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00604893A JP3145522B2 (en) 1993-01-18 1993-01-18 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00604893A JP3145522B2 (en) 1993-01-18 1993-01-18 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH06215778A true JPH06215778A (en) 1994-08-05
JP3145522B2 JP3145522B2 (en) 2001-03-12

Family

ID=11627738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00604893A Expired - Lifetime JP3145522B2 (en) 1993-01-18 1993-01-18 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3145522B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654839A1 (en) * 1993-11-19 1995-05-24 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
AU669449B2 (en) * 1993-09-01 1996-06-06 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
JP2005339904A (en) * 2004-05-25 2005-12-08 Kyocera Corp Fuel cell stack and fuel cell
US7045237B2 (en) 2002-02-20 2006-05-16 Ion America Corporation Textured electrolyte for a solid oxide fuel cell
JP2007173234A (en) * 2005-12-20 2007-07-05 General Electric Co <Ge> Fuel cell with brazed interconnect, and method for assembling the same
JP2013069521A (en) * 2011-09-22 2013-04-18 Nissan Motor Co Ltd Fuel cell, fuel cell stack, and manufacturing method for fuel cell or fuel cell stack
US8852825B2 (en) 2011-11-17 2014-10-07 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US8986905B2 (en) 2008-11-11 2015-03-24 Bloom Energy Corporation Fuel cell interconnect
JP2016129157A (en) * 2016-04-08 2016-07-14 京セラ株式会社 Cell stack and fuel cell module
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US9468736B2 (en) 2013-11-27 2016-10-18 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9583771B2 (en) 2013-05-16 2017-02-28 Bloom Energy Coporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US9673457B2 (en) 2012-11-06 2017-06-06 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9755263B2 (en) 2013-03-15 2017-09-05 Bloom Energy Corporation Fuel cell mechanical components
US9799909B2 (en) 2010-01-26 2017-10-24 Bloom Energy Corporation Phase stable doped zirconia electrolyte compositions with low degradation
US9812714B2 (en) 2006-10-18 2017-11-07 Bloom Energy Corporation Anode with remarkable stability under conditions of extreme fuel starvation
US9847520B1 (en) 2012-07-19 2017-12-19 Bloom Energy Corporation Thermal processing of interconnects
US9923211B2 (en) 2014-04-24 2018-03-20 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US10763533B1 (en) 2017-03-30 2020-09-01 Bloom Energy Corporation Solid oxide fuel cell interconnect having a magnesium containing corrosion barrier layer and method of making thereof
US11217797B2 (en) 2012-08-29 2022-01-04 Bloom Energy Corporation Interconnect for fuel cell stack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479730B (en) 2009-03-20 2015-04-01 Bloom Energy Corp Crack free sofc electrolyte

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU669449B2 (en) * 1993-09-01 1996-06-06 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
US5480737A (en) * 1993-11-19 1996-01-02 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
EP0654839A1 (en) * 1993-11-19 1995-05-24 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
US7045237B2 (en) 2002-02-20 2006-05-16 Ion America Corporation Textured electrolyte for a solid oxide fuel cell
JP2005339904A (en) * 2004-05-25 2005-12-08 Kyocera Corp Fuel cell stack and fuel cell
JP2007173234A (en) * 2005-12-20 2007-07-05 General Electric Co <Ge> Fuel cell with brazed interconnect, and method for assembling the same
US9812714B2 (en) 2006-10-18 2017-11-07 Bloom Energy Corporation Anode with remarkable stability under conditions of extreme fuel starvation
US9461314B2 (en) 2008-11-11 2016-10-04 Bloom Energy Corporation Fuel cell interconnect
US8986905B2 (en) 2008-11-11 2015-03-24 Bloom Energy Corporation Fuel cell interconnect
US9799909B2 (en) 2010-01-26 2017-10-24 Bloom Energy Corporation Phase stable doped zirconia electrolyte compositions with low degradation
JP2013069521A (en) * 2011-09-22 2013-04-18 Nissan Motor Co Ltd Fuel cell, fuel cell stack, and manufacturing method for fuel cell or fuel cell stack
US8852825B2 (en) 2011-11-17 2014-10-07 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US10784521B2 (en) 2011-11-17 2020-09-22 Bloom Energy Corporation Multi-layered coating providing corrosion resistance to zirconia based electrolytes
US9196909B2 (en) 2011-11-18 2015-11-24 Bloom Energy Corporation Fuel cell interconnect heat treatment method
US9570769B2 (en) 2011-11-18 2017-02-14 Bloom Energy Corporation Fuel cell interconnect
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US9452475B2 (en) 2012-03-01 2016-09-27 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US10505206B2 (en) 2012-03-01 2019-12-10 Bloom Energy Corporation Coatings for SOFC metallic interconnects
US9847520B1 (en) 2012-07-19 2017-12-19 Bloom Energy Corporation Thermal processing of interconnects
US11217797B2 (en) 2012-08-29 2022-01-04 Bloom Energy Corporation Interconnect for fuel cell stack
US11705557B2 (en) 2012-08-29 2023-07-18 Bloom Energy Corporation Interconnect for fuel cell stack
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9673457B2 (en) 2012-11-06 2017-06-06 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9755263B2 (en) 2013-03-15 2017-09-05 Bloom Energy Corporation Fuel cell mechanical components
US9583771B2 (en) 2013-05-16 2017-02-28 Bloom Energy Coporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US9853298B2 (en) 2013-05-16 2017-12-26 Bloom Energy Corporation Corrosion resistant barrier layer for a solid oxide fuel cell stack and method of making thereof
US10593962B2 (en) 2013-10-01 2020-03-17 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9468736B2 (en) 2013-11-27 2016-10-18 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US10079393B1 (en) 2014-01-09 2018-09-18 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US11417894B2 (en) 2014-01-09 2022-08-16 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US11786970B2 (en) 2014-01-09 2023-10-17 Bloom Energy Corporation Method of fabricating an interconnect for a fuel cell stack
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks
US9923211B2 (en) 2014-04-24 2018-03-20 Bloom Energy Corporation Fuel cell interconnect with reduced voltage degradation over time
US10553879B2 (en) 2014-04-24 2020-02-04 Bloom Energy Corporation Fuel cell interconnect with metal or metal oxide contact layer
JP2016129157A (en) * 2016-04-08 2016-07-14 京セラ株式会社 Cell stack and fuel cell module
US10763533B1 (en) 2017-03-30 2020-09-01 Bloom Energy Corporation Solid oxide fuel cell interconnect having a magnesium containing corrosion barrier layer and method of making thereof

Also Published As

Publication number Publication date
JP3145522B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
JPH06215778A (en) Solid electrolyte-type fuel cell
JP4552371B2 (en) Solid oxide fuel cell
EP0692836B1 (en) Solid oxide electrolyte fuel cell
JP7254755B2 (en) Manufacturing method of electrochemical reaction cell stack
WO2007043366A1 (en) Fuel cell and method for manufacturing same
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7249981B2 (en) Electrochemical reaction cell stack
JP7082954B2 (en) Electrochemical reaction cell stack
JP7186199B2 (en) Electrochemical reaction cell stack
JP6867852B2 (en) Current collector-electrochemical reaction single cell complex and battery chemical reaction cell stack
JPH1125999A (en) Solid electrolyte fuel cell
JP2018081771A (en) Interconnector-electrochemical reaction single cell complex, and electrochemical reaction cell stack
JPH06275302A (en) Solid electrolyte type electrolytic cell
JP6773470B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7112443B2 (en) Electrochemical reaction cell stack
JP7232282B2 (en) Electrochemical reaction cell stack
JP7187382B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7159126B2 (en) Electrochemical reaction cell stack
JP7194070B2 (en) Electrochemical reaction cell stack
JP7194155B2 (en) Electrochemical reaction cell stack
JP6774230B2 (en) Current collector-electrochemical reaction single cell complex and electrochemical reaction cell stack
JP2023119076A (en) Composite body
JP2023023050A (en) electrochemical reaction single cell
JPH07245107A (en) Solid electrolyte fuel cell
JPS6276261A (en) Fused carbonate type fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 13